JPH06209533A - Power supply apparatus - Google Patents

Power supply apparatus

Info

Publication number
JPH06209533A
JPH06209533A JP5000214A JP21493A JPH06209533A JP H06209533 A JPH06209533 A JP H06209533A JP 5000214 A JP5000214 A JP 5000214A JP 21493 A JP21493 A JP 21493A JP H06209533 A JPH06209533 A JP H06209533A
Authority
JP
Japan
Prior art keywords
storage battery
power supply
converter
switch
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5000214A
Other languages
Japanese (ja)
Inventor
Michio Kataoka
道雄 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5000214A priority Critical patent/JPH06209533A/en
Publication of JPH06209533A publication Critical patent/JPH06209533A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To continue discharge of an energy storage element although charging of the energy storage element is stopped when the energy storage element is abnormal,. CONSTITUTION:An AC-DC converter 1, a DC-AC converter 3 and a switch 9 between a DC circuit for the converters and a storage battery 4 are installed, and a DC switch in which a diode 6 has been connected inversely parallel to them is installed. Then, when the storage battery 4 is abnormal, a charging circuit is cut off. When the storage battery 4 is abnormal, the storage battery 4 is protected. Even in the input power failure of the AC-DC converter 2, energy can be supplied to a load 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、蓄電池等のエネルギ
ー蓄積手段とインバータ等の電力変換器とを有する電源
装置に関し、特に、そのエネルギー蓄積手段の異常時に
エネルギー蓄積手段への充電機能は切り離しながらも、
放電の機能については継続させるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply device having an energy storage means such as a storage battery and a power converter such as an inverter, and particularly, when the energy storage means is abnormal, the charging function for the energy storage means is disconnected. Also,
The discharge function is to be continued.

【0002】[0002]

【従来の技術】従来より、蓄電池等のエネルギー蓄積手
段とインバータ等の電力変換器とを組み合わせて、他か
らエネルギー供給が絶たれても負荷に電力エネルギーを
供給することができる無停電電源装置はよく知られてい
る。このような無停電電源装置は、たとえばコンピュー
タのような連続運転を要求される負荷に対して、電力系
統に停電が発生した時にも電源を供給するような電源シ
ステムを構成するために利用される。
2. Description of the Related Art Conventionally, an uninterruptible power supply system capable of supplying power energy to a load by combining energy storage means such as a storage battery with a power converter such as an inverter has been provided even if the energy supply from other sources is cut off. well known. Such an uninterruptible power supply is used to configure a power supply system that supplies power to a load such as a computer that requires continuous operation even when a power failure occurs in the power system. .

【0003】図7は、例えば雑誌「OHM」(1990
年11月12日発行、株式会社オーム、46ページ、第
2図)に示された従来の無停電電源装置を示す構成図で
ある。図において、1は無停電電源装置に入力を供給す
る交流電源、2は上記交流電源1の電力を直流にし、か
つ蓄電池への充電機能を持った交流−直流変換器、3は
上記変換された直流電力を安定した交流電力に逆変換す
る直流−交流変換器、4は上記2つの変換器の間の直流
回路に接続されたエネルギー蓄積手段としての蓄電池、
5は上記直流−交流変換器に接続された無停電電源装置
の負荷、13は蓄電池4を交流−直流変換器2および直
流−交流変換器3より切り離すためのスイッチである。
FIG. 7 shows, for example, the magazine "OHM" (1990).
It is a block diagram which shows the conventional uninterruptible power supply device shown by Ohm Co., Ltd. page 46, FIG. 2) issued November 12, 2012. In the figure, 1 is an AC power supply that supplies an input to an uninterruptible power supply, 2 is an AC-DC converter that converts the electric power of the AC power supply 1 into DC, and has a function of charging a storage battery, and 3 is the above converted A DC-AC converter for inversely converting DC power into stable AC power, 4 is a storage battery as an energy storage means connected to a DC circuit between the two converters,
Reference numeral 5 is a load of the uninterruptible power supply connected to the DC / AC converter, and 13 is a switch for disconnecting the storage battery 4 from the AC / DC converter 2 and the DC / AC converter 3.

