JPS5863038A - No-break power source - Google Patents

No-break power source

Info

Publication number
JPS5863038A
JPS5863038A JP15926381A JP15926381A JPS5863038A JP S5863038 A JPS5863038 A JP S5863038A JP 15926381 A JP15926381 A JP 15926381A JP 15926381 A JP15926381 A JP 15926381A JP S5863038 A JPS5863038 A JP S5863038A
Authority
JP
Japan
Prior art keywords
power
circuit
power supply
voltage
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15926381A
Other languages
Japanese (ja)
Inventor
渋谷 忠士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP15926381A priority Critical patent/JPS5863038A/en
Publication of JPS5863038A publication Critical patent/JPS5863038A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は直流スイッチ方式の無停電電源装置に係り、特
に浮動充電専用と均等充電専用の両頭変換部を備え、直
流チョッパー回路でバッテリー及び逆変換部に供給する
直流電力の制御を行なう無停電電源装置を提供しようと
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a DC switch type uninterruptible power supply device, and particularly includes a double-headed conversion section dedicated to floating charge and equal charge, and provides DC power to a battery and a reverse conversion section using a DC chopper circuit. The present invention aims to provide an uninterruptible power supply that controls the

無停電電源装置として順変換部をサイリスタ整流器で構
成し、この順変換部でバッテリーを浮動充電さらKは均
等充電する浮動充電方式のものと、順変換部をダイオー
ド整流器で構成し、さらにバッテリーの充電専用のチャ
ージャーを設けて、商用周波電源の異常時に直流スイッ
チ回路を通して、逆変換部に無瞬断で所望の直流パワー
を供給する直流スイッチ方式のものとがあることはよく
知られている所である。前者の浮動充電方式のものi亀
頭変換部をサイリスタ整流器で構成しているので、素子
群の過電圧保護、さらには誤点弧、ゲート信号の失弧な
どゲート回路に起因した事故時の保護対策など、装置そ
のものに非常に信頼性の高いことが要求され、必然的に
回路構成が複雑化し非常に不経済なものとなっている、
これに対して後者の直流スイッチ方式のものは、順変換
部がダイオード整流器であるので浮動充電電圧値みられ
るような緒欠点は解決され、この点に於ては優れた無停
電電源装置である。しかしながらバッテリーの充電専用
のチャージャーなるものが必要で、このバッテリーチャ
ージャーはよく知られているように、絶縁トランスとサ
イリスタを純ブリツジ接続したサイリスク整流器とで構
成されるので、無停電電源装置そのものが大型化するば
かりでなく、コスト面でも非常に高価であり順変換部を
ダイオード整流器とした価格上のメリットをも相殺しか
本発明はこの点に鑑みて発明されたものであって、以下
実施例に基づき詳述する。
As an uninterruptible power supply, the forward conversion section is configured with a thyristor rectifier, and the forward conversion section is used to charge the battery in a floating manner. It is well known that there is a DC switch type in which a dedicated charger is installed and the desired DC power is supplied to the inverter without momentary interruption through a DC switch circuit in the event of an abnormality in the commercial frequency power supply. It is. In the former floating charging method, the glans conversion section is configured with a thyristor rectifier, so it can protect the element group from overvoltage, and can also protect against accidents caused by the gate circuit, such as erroneous firing or gate signal failure. , the equipment itself is required to be extremely reliable, which inevitably makes the circuit configuration complex and extremely uneconomical.
On the other hand, the latter DC switch type uses a diode rectifier in the forward conversion section, which solves the initial drawback of floating charging voltage values, making it an excellent uninterruptible power supply in this respect. . However, a dedicated charger for charging the battery is required, and as this battery charger is well-known, it is composed of an isolation transformer and a thyristor rectifier that is a pure bridge connection of a thyristor, so the uninterruptible power supply itself is large. In addition, it is very expensive in terms of cost, which offsets the cost advantage of using a diode rectifier as the forward conversion section. The details will be explained based on the following.

