JPS5864248A - Surface treatment of glass bottle - Google Patents

Surface treatment of glass bottle

Info

Publication number
JPS5864248A
JPS5864248A JP16330881A JP16330881A JPS5864248A JP S5864248 A JPS5864248 A JP S5864248A JP 16330881 A JP16330881 A JP 16330881A JP 16330881 A JP16330881 A JP 16330881A JP S5864248 A JPS5864248 A JP S5864248A
Authority
JP
Japan
Prior art keywords
glass bottle
glass
bottle
treatment
bottles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16330881A
Other languages
Japanese (ja)
Other versions
JPS631256B2 (en
Inventor
Nobuaki Okura
大蔵 惟明
Yoshio Mizutani
水谷 芳夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON TAISANBIN KOGYO KK
Nihon Taisanbin Kogyo KK
Original Assignee
NIPPON TAISANBIN KOGYO KK
Nihon Taisanbin Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON TAISANBIN KOGYO KK, Nihon Taisanbin Kogyo KK filed Critical NIPPON TAISANBIN KOGYO KK
Priority to JP16330881A priority Critical patent/JPS5864248A/en
Publication of JPS5864248A publication Critical patent/JPS5864248A/en
Publication of JPS631256B2 publication Critical patent/JPS631256B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments

Abstract

PURPOSE:To enhance the chemical durability and mechanical strength of a glass bottle by charging a dealkalizing agent into the bottle after molding and by heat treating the bottle under prescribed conditions. CONSTITUTION:A dealkalizing agent such as gaseous SO2 or ammonium sulfate is charged into a glass bottle after molding. The bottle is kept at 580-650 deg.C for 10-40min and rapidly cooled by spraying cooling air on both the inner and outer surfaces of the bottle. Thus, the surface of the glass bottle is dealkalized and coated with a formed compressive stress layer, and the chemical durability and mechanical strength are enhanced.

Description

【発明の詳細な説明】 この発明はガラスびんの表面処理に関し、特に母体ガラ
スびんの内外表面における脱アルカリ処理と圧縮応力層
の形成を一体に行なうことにより、ガラスびんO化学的
耐久性と機械的強度をと4に向上させることができる1
!!面処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to surface treatment of glass bottles, and in particular, by performing alkalization treatment on the inner and outer surfaces of the base glass bottle and forming a compressive stress layer in an integrated manner, the chemical durability and mechanical durability of the glass bottle are improved. The target strength can be improved to 1 and 4.
! ! It relates to a surface treatment method.

ガラス製品の榛械的強度を増加させるだめの強化方法は
、ガラスの表面に圧縮応力層を形成することにある。こ
のガラス表面に圧縮応力層を形成する代表的な方法とし
て、ガラス表面層のナトリウムイオンをこれよりイオン
半径の大きいカリウムイオンにイオン交換し表層部に圧
縮応力層を生ぜしめるイオン交換法と、加熱したガラス
表面を急冷してガラス内部との冷却の差によりガラス表
面に圧縮応力を生ぜしめる方法とがある。後者について
は、一般KFi冷却用空気を吹きつけて急冷するので、
風冷強化法または空冷強化法とよばれており、板ガラス
分野ではすでに実用化されている。この風冷強化法は、
ガラス表面を均一に冷却することが最も重要であって、
例えば特開昭51−122981号公報、特開昭54−
102322号公報記載にみられbように1複雑な形状
を有するガラス製品に対する均一な冷却技術が開発され
、提案されている0本発明者らも、ガラスびんの外表面
と内表面の冷びんKあっても喪好表風冷強化を図ること
ができることを知った。
A strengthening method for increasing the mechanical strength of glass products consists in forming a compressive stress layer on the surface of the glass. Typical methods for forming a compressive stress layer on the glass surface include the ion exchange method, in which sodium ions on the glass surface layer are ion-exchanged with potassium ions having a larger ionic radius, creating a compressive stress layer on the surface layer, and heating. There is a method in which the glass surface is rapidly cooled and compressive stress is generated on the glass surface due to the difference in cooling with the inside of the glass. For the latter, general KFi cooling air is blown to rapidly cool it.
This method is called the air-cooling strengthening method or the air-cooling strengthening method, and it has already been put into practical use in the field of sheet glass. This wind cooling reinforcement method is
It is most important to uniformly cool the glass surface.
For example, JP-A-51-122981, JP-A-54-
As described in Japanese Patent No. 102322, a uniform cooling technique for glass products having a complicated shape has been developed and proposed. I learned that it is possible to strengthen the mood and coldness of mourning.