【0004】次に動作について説明する。交流電源1の
交流電力が正常な場合は、交流電力が交流−直流変換器
2により直流電力に変換され、蓄電池4を浮動(フロー
ト)充電すると共に直流−交流変換器3により安定した
交流に逆変換され、負荷5に給電される。交流電源1が
停電した場合には、蓄電池4が直流電力を放電し、その
直流電力を直流−交流変換器3に供給することで負荷5
への電力供給を継続する。
Next, the operation will be described. When the AC power of the AC power supply 1 is normal, the AC power is converted to DC power by the AC-DC converter 2, the storage battery 4 is charged in a floating manner, and the DC-AC converter 3 reverses to stable AC. It is converted and power is supplied to the load 5. When the AC power supply 1 fails, the storage battery 4 discharges DC power and supplies the DC power to the DC-AC converter 3 to load the load 5.
Continue to supply electricity to.

【0005】[0005]

【発明が解決しようとする課題】従来の無停電電源装置
は以上のように構成されているので、運転(浮動充電)
中に蓄電池4に異常(故障)が発生して、蓄電池4を切
り離した場合には、蓄電池4と交流−直流変換器2がス
イッチ13により直結されているため、交流電源1が停
電した時に負荷給電継続の機能も喪失してしまうという
問題点があった。
Since the conventional uninterruptible power supply is configured as described above, the operation (floating charging) is performed.
When an abnormality (failure) occurs in the storage battery 4 and the storage battery 4 is disconnected, the storage battery 4 and the AC-DC converter 2 are directly connected by the switch 13, so that the load is generated when the AC power supply 1 fails. There was a problem that the function of continuing power supply was also lost.

【0006】すなわち、無停電電源装置についてさらに
詳細に説明すると、エネルギー蓄積手段としての蓄電池
4の異常は、充電時に蓄電池4が加熱状態になることを
表しており、通常、無停電電源装置の蓄電池4の保護
は、温度異常と電解液液面異常の検出によって行われて
いる。そして、この蓄電池4に温度異常が発生した場
合、無停電電源装置を臨時的に機能させることによって
負荷5の運転を止めず、例えばオンラインの電子計算機
をシステムダウンさせずにおくことが必要となる。
More specifically, the uninterruptible power supply will be described in more detail. An abnormality of the storage battery 4 as an energy storage means indicates that the storage battery 4 is in a heating state during charging, and normally, the storage battery of the uninterruptible power supply is used. The protection of No. 4 is performed by detecting an abnormal temperature and an abnormal liquid surface of the electrolytic solution. When a temperature abnormality occurs in the storage battery 4, it is necessary to temporarily stop the operation of the load 5 by temporarily operating the uninterruptible power supply, for example, to keep the online computer system down. .

【0007】ここで、蓄電池4の温度異常は、通常、充
電時に発生し、この温度異常は充電を停止すれば解消す
るという性質を有している。一方、負荷5、例えばオン
ラインの電子計算機は運転中にシステムダウンを発生す
ると、その影響は計り知れないものになる。一般に、無
停電電源装置では負荷5を5〜10分間運転できるだけ
の蓄電池容量が確保されている。
Here, the temperature abnormality of the storage battery 4 usually occurs at the time of charging, and this temperature abnormality has the property of being resolved if the charging is stopped. On the other hand, when the load 5, for example, an online computer, causes a system down during operation, the effect thereof is immeasurable. Generally, in the uninterruptible power supply, a storage battery capacity that can operate the load 5 for 5 to 10 minutes is secured.

【0008】そこで、蓄電池4に温度異常が発生した場
合、負荷5が運転を停止できるようになる(例えば、夜
間のメインテナス作業時に蓄電池4の修理を行う)まで
の間、蓄電池4を放電だけは可能な状態にしておくこと
によって、その間に、もし電源停止という状態が発生し
ても、無停電電源装置として負荷5に電力を供給するよ
うな状態を確保し、例えばオンラインの電子計算機のシ
ステムダウンという事態の発生を回避しようとすること
が必要であるが、上述した無停電電源装置では、蓄電池
4の異常発生時にスイッチ13により直流回路から蓄電
池4を切り離した場合、交流電源1が停電した時には負
荷5への給電機構が喪失するという問題点があった。
Therefore, when a temperature abnormality occurs in the storage battery 4, the load 5 can only be discharged until the load 5 can stop operating (for example, the storage battery 4 is repaired during maintenance work at night). By making the state possible, it is possible to secure a state in which power is supplied to the load 5 as an uninterruptible power supply even if a state of power supply interruption occurs during that time. For example, an online computer system is down. However, in the uninterruptible power supply device described above, when the storage battery 4 is disconnected from the DC circuit by the switch 13 when an abnormality occurs in the storage battery 4, when the AC power supply 1 fails. There is a problem that the power supply mechanism to the load 5 is lost.