同実施例で1はダイオードをブリッジ接続して構成した
第1の順変換部で、この順変換部はバッテリー5を均等
充電する充電専用のもので、2はダイオードをブリッジ
接続して構成した第2の順変換部で、この順変換部はバ
ッテリー5を浮動充電すると同時に、定常時に商用周波
の交流電力を整流した出力を逆変換部に供給するもので
、第2の順変換部2はバッテリーを浮動充電するのに必
要な容量であればよく、これに対して第10順変換部1
は、均等充電電圧値より浮動充電電圧値を差引いた容量
であればよいe3は直流チョッパー回路で、この回路は
図示しないがパワートランジスタさらにはゲートターン
オフサイリスタ、−殻構造のサイリスタ等のスイッチン
グ素子が適用さ:11 れ、このスイッチング素子の0N−OFF周期を制御す
ることKよって逆変換部さらKはバッテリーに供給する
直流電力の平均値を制御するもので、4は逆変換部、バ
ッテリーに供給する直流電力を平滑化する為の直流リア
クトルで、6は直流スイッチ回路で、このスイッチ回路
は図示はしないが所望の直流パワーを逆変換部に導びく
為の主サイリスタと、この主サイリスクを強制消弧する
為の補助サイリスター転流コンデンサー転流リアクトル
−転流ダイオード−充電電流抑制用抵抗よりなる強制消
弧回路とで構成される。7は直流リアクトルLと平滑用
コンデンサ2・7よ、りなる直流フィルター回路で、8
はサイリスタを純ブリツジ接続して構成され直流電力を
交流電力に逆変換する逆変換部で、9は直流チョッパー
回路のOFF時に直流リアクトルのエネルギーをバッテ
リー5側え還流する為のフライホイールダイオードで、
10は商用周波の電源電圧を適宜な値に昇圧する昇圧用
トランスで。
In the same embodiment, reference numeral 1 denotes a first forward conversion section constructed by connecting diodes in a bridge connection, and this forward conversion section is dedicated to charging the battery 5 evenly, and reference numeral 2 denotes a first forward conversion section constructed by connecting diodes in a bridge connection. This forward converter 2 floats and charges the battery 5, and at the same time supplies the rectified output of commercial frequency AC power to the inverse converter during steady state. It is sufficient that the capacity is required for floating charging, and the 10th forward conversion unit 1
e3 is a DC chopper circuit, and although it is not shown in the figure, it can include power transistors, gate turn-off thyristors, -shell structure thyristors, and other switching elements. Application: 11, K controls the ON-OFF cycle of this switching element, and K controls the average value of the DC power supplied to the battery, and 4 is the inverter, which controls the average value of the DC power supplied to the battery. 6 is a DC switch circuit, and although this switch circuit is not shown, it includes a main thyristor for guiding the desired DC power to the inverter, and a main thyristor for forcing this main thyristor. It consists of an auxiliary thyristor for arc extinguishing, a commutating capacitor, a commutating reactor, a commutating diode, and a forced arc extinguishing circuit consisting of a charging current suppressing resistor. 7 is a DC filter circuit consisting of DC reactor L and smoothing capacitor 2.7, and 8
9 is an inverter converter configured by connecting thyristors in a pure bridge and converts DC power back into AC power; 9 is a flywheel diode for circulating the energy of the DC reactor to the battery 5 when the DC chopper circuit is OFF;
10 is a step-up transformer that steps up the commercial frequency power supply voltage to an appropriate value.