とζろで、ζO風冷強化法はイオン交換法に比して工程
的にも経済的にもはるかに有利に行なうことができるの
であるが、安定し九強度を得るためKはガラスびん0内
表面に対して本急冷処理をしなければならない。しかし
ながら、ガラスびん0内表面を急冷して該表面層に圧縮
応力層を形成するとアルカリ(ナトリウム)成分の滲出
が増進され、そこに充填される内容物に対する化学的耐
久性が低下する欠点がある。
The ζO air-cooling strengthening method is much more advantageous in terms of process and economy than the ion exchange method. The inner surface must undergo main quenching treatment. However, when the inner surface of a glass bottle is rapidly cooled to form a compressive stress layer on the surface layer, the leaching of alkali (sodium) components is accelerated, which has the disadvantage of reducing the chemical durability of the contents filled therein. .

後述する第1図のグラフにも示されるように風冷強化び
んのアルカ呼成分の溶出は未処理びんよりも大幅に増大
する。ガラスびんは、他のガラス製品と異なり、容器と
して液状内容物が充填され、長期間に亘って保管される
ことも少なくなく、薬品、食品用に用いられるものはも
ちろんのこと、その化学的耐久性の劣化はびんの価値を
左右する重大な不利益を付与することとなる。
As shown in the graph of FIG. 1, which will be described later, the elution of alkali components from air-cooled tempered bottles is much greater than from untreated bottles. Unlike other glass products, glass bottles are filled with liquid contents as containers and are often stored for long periods of time. The deterioration in the quality of the bottle results in a serious disadvantage that affects the value of the bottle.

そこで本発明者らは鋭意努力を重ね、化学的耐久性にも
優れた風冷強化法ともいうべく、新規なガラスびんの表
面処理方法を見出したのである。以下実施例に基づいて
詳細に説明する。
Therefore, the inventors of the present invention made extensive efforts and discovered a new method for surface treatment of glass bottles, which can be called an air-cooling strengthening method that also has excellent chemical durability. A detailed explanation will be given below based on examples.

この発明は、成形後の母体ガラスびん内に亜−酸ガス、
硫酸アンモニウム等の公知の脱アルカリ剖を投入し該ガ
ラスの軟化点以下歪点以上の温度にて保持する脱アルカ
リ処理工程と、これに引き続いて骸ガラスびんがその歪
点以上にあるときにガラスびん内外両表面に冷却空気を
吹一つ叶て急冷する急冷処理工程とから彦る仁とをその
主要部とする。
In this invention, nitrogenous acid gas is contained in the base glass bottle after molding.
A dealkalizing treatment step in which a known dealkalizing agent such as ammonium sulfate is introduced and the glass is maintained at a temperature below the softening point and above the strain point, and subsequently, when the glass bottle is at the strain point or above, the glass bottle is removed. The main part is a rapid cooling process in which a single blow of cooling air is applied to both the internal and external surfaces to rapidly cool them.

すなわち、まず成形後のソーダ石灰ガラスびん内に亜硫
酸ガスを投入し、580〜650°CK調温された炉内
に導入し5〜40分間程変保持し脱アルカリ処理がなさ
れる。成形直後のガラスびんの内部温度は700°C以
上に達し、このようが場合KFiこの脱アルカリ処理工
1!社5〜lO分1度の短時間で十分であることもある
That is, first, sulfur dioxide gas is introduced into a soda-lime glass bottle after molding, and the bottle is introduced into a furnace whose temperature is controlled at 580 to 650 DEG C., and the bottle is held for about 5 to 40 minutes to perform a dealkalization treatment. Immediately after forming, the internal temperature of the glass bottle reaches over 700°C, and in this case, KFi's dealkalization process 1! A short time of 5 to 10 minutes may be sufficient.

