JPS5864180A - Removal of arsenic in aqueous solution - Google Patents

Removal of arsenic in aqueous solution

Info

Publication number
JPS5864180A
JPS5864180A JP16381981A JP16381981A JPS5864180A JP S5864180 A JPS5864180 A JP S5864180A JP 16381981 A JP16381981 A JP 16381981A JP 16381981 A JP16381981 A JP 16381981A JP S5864180 A JPS5864180 A JP S5864180A
Authority
JP
Japan
Prior art keywords
arsenic
chelate
resin
aqueous solution
forming group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16381981A
Other languages
Japanese (ja)
Inventor
Yoshiaki Iwaya
岩屋 嘉昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP16381981A priority Critical patent/JPS5864180A/en
Publication of JPS5864180A publication Critical patent/JPS5864180A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To facilitate efficient removal of arsenic dissolved in an aqueous solution, by bringing an aqueous arsenic-contg. solution into contact with a chelating resin having a chelate-forming group represented by a specified formula. CONSTITUTION:An aqueous trivalent arsenic-contg. solution is brought into contact with a chelating resin having a chelate-forming group represented by formulaI(wherein R is H or a 1-5C alkyl group and n is an integer of 1-6) to remove the trivalent arsenic in the aqueous solution. The chelating resin having the chelate-forming group represented by formulaIis a phenolic resin having the chelate-forming group of formulaIin its phenolic nucleus. Said phenolic resin is prepared, for instance, by resinifying a phenolic compound such as N-methyl- N-(2-hydroxyphenylmethyl)-D-glucamine, with another phenolic compound, a kind of phenols and an aldehyde by a polycondensing reaction.

Description

【発明の詳細な説明】 本発明は、アミノポリアルコール基を有するキレート樹
脂を用いて、水溶液中のヒ素を除去する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing arsenic from an aqueous solution using a chelate resin having an aminopolyalcohol group.

ヒ素は、非鉄金属製錬工業をはじめとして、その他医薬
品、農薬、顔料9石油デフント工業などの排水、並びに
地熱発電所の熱排水中に含まれている。ヒ素、特に3価
のと素の毒性については。
Arsenic is contained in wastewater from the non-ferrous metal smelting industry as well as other pharmaceuticals, agricultural chemicals, and pigment industries, as well as in thermal wastewater from geothermal power plants. Regarding the toxicity of arsenic, especially trivalent arsenic.

昔より知られていたが、近年、ヒ素の発がん性が認めら
れたことから、その存在は排水基準で0.5pP鳳、環
境基準で0.O5ppm以下の低レベルに規制されてい
る。このようなヒ素を含む排水の処理方法としては、現
在までにいくつかの方法が知られているが、その中でも
、力〃シウム、マグネシウム、バリウム、鉄、アルミニ
ウムなどの金属水酸化物による凝集法でん法が、比較的
簡単な処理操作により、残留ヒ素を排水基準以下にでき
ることから、広く用いられている。しかしながら、この
方法では、地熱発電所の熱水に代表される。低濃度のヒ
素を含有する排水を多量に処理する場合には、大量の薬
品を使用する必要があり、また、このとき発生する多量
のヒ素含有ヌフツジの処理に問題がある。このような金
属水酸化物共沈法に代わる方法として、活性度、活性ア
μミナ、Vリカゲμ、赤泥、二酸化マンガン、チタン−
活性度複合吸着剤、酸化ジμコニウムを担持したシラス
粒子などによる吸着法、鉄(1)又はジルコニウム(F
)相持型カチオン交換樹脂による配位子イオン交換法、
陰イオン交換樹脂によるイオン交換法などが検討されて
いる。しかし、これらの吸着剤又はイオン交換樹脂によ
る方法は、ヒポ、特に有害な3価のヒ素に対する吸着容
量が小さいうえに9選択性に不十分であり、さらに再生
が煩雑で、耐久性にも乏しいので、5I!用的ではない
It has been known for a long time, but in recent years, the carcinogenicity of arsenic has been recognized, and its presence has been reduced to 0.5ppP by wastewater standards and 0.5pP by environmental standards. O2 is regulated to a low level of 5ppm or less. Several methods are known to date for treating wastewater containing arsenic, among which a coagulation method using metal hydroxides such as hydricium, magnesium, barium, iron, and aluminum is known. The starch method is widely used because it can reduce residual arsenic to below wastewater standards through relatively simple treatment operations. However, this method is typified by hot water from geothermal power plants. When treating a large amount of wastewater containing low concentrations of arsenic, it is necessary to use a large amount of chemicals, and there are also problems in processing the large amount of arsenic-containing waste generated at this time. As an alternative to such a metal hydroxide coprecipitation method, the activity, active μmina, Vlikageμ, red mud, manganese dioxide, titanium-
Adsorption method using activity composite adsorbent, Shirasu particles supporting diμconium oxide, iron (1) or zirconium (F
) Ligand ion exchange method using compatible cation exchange resin,
Ion exchange methods using anion exchange resins are being considered. However, methods using these adsorbents or ion exchange resins have a small adsorption capacity for hypo, especially harmful trivalent arsenic, and are insufficient in 9 selectivity. Furthermore, regeneration is complicated and durability is poor. So, 5I! It's not useful.