【0009】この発明は、上記のような問題点を解決す
るためになされたもので、蓄電池等のエネルギー蓄積手
段の異常時にエネルギー蓄積手段への充電機能は切り離
しながらも放電機能については継続させることができる
電源装置を得ることを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and when the energy storage means such as a storage battery is abnormal, the charging function for the energy storage means is disconnected, but the discharge function is continued. The purpose is to obtain a power supply device capable of

【0010】[0010]

【課題を解決するための手段】この発明に係る電源装置
は、交流電源の電力を直流電力に変換する交流−直流変
換器と、この交流−直流変換器によって変換された直流
電力を交流電力に逆変換する直流−交流変換器と、これ
ら変換器間の直流回路に接続されて充放電する蓄電池等
のエネルギー蓄積手段とを備えた電源装置において、上
記変換器間の直流回路と上記エネルギー蓄積手段との間
に、エネルギー蓄積手段の異常の際に充電電路を切り離
し、エネルギー蓄積手段の保護を行う第1のスイッチ
と、この第1のスイッチに並列接続されて上記交流−直
流変換器の入力停電時には充電方向に対しては電流をブ
ロックし放電方向に対しては電流を流して負荷へのエネ
ルギー供給を可能にする第2のスイッチとを有する直流
スイッチを備えたものである。
A power supply device according to the present invention is an AC-DC converter for converting the power of an AC power supply into DC power, and the DC power converted by this AC-DC converter into AC power. In a power supply device comprising a DC-AC converter for reverse conversion and an energy storage means such as a storage battery connected to a DC circuit between these converters for charging and discharging, a DC circuit between the converters and the energy storage means. And a first switch for disconnecting the charging circuit in case of abnormality of the energy storage means to protect the energy storage means, and an input power failure of the AC-DC converter connected in parallel to the first switch. Sometimes a DC switch with a second switch is provided that blocks the current in the charging direction and lets the current flow in the discharging direction to supply energy to the load. It is.

【0011】[0011]

【作用】この発明においては、運転中は通常の無停電電
源装置としての機能を有し、蓄電池等のエネルギー蓄積
手段に異常(故障)が発生した場合には、充電は切り離
しながらも、交流電源が停電した時には、エネルギー蓄
積手段が直流電力を放電し、その直流電力を直流−交流
変換器に供給することで、負荷への電力供給を継続させ
る。
According to the present invention, it has a function as an ordinary uninterruptible power supply during operation, and when an abnormality (failure) occurs in the energy storage means such as a storage battery, the AC power supply is cut off while the charging is disconnected. When a power failure occurs, the energy storage means discharges the DC power and supplies the DC power to the DC-AC converter to continue the power supply to the load.

【0012】[0012]

【実施例】【Example】

実施例1.以下、この発明の実施例1について説明す
る。図1は実施例1に係る構成図である。図において、
1ないし5および13は前述した従来例と同一のもので
ある。9は通常の浮動式無停電電源装置を構成するため
のコンタクタまたはMCCB(Mold Case Circuit Brak
er)などのスイッチ、6は蓄電池4の放電方向に電流を
流し充電方向に対しては電流ブロックをするダイオード
である。
Example 1. The first embodiment of the present invention will be described below. FIG. 1 is a configuration diagram according to the first embodiment. In the figure,
1 to 5 and 13 are the same as the above-mentioned conventional example. 9 is a contactor or MCCB (Mold Case Circuit Brak) for constructing a normal floating uninterruptible power supply.
er) and the like, and 6 is a diode that allows a current to flow in the discharging direction of the storage battery 4 and blocks a current in the charging direction.