脱アルカリ処理後、ガラスびんは前記炉より取り出され
、それが歪点以上の温°度にあるときに、ガラスびんの
内外表面に冷却空気が吹きつけられ急冷処理がなされる
。このとき、ガラスびんの内外表面には表層部と内層部
の冷却の差によって圧縮応力が生ずる。しかしながら、
ガラスびんの表面部、特に内表面部は先の脱アルカリ処
理によってアルカリイオン(ナトリウムイオン)が取シ
除かれているので、アルカリ成分の滲出は極力低く抑え
られる。
After the dealkalization treatment, the glass bottle is taken out of the furnace, and when it is at a temperature above the strain point, cooling air is blown onto the inner and outer surfaces of the glass bottle to perform a quenching treatment. At this time, compressive stress is generated on the inner and outer surfaces of the glass bottle due to the difference in cooling between the surface layer and the inner layer. however,
Since alkali ions (sodium ions) have been removed from the surface of the glass bottle, especially the inner surface, by the previous dealkalization treatment, leaching of alkaline components is suppressed to the lowest possible level.

1配の実施例によって処理したガラスびんムと急冷処理
のみを施し九びん(風冷強化びん)Bおよび未処理びん
Cとにおける溶出成分(Na20 および51oz)と
フレークスの発生を対比した実験のグラフが第1図に示
される。この実験はオートクレーブ121@cで12時
間後の測定値である。急冷処理のみを施したびんBにお
けるMa2OとE1102  の溶出量は未処理びんc
lcおけるそれよ酬も多く、本発明の処理方法によって
大きく低減されることがわかる。また、フレ−クス発生
試験は試料本数に対するフレークス発生本数の割合m)
を示すもので、本発明処理によるびんムのフレークス発
生量は皆無で、風冷強化びんBは試料の60′sについ
てフレークスの発生を見た。
Graph of an experiment comparing eluted components (Na20 and 51 oz) and flake generation in glass bottles treated according to Example 1, 9 bottles (air-cooled strengthened bottles) B and untreated bottles C, which were only subjected to quenching treatment is shown in FIG. In this experiment, the values were measured after 12 hours in autoclave 121@c. The elution amount of Ma2O and E1102 in bottle B, which was subjected to only quenching treatment, is the same as that of untreated bottle C.
It can be seen that there are many losses in lc, which can be greatly reduced by the processing method of the present invention. In addition, in the flake generation test, the ratio of the number of flakes generated to the number of samples m)
The bottles processed according to the present invention produced no flakes, and the air-cooled strengthened bottle B produced flakes after 60's of the sample.

第2図以下は、さらに本発明に至る過程で提案された処
理方法を加えて対比実験した結果を示すグラフである。
FIG. 2 and subsequent graphs are graphs showing the results of comparative experiments in which processing methods proposed in the process leading to the present invention were added.

tJ2図ないし第4図において符号り、に、?で示され
たびんは、いずれも本発明の処理工程の順序を逆にして
母体ガラスびんの急冷処理後脱アルカリ処理したもので
、その具体的な処理方法は次の通りである。
In Figure tJ2 to Figure 4, the symbol, ? The bottles shown are all obtained by reversing the order of the processing steps of the present invention and subjecting the parent glass bottle to a quenching treatment followed by a dealkalization treatment, and the specific treatment method is as follows.

D;母体ガラスびんの急冷処理後、びん内に亜硫酸ガス
を投入後300−で30分間熱処理をしたもの。
D: After rapid cooling of the base glass bottle, sulfur dioxide gas was introduced into the bottle, and then heat treatment was performed at 300 - for 30 minutes.

E冨母体ガラスの急冷処理後、びん内に亜硫酸ガスを投
入後400°Cで30分間熱処理したもの。
After quenching the E-rich matrix glass, sulfur dioxide gas was introduced into the bottle and then heat treated at 400°C for 30 minutes.

IP=母体ガラスの急冷処理後、びん内に亜硫酸ガスを
投入後450’cで1時間熱処理し九本の。
IP = After rapid cooling of the base glass, sulfur dioxide gas was introduced into the bottle, and then heat treated at 450'C for 1 hour, resulting in 9 bottles.