一方、キレート樹脂を利用する方法としては。On the other hand, as for the method of using chelate resin.

イミノジ酢酸型キv−)樹脂tc”5価の鉄、もしくは
ジルコニウムを吸着させたのち、配位子交換法によりヒ
素アニオンを除去する方法が提案されているが、これら
の方法は、吸着容量が小さく、吸着速度も極めて小さい
ので、低濃度のヒ素含有排水を多量に処理するには適し
ていない。また、再生方法も煩雑で7通常は9強酸で再
生処理することが必要であり、この際、鉄もしくはジル
コニウムがヒ素とともに溶離し、このとき生成するスフ
ツジの処理に問題があるうえ、再使用時には、再度、鉄
もしくはe)pvコニクムを吸着させることを必要とす
るので、5JI用的ではなく、効率良くヒ素を除去する
ことは困難であった。
A method has been proposed in which the arsenic anion is removed by a ligand exchange method after adsorbing pentavalent iron or zirconium, but these methods have a low adsorption capacity. Because it is small and the adsorption rate is extremely slow, it is not suitable for treating large amounts of wastewater containing low concentrations of arsenic.In addition, the regeneration method is complicated and usually requires regeneration treatment with a strong acid. , iron or zirconium elutes with arsenic, and there is a problem in processing the sulphate generated at this time, and when reusing it, it is necessary to adsorb iron or e) pvconicum again, so it is not suitable for 5JI. However, it was difficult to remove arsenic efficiently.

そこで9本発明者は、これらの実状に鑑み、水溶液中に
溶存すると素を効率良く除去する方法を提供することを
目的として鋭意研究した結果、アミノポリアルコール基
を有するキレート樹脂を用いると、上記の目的が達成さ
れることを見い出し。
In view of these circumstances, the inventors of the present invention conducted extensive research with the aim of providing a method for efficiently removing elements dissolved in an aqueous solution, and found that when a chelate resin having an aminopolyalcohol group is used, find that the purpose of is achieved.

本発明に到達した。We have arrived at the present invention.

すなわち5本発明は1式(I)で示されるキレート形成
基を有するキレ−)dil脂とヒ素を含有する水溶液と
を接触させて水溶液中のと素を除去することを特徴とす
る水溶液中のヒ素の除去方法である。
That is, 5 the present invention provides a method for removing carbon in an aqueous solution by bringing a chelate-forming group represented by formula (I) into contact with an arsenic-containing aqueous solution. This is a method for removing arsenic.