【0013】次に動作について説明する。装置の運転
中、蓄電池4に異常(故障)が発生した場合には、交流
−直流変換器2から蓄電池4への充電方向に対してコン
タクタまたはMCCB等のスイッチ9により電気的な切
り離しを行い、交流電源が停電した場合には、放電方向
に設けたダイオード6を通じて蓄電池4が電力を放電
し、その直流電力を直流−交流変換器3に供給すること
で、負荷5への電力供給を継続する。
Next, the operation will be described. When an abnormality (failure) occurs in the storage battery 4 during operation of the device, electrical disconnection is performed by a switch 9 such as a contactor or MCCB in the charging direction from the AC-DC converter 2 to the storage battery 4, When the AC power supply fails, the storage battery 4 discharges the power through the diode 6 provided in the discharging direction, and supplies the DC power to the DC-AC converter 3, thereby continuing the power supply to the load 5. .

【0014】従って、上記実施例1によれば、蓄電池4
に異常(故障)が発生した場合には、スイッチ9を切り
離すことで蓄電池4への充電経路を切り離すことができ
ると共に、その時、交流電源1が停電したとしても放電
方向に設けたダイオード6を通じて負荷5への電力供給
が可能になるという効果がある。
Therefore, according to the first embodiment, the storage battery 4
If an abnormality (fault) occurs in the battery, the charging path to the storage battery 4 can be disconnected by disconnecting the switch 9, and at that time, even if the AC power supply 1 fails, the load is provided through the diode 6 provided in the discharging direction. There is an effect that power can be supplied to No. 5.

【0015】また、蓄電池4の異常(故障)が起きた後
でも、充電機能の切り離しを行い異常が回復した場合に
は蓄電池4の充電電流方向のスイッチ9を蓄電地4に支
障のない程度に、オン/オフしてエネルギーを再度継続
して蓄積するようなシーケンスを組むこともできる。な
お、上記では蓄電池4と装置との電位を切り離すためス
イッチ13を設けたが、なくても同様の効果を有する。
Further, even after the abnormality (failure) of the storage battery 4 occurs, if the charging function is disconnected and the abnormality is recovered, the switch 9 in the charging current direction of the storage battery 4 does not interfere with the storage area 4. It is also possible to form a sequence in which the energy is turned on / off and the energy is continuously stored again. In addition, although the switch 13 is provided in order to disconnect the potential between the storage battery 4 and the device in the above, the same effect can be obtained without the switch 13.

【0016】実施例2.次に、図2はこの発明の実施例
2を示す構成図である。図において、1ないし6および
13は前述した実施例1と同様のもので、さらに、7は
充電方向に電流を流し放電方向に対しては電流をブロッ
クするダイオード、8は蓄電池4が異常の際に充電方向
に対して電路を切り離すたるのコンタクタまたはMCC
Bなどのスイッチで、上記ダイオード7とスイッチ8と
の直列体を、放電方向に電流を流し充電方向に対しては
電流ブロックするダイオード6に並列接続している。
Example 2. Next, FIG. 2 is a configuration diagram showing a second embodiment of the present invention. In the figure, 1 to 6 and 13 are the same as those in the first embodiment described above, and further, 7 is a diode for flowing a current in the charging direction and blocking the current in the discharging direction, and 8 is a case where the storage battery 4 is abnormal. A contactor or MCC that disconnects the electrical path to the charging direction
With a switch such as B, the series body of the diode 7 and the switch 8 is connected in parallel to the diode 6 that causes a current to flow in the discharging direction and blocks a current in the charging direction.