第2図は日本薬局方の注射剤用ガラス容器試験法におけ
るアルカリ溶出試験法の2法によるアルカリ溶出量(輩
^azgo4の消費量ml)試験で、本発明処理のびん
ムは時間のれ過Kitとんど関係なく安定した低アルカ
リ溶出量を示している。
Figure 2 shows an alkali elution amount (ml consumption amount of ^azgo4) test using two methods of the alkali elution test method in the Japanese Pharmacopoeia's glass container test method for injections. It shows a stable and low alkali elution amount regardless of the kit.

@3図および第4図はガラスびんの機械的強度K151
1iシて未処理びんに対する対ブランク比として掲げた
グラフであって、第3図#1JTIII 8 S+3・
ツ3による機械術撃彊度試験、第4図は同じくJI88
2502 Kよる耐内圧強度試験に基づく。これらO橡
械的強fK関しては本発明処理びんムけ風冷強化びんB
とほぼ遜色のない強度を有していることが実証された。
@Figures 3 and 4 show the mechanical strength of glass bottles K151
Figure 3 is a graph showing the blank ratio for untreated bottles with 1i and #1JTIII8S+3.
Mechanical impact test by Tsu3, Figure 4 is also JI88
Based on internal pressure strength test at 2502K. Regarding these O mechanically strong fK, the bottle B treated with the present invention is
It has been demonstrated that the strength is almost comparable to that of

試験例におけるり、l、Fの処理びんから明らかなよう
に1急冷処理をなしてから脱アルカリ処理をしても化学
的耐久性の向上は低く、風冷強化の効果も低下する。結
局、本発明のように脱アルカリ処理を先工程とし、これ
に引き続いて急冷処理を行なった場合に1アルカリ溶出
量の低いしかも風冷強化の実効あるびんを得ることがで
き九のである。
As is clear from the treated bottles of No. 1, I, and F in the test examples, even if one quenching treatment is performed and then the dealkalization treatment is performed, the improvement in chemical durability is low and the effect of air cooling reinforcement is also reduced. In conclusion, as in the present invention, when the dealkalization treatment is the first step and the rapid cooling treatment is performed subsequently, it is possible to obtain a bottle that has a low amount of alkali elution and is effectively strengthened by air cooling.

この発明によって処理される母体ガラスびんは一般には
成形後の未処理びんであるが、本発明による処理前にホ
ットエンドコーティング処理がなされ九びんであって屯
よい。すなわち、製びん機にて製造した直後の熱いびん
にすす、チタン等の化合物を作用させ、びん表面にこれ
らの金属の酸化物被膜を形成することKよりガラス表面
の衝撃強度を増加させるのがホットエンドコーティング
処理であるが、本発明の処理方法にお−ては、このよう
な処理をなされたものを母体ガラスぴんとして選択して
もよい。
The parent glass bottles treated according to the present invention are generally untreated bottles after molding, but may also be hot-end coated bottles prior to treatment according to the present invention. In other words, it is better to increase the impact strength of the glass surface by applying compounds such as soot and titanium to the hot bottle immediately after it has been manufactured in a bottle making machine to form an oxide film of these metals on the bottle surface. Although this is a hot-end coating treatment, in the treatment method of the present invention, glass pins that have been subjected to such treatment may be selected as the base glass pin.

さらに、本発明による処理を先工程として、そのilK
滑り性のよいコーティング剤を密着塗布する工程を付加
することはガラスびんの機械的強度を保持し高める上で
極めて効果的である。
Furthermore, the ilK
Adding a step of closely applying a coating agent with good slipperiness is extremely effective in maintaining and increasing the mechanical strength of glass bottles.