本発明に用いるキレート樹脂としては、架橋三次元化し
た樹脂ならいかなるものでもよいが、キレート形成基と
して式(I)で示される基を有していることが必要であ
る。その式(IlのRとしては、特にメチ〃基、エチρ
基が好ましく、nとしては。
The chelate resin used in the present invention may be any three-dimensionally crosslinked resin, but it must have a group represented by formula (I) as a chelate forming group. The formula (R of Il is particularly a methyl group, ethyl ρ
A group is preferable, and n is preferably a group.

4が好ましい、また、m脂母体としては、スチレン・ジ
ビニ〃ベンゼン共重合体、フェノ−〜・ホルマリン樹脂
、エポキシ樹脂などが好ましい。これらキレ−)樹脂の
好ましい具体例として、アンバーフィトIRA−743
(スチレン・ジビニルベンゼン共重合体、ローム・アン
ド・ハース社製)。
4 is preferable, and as the m fat base, styrene/divinybenzene copolymer, phenol-formalin resin, epoxy resin, etc. are preferable. As a preferable specific example of these resins, Amberphyto IRA-743
(Styrene-divinylbenzene copolymer, manufactured by Rohm and Haas).

フェノ−μ核に式(I)のキレート形成基を有するフェ
ノール樹脂(特願昭56−81475号)があげられる
Examples include phenol resins having a chelate-forming group of formula (I) in the pheno-μ nucleus (Japanese Patent Application No. 81475/1982).

このフェノ−μ核に式(Ilのキレート形成基を有する
フェノ−μ樹間を製造するには1例えば、N−メチル−
N−(2−にドロキVフエ二μメチル)−D−グμカミ
ンのようなフェノ−〃化合物とフェノール化合物とフェ
ノール類及びアルデヒド類を重縮合反応により樹脂化し
て製造すればよく。
To prepare a pheno-μ tree with a chelating group of formula (Il) on this pheno-μ nucleus, for example, N-methyl-
It may be produced by polycondensation reaction of a phenol compound such as N-(2-ni-dorokiVphenimethyl)-D-gukamine, a phenol compound, phenols, and aldehydes into a resin.

まず第1段階として、フェノ−〃化合物とアルデヒド類
とを反応させる。その際に、アルデヒド類をフェノ−μ
化合物に対して、七〃比で0.2:1〜2.0 : 1
 、好ましくは0.8 : 1〜1.5二1の割合で添
加し9重合触媒を加えて、20〜90′cで1〜6時間
、好ましくは50〜80℃で2〜4時間加熱攪拌する0
次いで、第2段階として、第1段階で得られた反応化、
成物にフェノール類を加えで反応させる。その際に、フ
ェノール類をフェノ−μ化合物に対して、七μ比で0.
1〜9.0:1.好ましくは0.3 : 1〜5.0 
: 117)割合で添加し、25〜95でで1〜6時間
、好ましくは50〜90cで2〜4時間加熱攪拌する。
First, in the first step, a pheno compound and an aldehyde are reacted. At that time, aldehydes are pheno-μ
7 ratio of 0.2:1 to 2.0:1 to the compound
, preferably in a ratio of 0.8:1 to 1.5 to 1, then add a polymerization catalyst and heat and stir at 20 to 90°C for 1 to 6 hours, preferably at 50 to 80°C for 2 to 4 hours. 0 to do
Then, as a second step, the reaction obtained in the first step,
Phenols are added to the product and reacted. At that time, the ratio of phenol to pheno-μ compound is 0.7μ.
1-9.0:1. Preferably 0.3:1 to 5.0
: 117) and heated and stirred at 25 to 95 °C for 1 to 6 hours, preferably at 50 to 90 °C for 2 to 4 hours.