11は商用周波の電源電圧を取出す為の電圧検出用変成
器で、12はダイオードをブリッジ接続した整流器の端
子間より所望の電源電圧を取出す電圧検出回路で、13
は商用周波の電源電圧検出信号と基準値とを比較するコ
ンパレータで、14は直流スイッチ回路6の直流出力電
流を検出する電流検出回路で、15は直流主回路の端子
間電圧を取出す為の鴫ナコンパータで、16は直流電圧
の基準値を設定する電圧設定器で、17は電圧設定指令
信号と電圧検出信号とを比較する為の比較回路で、18
は誤差電圧を一旦増幅する為の電圧制御用増幅器で、1
9は電圧に比例したパルス周波数を得る為のv〃変換回
路で、元は入力されるパルス信号を基に所定幅の矩形波
を出力するモノマルチで、21は直流スイッチ回路6の
端子間電圧を検出する為の電圧検出回路で、ηはNOテ
ゲートで、26はORゲートで、24及びδはANDゲ
ートで、26はチョッパー回路のスイッチング素子なト
リガーする為の第1のゲート回路で、27は直流スイッ
チ回路6の主サイリスタをゲートドライブする為の第2
のゲート回路である。
11 is a voltage detection transformer for extracting a commercial frequency power supply voltage; 12 is a voltage detection circuit for extracting a desired power supply voltage from between the terminals of a rectifier with bridge-connected diodes; 13
14 is a current detection circuit for detecting the DC output current of the DC switch circuit 6, and 15 is a comparator for extracting the voltage between the terminals of the DC main circuit. In the converter, 16 is a voltage setting device for setting the reference value of DC voltage, 17 is a comparison circuit for comparing the voltage setting command signal and the voltage detection signal, and 18
is a voltage control amplifier to temporarily amplify the error voltage, and 1
9 is a V converter circuit for obtaining a pulse frequency proportional to the voltage; originally it was a monomultiplier that outputs a rectangular wave of a predetermined width based on the input pulse signal; 21 is a voltage between the terminals of the DC switch circuit 6; , η is an NO gate, 26 is an OR gate, 24 and δ are AND gates, 26 is a first gate circuit for triggering the switching element of the chopper circuit, and 27 is the second thyristor for gate driving the main thyristor of the DC switch circuit 6.
This is a gate circuit.