すなわち、本発明による表面処理工程螢適当に冷却し九
ガラスびん外表面に滑性のよいパラフィン系や脂肪酸等
の界面活性剤もしくけプラスチックスエマルジ曹ン等の
コーティング剤を密着塗布しガラス表面の滑性あるいは
耐摩耗性を向上させるのである。前者の滑性を向上させ
る工程は一般にコールドエンドコーティング処理とよば
れるものであるが、この処理をなしたガラスびんは該コ
ーティング剤の滑性によってびんどうしのこすれ合いK
よるすり傷を防止し、先になされえ風冷強化による機械
的強度の向上を実効あらしめ、製造ラインの流れをスム
ーズにし、爾後の包装、輸送上の効率も数段と向上させ
ることができる。なお、上記のコールドエンドコーティ
ング処理工程を付加する場合においても、母体ガラスび
んに前述のホットエンドコーティング処理によにその表
面に金属酸化物の被膜を形成しえものを選ぶことができ
る。この場合におけるガラスびん表面は、ホットエンド
コーティング処理→〔脱アルカリ処理−急冷処理〕→コ
ールドエンドコーティング処理を経てすぐれ九機械的強
度と化学的耐久性を兼ね備える仁ととなる。前記のプラ
スチックフィルムによる表面被膜を形成し九場合も同様
である。
That is, in the surface treatment process according to the present invention, a glass bottle is cooled appropriately, and a coating agent such as a paraffin-based or fatty acid surfactant with good lubricity, such as plastic emulsion carbonate, is closely applied to the outer surface of the glass bottle. It improves lubricity or abrasion resistance. The former process of improving lubricity is generally referred to as cold-end coating treatment, and glass bottles treated with this treatment are less prone to rubbing against each other due to the lubricity of the coating agent.
It is possible to prevent scratches caused by bending, improve mechanical strength by strengthening wind cooling first, smooth the flow of the production line, and improve the efficiency of packaging and transportation. . In addition, even when the above-mentioned cold-end coating process is added, it is possible to select one in which a metal oxide film is formed on the surface of the base glass bottle by the above-mentioned hot-end coating process. In this case, the surface of the glass bottle undergoes hot-end coating treatment -> [dealkalization treatment - quenching treatment] -> cold-end coating treatment - to give a surface that has excellent mechanical strength and chemical durability. The same applies to the case where a surface coating is formed using the plastic film described above.

以上説明したようにこの発明によれば、脱アルカリ処理
工程後これに引き続いて急冷処理を行なうことKよって
、脱アルカリ処理と圧縮応力層の形成とを安定し丸形で
一体に行なうことができる。従って、ガラスびんKおけ
る風冷強化の最大の難点であった化学的耐久性の劣化は
大きく改善され、この発明は単に薬品びんや食品びん等
の化学的耐久性を厳しく求められるびんのみに止まらず
、容器としてのガラスびん一般に対する実用可能な風冷
強化の途を開いたものとして評価される。
As explained above, according to the present invention, the dealkalization process and the formation of the compressive stress layer can be stably performed integrally in a round shape by performing the quenching process subsequent to the dealkalization process. . Therefore, the deterioration of chemical durability, which was the biggest drawback of air-cooling strengthening of glass bottles, has been greatly improved, and this invention is applicable not only to bottles that require strict chemical durability, such as medicine bottles and food bottles. First, it has been praised as paving the way for practical air-cooling strengthening of glass bottles in general.

i九この発明による処理は、びん成形−説アルカリ処理
−急冷処理という一連の工程で行なう仁とができるので
、との発明の丸めの特別な設備を要することなく経済的
にも大きな利点を有し、さらに急冷処理を行なう仁とK
よって徐冷工程が不要となる等、機械的強度および化学
的耐久性の向上とiう利点とあわせてその実際的な運用
、実施に際しても極めて大きな有利性を享有することが
できる。
i9 The treatment according to the present invention can be carried out in a series of steps of bottle molding, alkaline treatment, and rapid cooling treatment, so it does not require any special equipment for the rounding of the invention and has great economic advantages. Then, Jin and K undergo further rapid cooling treatment.
Therefore, in addition to the advantages of improved mechanical strength and chemical durability, such as eliminating the need for a slow cooling step, it is possible to enjoy extremely great advantages in practical operation and implementation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明処理に係るびんを他のものと比較試験し
九溶出成分とフレークスの発生を示すグラフ、第2図は
同じくアルカリ溶出量試験のグラフ、第3図は同じく衝
撃強度試験のグラフ、第4図は同じく耐内圧試験のグラ
ブである。 ム・一本発明処理びん、  B・・・風冷強化びん、C
・−・未処理びん。 特許出願人 日本耐鐵壜工業株式会社 代理人
Figure 1 is a graph showing the occurrence of nine eluted components and flakes in a comparative test of bottles treated according to the present invention with other bottles, Figure 2 is a graph of the alkali elution amount test, and Figure 3 is a graph of the impact strength test. The graph in Figure 4 is also a glove from the internal pressure test. M・1 Bottles treated with the present invention, B...Air-cooled strengthened bottles, C
・−・Untreated bottle. Agent for patent applicant Nippon Steel Bottle Industry Co., Ltd.