更に第S段階として、第2段階で得られた反応生成物に
アルデヒド類を加えて反応させる。その際に、アルデヒ
ド類をフェノ−〜化合物に対して、七〜比で1.0 :
 1〜6.0:1.好ましくは2.0 : 1〜5.0
 : 1の割合で添加し、@々の形に成形加工したのち
、60〜150m、好ましくは90〜1′50℃に加熱
することにより容易に架橋三次元化したキレート樹脂を
製造することができる。
Furthermore, in the S step, aldehydes are added to the reaction product obtained in the second step and reacted. At that time, the ratio of aldehydes to pheno compounds is 7 to 1.0:
1-6.0:1. Preferably 2.0:1 to 5.0
: It is possible to easily produce a cross-linked three-dimensional chelate resin by adding it at a ratio of 1 part, molding it into the shape of @, and then heating it to 60 to 150 m, preferably 90 to 1'50°C. .

もちろん、従来公知の小球状キレート樹脂を製造する方
法と全く同様な方法を用いて、水と混合しない有機溶剤
中でバーN重縮合することにより。
Of course, by using a method completely similar to the conventionally known method for producing small spherical chelate resins, by performing bar-N polycondensation in an organic solvent that is immiscible with water.

造粒と架橋三次元とを同時に行って小球状のキレート樹
脂とすることができる。
Granulation and three-dimensional crosslinking can be performed simultaneously to form small spherical chelate resins.

次に上記のキレート樹脂を用いて、水溶液中のヒ素を除
去するには1通常のイオン交換法による方法と同様にし
て、パッチ法及びカフ五法が用いられるが1通常は、カ
フ五決が好ましい。また。
Next, to remove arsenic from an aqueous solution using the above chelate resin, the patch method and cuff method are used in the same way as the normal ion exchange method. preferable. Also.

ヒ素含有溶液との接触時間としては、使用するキレート
樹脂の量、被処理液のヒ素濃度の組成1、PH。
The contact time with the arsenic-containing solution is determined by the amount of chelate resin used, the composition 1 of the arsenic concentration of the liquid to be treated, and the pH.

カフムへの通液速度などにより異なるが、50sZの樹
脂を用いた場合、30秒〜5時間、好ましくは1分〜6
0分の範囲で用いられる。j!にヒ素含有水溶液とキレ
ート樹脂との接触温度としては、5〜100で、好まし
くは15〜80′cである。例えば9式+1)で示され
る基を有するキレート樹脂50−を充填したガラス製カ
フム(内径、9axダ)に、亜ヒ酸含有水溶液(18Q
I)、 200ツ/l、 NtbCl、 5.B9/1
. PH−8−5)を1時間に250mの速度で通液さ
せると、20時間後も、ヒ素の漏出濃度は0.5”f/
l以下に保たれている。
Although it varies depending on the speed of liquid passage into the cuff, etc., when using 50sZ resin, the time is 30 seconds to 5 hours, preferably 1 minute to 6 hours.
Used in the range of 0 minutes. j! The contact temperature between the arsenic-containing aqueous solution and the chelate resin is 5 to 100°C, preferably 15 to 80'C. For example, an arsenite-containing aqueous solution (18Q
I), 200t/l, NtbCl, 5. B9/1
.. When PH-8-5) is passed through at a rate of 250 m per hour, the arsenic leakage concentration remains 0.5”f/20 hours later.
It is kept below l.

次にヒ素の吸着が飽和に達したら、4〜1096の7μ
カリ水溶液で処理することにより、樹脂からヒ素を塔屋
することができる。そのアルカリ水溶液としては、カセ
イソーダ、カセイカリ、水酸化リチウムなどのアルカリ
金属の水酸化物が用いられるが、カセイソーダが特に好
ましい。更にヒ素を溶離した後、100〜10dの水に
て水洗する。このような方法により樹脂を再生してもヒ
素吸着能及び遺沢性はなんら低下が認められない。
Next, when the adsorption of arsenic reaches saturation, 7μ of 4 to 1096
Arsenic can be removed from the resin by treatment with an aqueous potassium solution. As the alkaline aqueous solution, alkali metal hydroxides such as caustic soda, caustic potash, and lithium hydroxide are used, and caustic soda is particularly preferred. After eluting arsenic, the sample is washed with 100 to 10 d of water. Even when the resin is regenerated by such a method, no decrease in arsenic adsorption ability or persistence is observed.