【0017】この実施例2によれば、実施例1に対し、
ダイオード6,7により、充電と放電の電路を分けて構
成し、スイッチ8を充電方向のみに設けるため、スイッ
チ8の電流容量を小さくできる。動作としては、装置の
運転中、蓄電池4に異常(故障)が発生した場合には、
交流−直流変換器2から蓄電池4への充電方向に対して
スイッチ8により電気的な切り離しを行い、交流電源1
が停電した場合には、放電方向に設けたダイオード6を
通じて蓄電池4が電力を放電し、その直流電力を直流−
交流変換器3に供給することで、負荷5への電力供給を
継続する。
According to the second embodiment, as compared with the first embodiment,
Since the charging and discharging electric paths are separately configured by the diodes 6 and 7 and the switch 8 is provided only in the charging direction, the current capacity of the switch 8 can be reduced. As an operation, when an abnormality (failure) occurs in the storage battery 4 during the operation of the device,
The switch 8 electrically disconnects the AC-DC converter 2 from the AC-DC converter 2 to the storage battery 4, and the AC power supply 1
When a power failure occurs, the storage battery 4 discharges electric power through the diode 6 provided in the discharging direction, and the DC power is
By supplying to the AC converter 3, the power supply to the load 5 is continued.

【0018】実施例3.次に、図3はこの発明の実施例
3を示す構成図である。図3はにおいて、1ないし6お
よび13は前述した実施例1,2と同様のもので、さら
に、10はトランジスタ、GTO、IGB(Insulated
Gate Bipoler Transister)等の自己消弧素子で、機械的
な接点を無くす役割を担うものである。
Example 3. Next, FIG. 3 is a configuration diagram showing a third embodiment of the present invention. In FIG. 3, 1 to 6 and 13 are the same as those in the first and second embodiments described above, and 10 is a transistor, GTO, IGB (Insulated).
It is a self-extinguishing element such as a Gate Bipoler Transister) that plays a role in eliminating mechanical contacts.

【0019】この実施例3によれば、実施例1,2に対
し、機械的なスイッチを無くすことができるものであ
る。動作としては、常時は自己消弧素子10をオンに
し、運転中に蓄電池4に異常(故障)が発生した場合に
は、自己消弧素子10をオフすることで、蓄電池4の充
電方向に対して電気的な切り離しを行い、交流電源1が
停電した場合には放電方向に設けたダイオード6を通じ
て負荷5への電力供給を継続する。
According to the third embodiment, the mechanical switch can be eliminated as compared with the first and second embodiments. As for the operation, the self-extinguishing element 10 is normally turned on, and when an abnormality (failure) occurs in the storage battery 4 during operation, the self-extinguishing element 10 is turned off, so that the storage battery 4 is charged in the charging direction. When the AC power supply 1 fails, the power supply to the load 5 is continued through the diode 6 provided in the discharging direction.

【0020】実施例4.次に、図4はこの発明の実施例
4を示す構成図である。図4において、1ないし6およ
び7,8は前述した実施例2と同様のものであり、ま
た、17はダイオード6に直列接続されて放電制御する
スイッチで、図示構成は、充電の電路と放電の電路を分
けて構成し、充電方向のダイオード7と直列にスイッチ
8を入れて、放電方向にもスイッチ17を入れることで
蓄電池4のMCCBを無くす目的を果す。
Example 4. Next, FIG. 4 is a configuration diagram showing a fourth embodiment of the present invention. In FIG. 4, 1 to 6 and 7, 8 are the same as those in the second embodiment described above, and 17 is a switch connected in series with the diode 6 to control discharge. The circuit 8 is configured separately, and the switch 8 is inserted in series with the diode 7 in the charging direction and the switch 17 is also inserted in the discharging direction, thereby achieving the purpose of eliminating the MCCB of the storage battery 4.

【0021】この実施例4は実施例2の接続構成を変え
たもので、動作としては、常時は、スイッチ17とスイ
ッチ8をオンしておき、運転中に蓄電池4に異常(故
障)が発生した場合には、交流−直流変換器2から蓄電
池4への充電をスイッチ8をオフして充電方向に対し電
気的な切り離しを行い、交流電源1が停電した場合に
は、放電方向に設けたダイオード6を通じて負荷5への
電力供給を継続する。この実施例4によれば、実施例2
と同様な効果以外に充電回路のみの運転も可能であると
いう特長がある。
The fourth embodiment differs from the second embodiment in that the operation is such that the switch 17 and the switch 8 are normally kept on and an abnormality (failure) occurs in the storage battery 4 during operation. In that case, the switch 8 is turned off to charge the storage battery 4 from the AC-DC converter 2 and the battery is electrically disconnected in the charging direction. When the AC power supply 1 fails, the battery is provided in the discharging direction. The power supply to the load 5 is continued through the diode 6. According to the fourth embodiment, the second embodiment
In addition to the same effect as above, there is a feature that it is possible to operate only the charging circuit.