Claims (1)

【特許請求の範囲】 1 成形後の母体ガラスびん内に亜硫酸ガス、硫酸アン
モニウム等の脱アルカリ剤を投入し該ガラスの軟化点以
下歪点以上の温度にて保った後、肢ガラスびんの内外両
表面に冷却用空気を吹きつけ急冷することにより、ガラ
スびん表面の脱アルカリ処理と圧縮応力層の形成を一体
に行なうととを4I徴とするガラスびんの表面処理方法
。 2 脱アルカリ剤の投入uk580〜650’aの温度
で10〜40分間保持することとし九特許請求の範囲第
1項記載のガラスびんの表面処理方法。 5 母体ガラスびんがホットエンドコーティング処理に
よ)その表面に金属酸化物の被膜を有するものである特
許請求の範囲第1項記載のガラスびん0表面処理方法。 4 成形後の母体ガラスびん内に亜硫酸ガス、硫酸アン
モニウム等の脱アルカリ剤を投入し該ガラスの軟化点以
下歪点以上の11度にて保った彼、該ガラスびんの内外
両表面に冷却用空気を吹きつけ急冷することにより、ガ
ラスびん表面の脱アルカリ処理と圧縮応力層の形成を一
体に行なう1糧と、前記工程後ガラスびん外表面に滑性
向上あるいは摺抄きず防止のためにコーティング剤を重
着塗布することによね、ガラスびん表面の滑性あるいは
耐摩耗性を向上させる工程とからなることを特徴とする
ガラスびんの表面処理方法。   。 5 母体ガラスびんがホットエンドコーティング処理に
よりその表面に金属酸化物の被膜を有するものである特
許請求の範囲第4項記載のガラスびんの表面処理方法。
[Scope of Claims] 1. After introducing a dealkalizing agent such as sulfur dioxide gas or ammonium sulfate into the molded base glass bottle and keeping it at a temperature below the softening point and above the strain point of the glass, both the inside and outside of the glass bottle are removed. A method for surface treatment of glass bottles, characterized in that 4I characteristics include dealkalizing the surface of the glass bottle and forming a compressive stress layer by rapidly cooling the surface by blowing cooling air onto the surface. 2. The method for surface treatment of glass bottles according to claim 1, wherein the dealkalizing agent is added and maintained at a temperature of 580 to 650'a for 10 to 40 minutes. 5. The glass bottle surface treatment method according to claim 1, wherein the base glass bottle has a metal oxide coating on its surface by hot end coating treatment. 4 A dealkalizing agent such as sulfur dioxide gas or ammonium sulfate was added into the glass bottle after molding, and the temperature was maintained at 11 degrees below the softening point and above the strain point of the glass. By spraying and rapidly cooling the glass bottle, a coating agent is applied to the outer surface of the glass bottle to improve lubricity or prevent scratches. 1. A method for surface treatment of glass bottles, comprising the step of improving the lubricity or abrasion resistance of the glass bottle surface by heavily coating the glass bottle. . 5. The method for surface treatment of a glass bottle according to claim 4, wherein the base glass bottle has a metal oxide coating on its surface by hot-end coating treatment.
JP16330881A 1981-10-13 1981-10-13 Surface treatment of glass bottle Granted JPS5864248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16330881A JPS5864248A (en) 1981-10-13 1981-10-13 Surface treatment of glass bottle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16330881A JPS5864248A (en) 1981-10-13 1981-10-13 Surface treatment of glass bottle

Publications (2)

Publication Number Publication Date
JPS5864248A true JPS5864248A (en) 1983-04-16
JPS631256B2 JPS631256B2 (en) 1988-01-12

Family

ID=15771356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16330881A Granted JPS5864248A (en) 1981-10-13 1981-10-13 Surface treatment of glass bottle

Country Status (1)