本発明によれば、水溶液中のヒ素には、3価もしくは5
価の状態で溶存していることはよく知られているが、特
に、亜区酸、*ヒ酸ソーダのような3価の状態のヒ素を
効率良く除去することができる。この理由は、定かでは
ないが、ヒ酸の解離定数(PKI −2−19、’PK
mりb−94,PKs寓1.1.5 )と亜と酸の解離
定数(PKz−6−94,PKa=13−5)との違い
によるものと考えられ、PH1〜10.好ましくはPH
4〜10の範囲で3価のヒ素を効率よく吸着するのは。
According to the present invention, arsenic in an aqueous solution is trivalent or pentavalent.
It is well known that arsenic is dissolved in a valent state, but in particular, arsenic in a trivalent state such as subacid and *sodium arsenate can be efficiently removed. The reason for this is not clear, but the dissociation constant of arsenic acid (PKI -2-19, 'PK
This is thought to be due to the difference in the dissociation constant between subacid (PKz-6-94, PKa=13-5) and PH1-10. Preferably PH
It efficiently adsorbs trivalent arsenic in the range of 4 to 10.

このPH領領域3価のヒ素が亜ヒ酸(Hs As Os
 )もしくは亜ヒ酸イオン(HmAB(%−)として存
在し1式(Ilで示される基が未解離もしくは1価のア
ニオンに対して優れた錯形成能を有しているものと考え
られる。
This trivalent arsenic in the PH region is arsenite (Hs As Os
) or arsenite ion (HmAB (%-)), and the group represented by formula 1 (Il) is considered to have an excellent ability to form a complex with undissociated or monovalent anions.

また9本発明によれば9食塩、塩化力/I/Vウム。Also, according to the present invention, 9 common salt, chloridizing power/I/V um.

塩化マグネシウムなどの無機塩が1〜1096の範囲で
共存しても、なんら吸着能の低下を示さないし。
Even if an inorganic salt such as magnesium chloride coexists in the range of 1 to 1096, the adsorption capacity does not decrease at all.

カッ五法での吸着、溶離性も良好である。特に6価のヒ
素が0.01〜2.4 ”l/11の低濃度で存在する
地熱発電所の熱水中の脱と処理には1本発明の方法が極
めて有効である。
Adsorption and elution properties using the Kago method are also good. In particular, the method of the present invention is extremely effective for removing and treating hot water of geothermal power plants where hexavalent arsenic is present at a low concentration of 0.01 to 2.4"l/11.

次に実施例により本発明をさらに具体的に説明する。な
お、実施例中の%は重量優を表わす。
Next, the present invention will be explained in more detail with reference to Examples. In addition, % in the examples represents weight.

参考例1 N−メチμ−N−(2−ヒドロキVフエニ〃メチtv 
) −D−グルカミy62.ofに、 12%カセイソ
ーダ水溶液137.59を冷却しながら徐々に加えて均
一な溶液とし、これに57g6ホ〃マリン20.Ofな
添加し、65℃〜70tl: で2時間加熱攪拌した。
Reference example 1 N-methyμ-N-(2-hydroxyVphenimethytv
) -D-glucamiy62. While cooling, gradually added 137.59 g of a 12% caustic soda aqueous solution to make a homogeneous solution, and to this was added 57 g of 20.5 g of homarin. Then, the mixture was heated and stirred at 65° C. to 70 tl for 2 hours.