以上のように構成される本実施例の動作を述べるに、商
用周波の電源電圧を変成器11→電圧検出回路12→コ
ンパV−夕16の経路を通して監視し、商用周波電源が
健全時の場合、第1及び第20順変換部1,2で商用周
波の交流入力電力を直流電力に変換して、これら直流出
力電圧を加え合せた出力を以ってバッテリー5が300
M系であれば略愁関程度にバッテリーを均等充電すると
共に、第2の順変換部2の直流出力を逆変換部8に供給
して交流電力に逆変換し負荷に定電圧一定周波の電力を
給電するものであるが、かかる定常時の制御&ζ例えば
電圧設定器16で設定した基準値と直流レベルに変換し
た主回路の電圧検出信号のレベルとを比較回路17で比
較し、誤差電圧を生ずれば、この誤差¥7i、EEを電
圧制御用増幅器18で一旦増幅して、増幅した誤差電圧
をψ変換回路19でデジタル量のパルス信号に変換し、
このパルス信号をモノマルチ20に加えてパルス信号群
が入力される度毎に所定幅の矩形波を出力させ、この矩
形波信号を第2のANDゲート25に導びく、この動作
と並行して、商用周波の電源が健全時であれば、コンパ
レータ13より「1」なる出力が第1のANDゲ′、−
j ) 24 K加えられると共に第2のゲート回路2
7rc印加され、このゲート回路27は遮断状態を保持
する。従って直流スイッチ回路6がOFF状態にある旨
を電流検出回路14→NOTゲー)22の経路で検出し
た電流検出信号と、直流スイッチ回路6の主サイリスタ
のム一に間電圧を電圧検出回路21で検出した電圧検出
信号との論理和をとることによって判定し、ORゲート
乃の論理和出力「1」を第1のANDゲー) 24 K
導びく。この第1のANDゲート24は入力される論理
和出力「1」と商用周波が健全である旨を示す「月なる
信号とで論理積条件が成立してそのゲートが開かれ、こ
のANDゲート24の出力とモノマルチ20よりの出力
との論理積を第2のANDゲート25でとり、モノマル
チ囚より出力される矩形波信号が第2のANDゲート2
5に入力される度毎にそのゲ・−トを開いて、26のゲ
ート回路26を通して直流チョッパー回路3のスイッチ
ング素子をゲートドライブし、当該スイッチング素子の
0N−OFF周期を制御するととKよってバッテリー5
に供給する直流電圧の平均値を制御し、負荷・−給電す
る電圧を指令値通りに保持するものである。なお負荷に
給電する周波数は、よく知られているよ5に逆変換部8
の図示しない周波数制御系を介して制御されることは申
す迄もない、 次に商用周波電源が異常時の場合の動作を述べる、先ず
何らかの原因で商用周波の電源電圧が大幅に低下し電源
電圧が基準値より低くなると、13のコンパレータより
商用周波電源が異常である旨を示す印」なる信号が第2
のゲート回路27 K印加されて、このゲート回路27
で直流スイッチ回路60図示しない主サイリスクを点弧
してバッテリー5より所望の直流パワーを逆変換部8に
供給し、所定の給電業務の継続を図ると共に、コンパレ
ータ13の上記「則出力を第1のANDゲー) 24 
K印加し、このゲート回路24には他方の入力信号とし
て直流スイッチ回路6が動作した旨を示すORゲート2
3の「口」出力が印加されるので、これら両人力信号で
は論理積榮件が成立せず24のANDゲートは閉じられ
る、このよう[24のANDゲートが閉じられると第2
のANDゲート25もそのゲートを閉じるので、第1の
ゲート回路26は遮断され直流チョッパー回路3も瞬時
にOFF して第1及び第一2の各順変換部1,2の直
流出力は遮断される。この動作説明より明らかなよ5に
、商用周波電源が何らかの原因で電源電圧が急激に低下
し直流スイッチ回路6が動作する停電モードの場合、例
え商用周波の電源電圧値が多少なりともあるような場合
は、直流チョッパー回路3が自動的K OFFするので
、順変換部1の正極側ダイオード−チョッパー回路3→
直流リアクトル4→直流スイッチ回路6→順変換部1の
負極側ダイオード→商用周波電源の短絡ループなるもの
は形成されず、過電流によって順変換部1とチョッパー
回路3.逆変換部8の素子群が永久破壊するようなこと
は決してない。なお商用周波電源が停電した場合は、上
記した電源電圧の低下時の動作モードと全く同様に、直
流スイッチ回路6が動作して所望の直流パワーを逆変換
部8に供給している期間は、チョッパー回路3が導通す
ることは決してなく、バッテリ−5→直流スイツチ回路
6→直流フィルター回路7→逆変換部8→負荷め経路を
通して所望の交流パワーが供給、され、商用周波電源が
回復すると、コンパレーク13→第2のゲート回路27
の紅路を通して直流スイッチ回路60図示しない主サイ
リスタが強制消弧され、逆変換部8側え流れる直流電流
が零、或いは直流スイッチ回路6の主サイリスタのA−
に間電圧が有と云50R条件を以って、直流スイッチ回
路がOFF した旨を判定し第2のANDゲート25を
通してチョッパ回路3を側してその0N−OFF周期を
制御することKよって、バッテリー5を浮動充電さらに
は均等充電する定常モードえと復帰させるものである。
To describe the operation of this embodiment configured as above, the commercial frequency power supply voltage is monitored through the path of transformer 11 → voltage detection circuit 12 → comparator V-16, and when the commercial frequency power supply is healthy, , the first and the twentieth forward converters 1 and 2 convert the commercial frequency AC input power into DC power, and the battery 5 has a power of 300
If it is an M system, the battery is charged evenly to approximately the same level as before, and the DC output of the second forward converter 2 is supplied to the inverse converter 8 to be inversely converted to AC power, which supplies constant voltage and constant frequency power to the load. For example, the comparison circuit 17 compares the reference value set by the voltage setting device 16 with the level of the voltage detection signal of the main circuit converted to a DC level, and calculates the error voltage. If this error occurs, the voltage control amplifier 18 amplifies the error 7i, EE, and the amplified error voltage is converted into a digital pulse signal by the ψ conversion circuit 19.
This pulse signal is added to the monomulti 20 to output a rectangular wave of a predetermined width every time a pulse signal group is input, and this rectangular wave signal is guided to the second AND gate 25. In parallel with this operation, , if the commercial frequency power supply is healthy, the output of "1" from the comparator 13 is the first AND gate', -
j) 24 K is added and the second gate circuit 2
7rc is applied, and this gate circuit 27 maintains a cut-off state. Therefore, the voltage detection circuit 21 detects that the DC switch circuit 6 is in the OFF state by detecting the voltage between the current detection signal detected through the current detection circuit 14→NOT gate 22 path and the voltage across the main thyristor of the DC switch circuit 6. The determination is made by taking the logical sum with the detected voltage detection signal, and the logical sum output "1" of the OR gate is converted to the first AND gate) 24 K