Country Link
JP (1) JPS5864248A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120256A (en) * 1988-10-27 1990-05-08 Central Glass Co Ltd Method for forming protection film on glass surface
EP0609116A1 (en) * 1993-01-26 1994-08-03 Lalique S.A. Process for the treatment of the surface of crystal articles and articles thus obtained
JP2012501943A (en) * 2008-09-08 2012-01-26 テーウー・ベルクアカデミエ・フライベルク Manufacturing method of heat strengthened glass
WO2011150039A3 (en) * 2010-05-25 2012-04-05 Emhart Glass S.A. Post-manufacture glass container thermal strengthening method
JP2013141775A (en) * 2012-01-11 2013-07-22 Pilot Corporation Ink accommodation body for writing instrument
FR3078329A1 (en) * 2018-02-27 2019-08-30 Sgd S.A. PROCESS FOR PROCESSING A GLASS WALL CONTAINER AND RELATED INSTALLATION
AT18136U1 (en) * 2019-07-11 2024-02-15 Sgd Sa Process and system for dealkalizing glass containers using liquid
US11966158B2 (en) * 2019-01-30 2024-04-23 Inpria Corporation Monoalkyl tin trialkoxides and/or monoalkyl tin triamides with low metal contamination and/or particulate contamination, and corresponding methods

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120256A (en) * 1988-10-27 1990-05-08 Central Glass Co Ltd Method for forming protection film on glass surface
EP0609116A1 (en) * 1993-01-26 1994-08-03 Lalique S.A. Process for the treatment of the surface of crystal articles and articles thus obtained
JP2012501943A (en) * 2008-09-08 2012-01-26 テーウー・ベルクアカデミエ・フライベルク Manufacturing method of heat strengthened glass
WO2011150039A3 (en) * 2010-05-25 2012-04-05 Emhart Glass S.A. Post-manufacture glass container thermal strengthening method
US8839644B2 (en) 2010-05-25 2014-09-23 Emhart Glass S.A. Post-manufacture glass container thermal strengthening method
JP2013141775A (en) * 2012-01-11 2013-07-22 Pilot Corporation Ink accommodation body for writing instrument
FR3078329A1 (en) * 2018-02-27 2019-08-30 Sgd S.A. PROCESS FOR PROCESSING A GLASS WALL CONTAINER AND RELATED INSTALLATION
WO2019166719A1 (en) * 2018-02-27 2019-09-06 Sgd S.A. Method for treating a glass-walled container and corresponding apparatus
US11966158B2 (en) * 2019-01-30 2024-04-23 Inpria Corporation Monoalkyl tin trialkoxides and/or monoalkyl tin triamides with low metal contamination and/or particulate contamination, and corresponding methods
AT18136U1 (en) * 2019-07-11 2024-02-15 Sgd Sa Process and system for dealkalizing glass containers using liquid

Also Published As

Publication number Publication date
JPS631256B2 (en) 1988-01-12

Similar Documents

Publication Publication Date Title
US4164402A (en) Strengthening of thin-walled, light glass containers
US2779136A (en) Method of making a glass article of high mechanical strength and article made thereby
AU2004232803B2 (en) Method and apparatus for strengthening glass
US20200377410A1 (en) Glass with reinforced layer and preparation method thereof
US3473906A (en) Method of strengthening glass
US3524737A (en) Method for thermochemical strengthening of glass articles
EP2925699B1 (en) Surface treatment process for glass containers
JPS5864248A (en) Surface treatment of glass bottle
JPS6127336B2 (en)
IL40405A (en) Process of colouring or modifying the colouration of a glass body containing reducing ions by diffusion
JPS6127337B2 (en)
US4702760A (en) Method for strengthening glass articles through electrostatic ionic interchange
JPH0323494B2 (en)
JPS6022662B2 (en) Method for manufacturing lightweight bottles with stable chemical durability and mechanical strength
US3887348A (en) Glass coloring process
KR20180015327A (en) Method for treating glass substrate
US3508895A (en) Thermochemical method of strengthening glass
US3489546A (en) Strengthening of oxidized soda-lime glass articles
JPS632906B2 (en)
US20210061698A1 (en) Method for strengthening and bending glass sheets
US3875763A (en) Method of strengthening glass containers
US20230087978A1 (en) Aqueous ion exchange strengthening of glass articles
JPH1067544A (en) Surface treatment of glass
KR101986370B1 (en) Method For Manufacturing Chemically Reinforced Glass
SU726046A1 (en) Method of strengthening glass articles