得られた反応液を50′cに冷却したのち、フェノ−μ
m9.4fを添加し、85c〜90Uで2時間加熱攪拌
を続けた。更にこの反応液を50Cに冷却し、37%7
%ホルマリン46.8加えて65T:〜70′cで2時
間加熱攪拌したのち、It:に冷却すると、粘稠な反応
液が得られた。この反応液をクロルベンゼンを溶剤とし
て、常法によりバーN重縮合を行うと、8B・O9の小
球状に架橋三次元化した樹脂が得ら−れた。
After cooling the obtained reaction solution to 50'C, pheno-μ
After adding m9.4f, heating and stirring were continued for 2 hours at 85c to 90U. Furthermore, this reaction solution was cooled to 50C, and 37%7
After adding 46.8% formalin and heating and stirring at 65T: to 70'C for 2 hours, the mixture was cooled to It: to obtain a viscous reaction liquid. When this reaction solution was subjected to bar-N polycondensation using chlorobenzene as a solvent in a conventional manner, a three-dimensional crosslinked resin in the form of 8B.O9 small spheres was obtained.

この樹脂を水洗浄したのち、4.O96塩酸で中和し9
次いで4・0%カセイソーダ水溶液で処理したのち、フ
ェノールフタレインが無色を呈するまで十分に水洗処理
すると、黒褐色の樹脂となり、その含水率は42.79
6であった。また、この黒褐色の樹脂を細か(粉砕し、
乾燥したものの赤外線吸収スペクトルは、  5500
ft及び1100a−x付近に水酸基に基づく特性吸収
ピークを示し1元素分析値(N : 5.28%)より
、フェノ−〃とN−メチμ−N−(2−ヒドロキシフェ
ニルメチル)−D−グ〃カミンとのモル比は1 : 0
.95 であった。
After washing this resin with water, 4. Neutralize with O96 hydrochloric acid 9
Next, it was treated with a 4.0% caustic soda aqueous solution, and then thoroughly washed with water until the phenolphthalein became colorless, resulting in a blackish brown resin with a water content of 42.79.
It was 6. In addition, this blackish brown resin is finely (pulverized),
The infrared absorption spectrum of the dried product is 5500
ft and around 1100a-x, and from the single element analysis value (N: 5.28%), pheno-〃 and N-methyμ-N-(2-hydroxyphenylmethyl)-D- The molar ratio with gukamine is 1:0
.. It was 95.

参考例2 市販のイミノジ酢酸型キレート樹脂(ナトリウム型) 
100srを内径9mのガフスカフムに充填し。
Reference example 2 Commercially available iminodiacetic acid type chelate resin (sodium type)
Fill 100sr into a gaff scaphum with an inner diameter of 9m.

500dのイオン交換水で洗浄したのち、  0.05
Mの塩化第2鉄水溶液2000wtを1時間100dの
側合で通液した。次いで、流出液中に3価の鉄イオンが
検出されなくなるまで十分にイオン交換水で洗浄して、
鉄(III)担持型キレート樹脂を得た。
After washing with 500d of ion exchange water, 0.05
2,000 wt of an aqueous ferric chloride solution of M was passed through the tube for 1 hour at a side pressure of 100 d. Next, wash thoroughly with ion-exchanged water until trivalent iron ions are no longer detected in the effluent.
An iron(III) supported chelate resin was obtained.

実施例1〜2.比較例1〜3 実施例1で得たキレート樹脂(!*施例1)及び市販の
樹脂アンバーフィトIRA−745((ローム・アンド
・ハース社製)、実施例2〕を用い、これを湿潤状態で
1.Odとなるようにして、・亜と酸を含有した水溶液
50dに25℃下で浸漬し、24時間浸とう後の被処理
溶液中に残存するヒ素濃度を原子吸光光度法により定量
し、樹脂の吸着量を求めた。
Examples 1-2. Comparative Examples 1 to 3 Using the chelate resin obtained in Example 1 (!*Example 1) and the commercially available resin Amberphyto IRA-745 (manufactured by Rohm & Haas, Example 2), this was wetted.・Immerse in 50 d of an aqueous solution containing nitrous acid at 25°C, and quantify the arsenic concentration remaining in the solution after immersion for 24 hours by atomic absorption spectrophotometry. Then, the adsorption amount of the resin was determined.