Guide. This first AND gate 24 opens the gate because an AND condition is established between the input logical sum output "1" and the "moon signal" which indicates that the commercial frequency is healthy. A second AND gate 25 calculates the AND of the output of the monomulti 20 and the output from the monomulti 20, and the rectangular wave signal output from the monomulti 20 is output to the second AND gate 2.
5, the gate is opened every time an input signal is input to the DC chopper circuit 3, and the switching element of the DC chopper circuit 3 is gate-driven through the 26 gate circuits 26 to control the ON-OFF cycle of the switching element. 5
It controls the average value of the DC voltage supplied to the load and maintains the voltage supplied to the load as per the command value. It should be noted that the frequency at which power is supplied to the load is determined by the inverse converter 8 as is well known.
Needless to say, this is controlled via a frequency control system (not shown).Next, we will discuss the operation when the commercial frequency power supply is abnormal.First, for some reason, the commercial frequency power supply voltage drops significantly and the power supply voltage When the value becomes lower than the reference value, the comparator 13 outputs a second signal indicating that the commercial frequency power supply is abnormal.
K is applied to the gate circuit 27 of this gate circuit 27.
The DC switch circuit 60 (not shown) is ignited to supply the desired DC power from the battery 5 to the inverter 8 to continue the prescribed power supply operation, and the above-mentioned "law output" of the comparator 13 is switched to the first AND game) 24
K is applied to this gate circuit 24, and the other input signal is an OR gate 2 indicating that the DC switch circuit 6 has operated.
Since the "mouth" output of 3 is applied, the logical product condition does not hold for these two input signals, and the AND gate of 24 is closed. In this way, when the AND gate of 24 is closed, the second
Since the AND gate 25 also closes its gate, the first gate circuit 26 is cut off and the DC chopper circuit 3 is also turned off instantaneously, and the DC outputs of the first and second forward converters 1 and 2 are cut off. Ru. As is clear from this operation explanation, in the case of a power outage mode in which the power supply voltage of the commercial frequency power supply suddenly drops for some reason and the DC switch circuit 6 operates, even if the power supply voltage value of the commercial frequency power supply is In this case, the DC chopper circuit 3 is automatically turned off, so the positive side diode of the forward conversion section 1 - the chopper circuit 3 →
A short-circuit loop of DC reactor 4 → DC switch circuit 6 → negative diode of forward converter 1 → commercial frequency power supply is not formed, and the overcurrent causes forward converter 1 and chopper circuit 3. The elements of the inverse transformer 8 are never permanently destroyed. Note that in the event of a power outage in the commercial frequency power supply, the period in which the DC switch circuit 6 operates to supply the desired DC power to the inverter 8 is as follows, in exactly the same manner as the operation mode when the power supply voltage drops as described above. The chopper circuit 3 never becomes conductive, and the desired AC power is supplied through the battery 5 → DC switch circuit 6 → DC filter circuit 7 → inverse converter 8 → load path, and when the commercial frequency power is restored, Comparator 13 → second gate circuit 27
The main thyristor (not shown) of the DC switch circuit 60 is forcibly extinguished through the red path of the DC switch circuit 6, and the DC current flowing to the inverse converter 8 becomes zero, or the A- of the main thyristor of the DC switch circuit 6 is turned off.
Under the 50R condition that there is a voltage between This is to return the battery 5 to floating charging or even steady mode of equal charging.