また、比較のため、参考例2で得た樹脂(比較例1)、
市販の強塩基性イオン交換樹脂〔(20〜50メツム)
、比較例2〕、ヤV奴活性訳〔(30〜60メツV:L
 ) 、比較例3〕を同様にして測定した。
In addition, for comparison, the resin obtained in Reference Example 2 (Comparative Example 1),
Commercially available strong basic ion exchange resin [(20-50 meth)
, Comparative Example 2], Ya V guy active translation [(30-60 Metsu V:L
) and Comparative Example 3] were measured in the same manner.

その結果を表1に示す。The results are shown in Table 1.

なお、被処理液である亜ヒ酸含有水溶液の組成は、(A
s ([1I)t 1250ツ71. NaCA’ 5
.859/j、 1PH8−5)であった。
The composition of the arsenite-containing aqueous solution, which is the liquid to be treated, is (A
s ([1I)t 1250tsu71. NaCA' 5
.. 859/j, 1PH8-5).

表  1 実施例3.比較例4 市販のキレート性イオン交換樹脂アンバーライ)IRA
−744Sを1N水酸化ナトリウム溶液で処理したのち
、十分に水洗した。次いで、この樹脂50−を内径9H
のガラスカフムに充填し、’!s”l/l濃度ノAs(
厘)含有水溶液(PIII 8.5 >を空間速度(S
V)20hr−”で、25〜50r:の温度で下向流に
より通液した。流出液中のAa(IK)濃度を吸光光度
法(ジエチ〜ジオμカルバミン酸銀法、  JISKO
102,199頁。
Table 1 Example 3. Comparative Example 4 Commercially available chelating ion exchange resin Amberly) IRA
-744S was treated with 1N sodium hydroxide solution and then thoroughly washed with water. Next, this resin 50- has an inner diameter of 9H.
Fill the glass cuff and '! s”l/l concentration no As(
厘) containing aqueous solution (PIII 8.5 >
V) 20 hr-'', the liquid was passed by downward flow at a temperature of 25 to 50 r.The Aa (IK) concentration in the effluent was measured by spectrophotometry (diethyl-dioμ silver carbamate method, JISKO
102, 199 pages.

1971年)により定量し、#i出濃度を求めた。(1971), and the #i output concentration was determined.

その結果を表2に示す。The results are shown in Table 2.

なおw As(1)含有水溶液の組成は*  (As 
(1) 597g 、 NaCJ 2.09/l 、 
CaCjm 20ツ/j * Na2 COs 100
”l/l 、  HmSiOs  40ツ/l、NaF
’ 5ツ/l 、  Nam 804100グ/J)で
あった。
Note that the composition of the aqueous solution containing As (1) is * (As
(1) 597g, NaCJ 2.09/l,
CaCjm 20/j * Na2 COs 100
”l/l, HmSiOs 40/l, NaF
'5t/l, Nam 804100g/J).

また、比較のため、lI考例2で得たキレート樹脂50
dを用いて同様にして通液した。
Also, for comparison, chelate resin 50 obtained in lI Example 2
The solution was passed in the same manner using d.

その結果も表2に示す。The results are also shown in Table 2.

表  2 特許出願人 ユニチカ株式会社Table 2 Patent applicant: Unitika Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)式(I)−で示されるキレート形成基を有するキ
レート樹脂とヒ素を含有する水溶液とを接触させて水溶
液中のヒ素を除去することを特徴とする水溶液中のヒ素
の除去方法。
(1) A method for removing arsenic from an aqueous solution, which comprises bringing a chelate resin having a chelate-forming group represented by formula (I) into contact with an arsenic-containing aqueous solution to remove arsenic from the aqueous solution.
(2)式(I)で示されるキレート形成基を有するキレ
ート樹脂が、フェノール核に式(I)のキレート形成基
を有するフェノール樹脂である特許請求の範囲第1項艷
載の除去方法。
(2) The removal method according to claim 1, wherein the chelate resin having a chelate-forming group represented by formula (I) is a phenol resin having a chelate-forming group represented by formula (I) in the phenol nucleus.
(3)ヒ素が、5価のヒ素である特許請求の範囲第1項
又は第2項6載の除去方法。
(3) The removal method according to claim 1 or 2, wherein the arsenic is pentavalent arsenic.
JP16381981A 1981-10-13 1981-10-13 Removal of arsenic in aqueous solution Pending JPS5864180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16381981A JPS5864180A (en) 1981-10-13 1981-10-13 Removal of arsenic in aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16381981A JPS5864180A (en) 1981-10-13 1981-10-13 Removal of arsenic in aqueous solution