以上のよ5に本発明に於ては、浮動充電電圧値に相応す
る電圧を供給する順変換部と、均等充電電圧値に相応す
る電圧を供給する順変換部とをそれぞれ設け、直流電圧
の所定の制御はチョッパー回路を通して行ない、商用周
波電源の異常時に直流スイッチ回路が動作している間は
チョッパー回路をONシないよう回路を構成し、停電そ
−ド時に於ける不慮の事故は決して発生しないようKし
たものであるから、以下に示すように種々の効果を奏す
ものである。
As described above, in the present invention, a forward converting section that supplies a voltage corresponding to a floating charging voltage value and a forward converting section that supplies a voltage corresponding to an equal charging voltage value are respectively provided, and the DC voltage is Predetermined control is performed through the chopper circuit, and the circuit is configured so that the chopper circuit will not be turned on while the DC switch circuit is operating in the event of an abnormality in the commercial frequency power supply, ensuring that unexpected accidents will never occur during a power outage. Since it has been designed to prevent this from occurring, it has various effects as shown below.

■ 所定の電圧制御はチョッパー制御で行ない、しかも
チョッパーの周波数を高くしであるので直流中間回路の
りアクドルを小さくでき、無停電電源装置そのものを小
型化することができる。
(2) Predetermined voltage control is performed by chopper control, and since the frequency of the chopper is increased, the DC intermediate circuit load can be reduced, and the uninterruptible power supply itself can be downsized.

■ 直流スイッチ回路とチョッパー回路とは相互にイン
ターロックをとっているので、停電モード或いは定常モ
ードえと移行する過渡時に短絡電流が流れることは決し
てな(、動作く、上記0項の利点を踏まえてさらに実施
例のANDゲートを1個にすることも可能であるので、
一層回路構成を簡素化でき非常に経済的な無停電電源装
置を提供できる。  ・
■ Since the DC switch circuit and the chopper circuit are interlocked with each other, a short circuit current will never flow during a transition to power outage mode or steady mode. Furthermore, since it is possible to reduce the number of AND gates in the embodiment to one,
It is possible to further simplify the circuit configuration and provide an extremely economical uninterruptible power supply.・

【図面の簡単な説明】[Brief explanation of the drawing]

′1 図は本発明によ:る無停電電源装置を示す具体的な回路
構成図や 1−2は順変換部、3はチョッパー回路、5はバッテリ
ー、6は直流スイッチ回路、8は逆変換部。 12−21は電圧検出回路、13はコンパレータ、14
は電流検出回路、15はDC/l)Cコンバータ、16
は電圧設定器、18は電圧制御用増幅器、19はv〃変
換回路、20はモノマルチ、22はNOTゲート、23
は億ゲ−) 、 24−25はANDゲート、 26−
27はゲート回路。
'1 Figure is a specific circuit configuration diagram showing an uninterruptible power supply according to the present invention, 1-2 is a forward conversion section, 3 is a chopper circuit, 5 is a battery, 6 is a DC switch circuit, and 8 is a reverse conversion section. Department. 12-21 is a voltage detection circuit, 13 is a comparator, 14
is a current detection circuit, 15 is a DC/l)C converter, 16
is a voltage setting device, 18 is a voltage control amplifier, 19 is a V conversion circuit, 20 is a monomulti, 22 is a NOT gate, 23
is a billion games), 24-25 is an AND gate, 26-
27 is a gate circuit.

Claims (1)