Publications (1)

Publication Number Publication Date
JPS5864180A true JPS5864180A (en) 1983-04-16

Family

ID=15781324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16381981A Pending JPS5864180A (en) 1981-10-13 1981-10-13 Removal of arsenic in aqueous solution

Country Status (1)

Country Link
JP (1) JPS5864180A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179253A (en) * 1999-12-24 2001-07-03 Kiresuto Kk Method for treating metal or metalloid-containing water
JP2006167638A (en) * 2004-12-17 2006-06-29 Chubu Kiresuto Kk Treatment method of arsenic in hot spring water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179253A (en) * 1999-12-24 2001-07-03 Kiresuto Kk Method for treating metal or metalloid-containing water
JP4484993B2 (en) * 1999-12-24 2010-06-16 キレスト株式会社 Treatment of boron-containing water
JP2006167638A (en) * 2004-12-17 2006-06-29 Chubu Kiresuto Kk Treatment method of arsenic in hot spring water
JP4578225B2 (en) * 2004-12-17 2010-11-10 中部キレスト株式会社 Treatment of arsenic in hot spring water

Similar Documents

Publication Publication Date Title
CN112313179B (en) Water purification composition and method for producing same
US2104501A (en) Manufacture and use of synthetic resins
JPS5969151A (en) Spherical ion exchange resin and its production and adsorptive treatment
JPH02293089A (en) Method and apparatus for separating arsenic from waste water
Thamilarasi et al. Removal of vanadium from wastewater using surface-modified lignocellulosic material
JP2004181352A (en) Method for refining non-aqueous liquid material
CN106311163A (en) Preparation method of chitosan/iron hydroxide composite adsorbent for adsorbing arsenic
US2198378A (en) Synthetic resin and certain uses therefor
RU2057137C1 (en) Process for preparing insoluble hydrolyzable tannin, method of treatment of spent liquid with tannin insoluble hydrolyzable tannin
JPS5864180A (en) Removal of arsenic in aqueous solution
El-Ghobashy et al. Selective removal of ammonia from wastewater using Cu (II)-loaded Amberlite IR-120 resin and its catalytic application for removal of dyes
Shao et al. Preparation and adsorption properties for metal ions of chitin modified by l‐cysteine
Sharaf et al. Separation and preconcentration of some heavy‐metal ions using new chelating polymeric hydrogels
JPS6245394A (en) Simultaneous removal of arsenic and silicon
JP4041202B2 (en) Sr ion adsorbent, method for producing the same, and method for treating Sr ion-containing water using the same
JPS586245A (en) Chelate type ion exchange resin and production thereof and adsorbing method
JPH0454142A (en) Method for separating phenolic compound
Sonmez et al. Polymer‐supported iminodiacetamides for selective mercury extraction
RU2616064C1 (en) Method for sorbent production based on polymer hydrogel
JPH0567641B2 (en)
JPS6259998B2 (en)
AU2015214987B2 (en) Novel aluminum-doped, iminodiacetic acid group-containing chelate resins
JPS6259729B2 (en)
Jachuła et al. Multifunctional resin diphonix in adsorption of heavy metal complexes with methylglycinediacetic acid.
JPS60103029A (en) Method for recovering germanium