【特許請求の範囲】 商用周波電源の交流入力電力を直流電力に順変換しバッ
テリーを均等充電すると共に、ダイオード整流器で構成
した第1の順変換部と、この順変換部と直列接続され商
用周波電源の交流入力電力を直流電力に順変換してバッ
テリーを浮動充電すると共に、ダイオード整流器で構成
した第2の順変換部と、商用周波電源の異常時にバッテ
リーの直流パワーを無瞬断で逆変換部に供給する直流ス
イッチ回路と、直流電力を交流電力に逆変換する逆変換
部と、第1及び第2の順変換部より出力される直流電力
をチョッパー制御して直流電力の平均値を制御し、この
直流電力を逆変換部およびバ。 、テリーに供給するチョッパー回路と、商、用周波電源
の電圧検出信号Aと直流スイッチ回路の動作状態を検出
した信号Bと、電圧指令信号と主4回路の直流電圧検出
信号との誤差電EEK比例したパルス周波数信号Cとの
3諸量の論理積条件をとり、この論理積条件が成立した
場合のみ、チョッパー回路を導通して上記パルス周波数
信号を基に所定のチョッパー制御を行ない、論理積条件
が成立しない場合のみチョッパー回路を非導通にして直
流スイッチ回路を導通し、停電モードえと移行させる制
御部とで構成したことを%徴とする無停電電源装置。
[Claims] In addition to forward converting the AC input power of a commercial frequency power supply to DC power and equally charging the battery, In addition to forward converting the AC input power of the power supply to DC power and floating charging the battery, a second forward conversion section consisting of a diode rectifier converts the battery's DC power back without interruption in the event of an abnormality in the commercial frequency power supply. a DC switch circuit that supplies the DC power to the converter, an inverse converter that reversely converts DC power to AC power, and chopper control of the DC power output from the first and second forward converters to control the average value of the DC power. Then, this DC power is converted to an inverse converter and a bar. , the chopper circuit that supplies the battery, the voltage detection signal A of the commercial frequency power supply, the signal B that detects the operating state of the DC switch circuit, the error voltage EEK between the voltage command signal and the DC voltage detection signal of the main four circuits. A logical product condition of the three quantities with the proportional pulse frequency signal C is taken, and only when this logical product condition is established, the chopper circuit is made conductive and a predetermined chopper control is performed based on the above pulse frequency signal, and the logical product is An uninterruptible power supply system characterized by comprising a control section that makes the chopper circuit non-conductive and makes the DC switch circuit conductive only when the conditions are not satisfied, thereby transitioning to a power outage mode.
JP15926381A 1981-10-06 1981-10-06 No-break power source Pending JPS5863038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15926381A JPS5863038A (en) 1981-10-06 1981-10-06 No-break power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15926381A JPS5863038A (en) 1981-10-06 1981-10-06 No-break power source

Publications (1)

Publication Number Publication Date
JPS5863038A true JPS5863038A (en) 1983-04-14

Family

ID=15689938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15926381A Pending JPS5863038A (en) 1981-10-06 1981-10-06 No-break power source

Country Status (1)

Country Link
JP (1) JPS5863038A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314347A (en) * 1976-07-27 1978-02-08 Mitsubishi Electric Corp Non-power interruption device
JPS5357444A (en) * 1976-11-02 1978-05-24 Fuji Electric Co Ltd Dc power source device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314347A (en) * 1976-07-27 1978-02-08 Mitsubishi Electric Corp Non-power interruption device
JPS5357444A (en) * 1976-11-02 1978-05-24 Fuji Electric Co Ltd Dc power source device

Similar Documents

Publication Publication Date Title
JP3606780B2 (en) Uninterruptible power system
JP2003052134A (en) Control method for uninterruptible power supply apparatus, and the uninterruptible power supply apparatus employing the method
EP0477367B1 (en) Device for preventing inrush current from flowing into electric apparatus
JPH09117131A (en) Dc-dc conversion device
US4107771A (en) Circuit for shutting down an inverter
JPS5863038A (en) No-break power source
JPH06209533A (en) Power supply apparatus
JPS6227004Y2 (en)
JPH09130995A (en) Uninterruptive power supply
JP2659758B2 (en) Parallel operation control method
JP2544522B2 (en) Power regeneration device
JPH02280634A (en) Uninterruptive power supply
JPS5915263Y2 (en) frequency converter
JP2545613B2 (en) Uninterruptible power system
JPS58195474A (en) Pwm voltage inverter starting system
JP3459245B2 (en) DC-DC converter
JPH01133527A (en) Quick charging circuit of no-break power unit
JP2674117B2 (en) AC uninterruptible power supply system
JPH01122327A (en) Power supply device
JPH0531788Y2 (en)
JPH07281767A (en) Power unit for dealing with redundancy
JPS5826279B2 (en) Inverter control method
JPS5863037A (en) No-break power source
JPH11164482A (en) Inverter power supply unit
JPH0141529B2 (en)