【0022】実施例5.次に、図5はこの発明の実施例
5を示す構成図である。図5において、1ないし6およ
び13は前述した各実施例と同様のもので、さらに、1
5は直流電流検出器、14は蓄電池4の充電方向に設け
たサイリスタである。
Embodiment 5. Next, FIG. 5 is a configuration diagram showing a fifth embodiment of the present invention. In FIG. 5, 1 to 6 and 13 are the same as those in the above-mentioned respective embodiments, and further,
Reference numeral 5 is a DC current detector, and 14 is a thyristor provided in the charging direction of the storage battery 4.

【0023】この実施例5は、実施例3と比較して、自
己消弧素子10の代わりに大電流定格も製作可能で、同
電流定格の自己消弧素子10に対して比較的安価なサイ
リスタ14を使用したものである。
Compared to the third embodiment, this fifth embodiment can manufacture a large current rating instead of the self-extinguishing element 10, and is a relatively inexpensive thyristor for the self-extinguishing element 10 having the same current rating. 14 is used.

【0024】動作としては、常時は、サイリスタ14の
ゲートをオンさせておき、運転中に蓄電池4に異常(故
障)が発生場合には、サイリスタ14のゲートをオフ
し、蓄電池4に流れる電流を直流電流検出器15により
検出し、充電方向に電流が流れている場合には、交流−
直流変換器2の電圧指令を蓄電池電圧より下げること
で、サイリスタ14に流れる電流を遮断し、放電方向に
電流が流れている場合には、サイリスタ14の電流はす
でに遮断されているため、電圧指令はそのままでも良
い。
As an operation, the gate of the thyristor 14 is normally turned on, and when an abnormality (failure) occurs in the storage battery 4 during operation, the gate of the thyristor 14 is turned off and the current flowing through the storage battery 4 is reduced. If detected by the DC current detector 15 and current is flowing in the charging direction, AC-
By lowering the voltage command of the DC converter 2 below the voltage of the storage battery, the current flowing through the thyristor 14 is cut off, and when the current is flowing in the discharge direction, the current of the thyristor 14 has already been cut off. Can be left as is.

【0025】すなわち、フローとしては次のようにな
る。蓄電池異常→サイリスタ14のゲートオフ→充電電
流有りの時、交流−直流変換器2の電圧指令下げる→サ
イリスタ14の電流遮断。
That is, the flow is as follows. Abnormality of storage battery → Gate off of thyristor 14 → When charging current is present, lower voltage command of AC-DC converter 2 → Shut off thyristor 14 current.

【0026】また、蓄電池電流を、特にシーケンスに含
めない方法として、常時は、サイリスタ14のゲートを
オンさせておき、運転中に、蓄電池4に異常(故障)が
発生場合には、サイリスタ14のゲートをオフし、一定
時間、交流−直流変換器2の電圧指令を蓄電池電圧より
下げることで、サイリスタ14に流れる電流を遮断する
こともできる。
Further, as a method of not including the storage battery current in the sequence, the gate of the thyristor 14 is normally turned on, and when an abnormality (failure) occurs in the storage battery 4 during operation, the thyristor 14 does not operate. It is also possible to cut off the current flowing through the thyristor 14 by turning off the gate and lowering the voltage command of the AC-DC converter 2 below the storage battery voltage for a certain period of time.

【0027】すなわち、フローとしては次のようにな
る。蓄電池異常→サイリスタ14のゲートオフ→一定時
間、交流−直流変換器2の電圧指令下げる→サイリスタ
14の電流遮断。
That is, the flow is as follows. Abnormality of storage battery → Gate off of thyristor 14 → Decrease voltage command of AC-DC converter 2 for a certain period of time → Current interruption of thyristor 14.

【0028】従って、上記実施例5によれば、実施例3
の自己消弧素子10の代わりに大電流定格も製作可能な
サイリスタ14を使用して、交流−直流変換器2の電圧
指令とサイリスタ14のゲートの制御に時間的なシーケ
ンス連動をとることで、機械的な接点を無くし、かつ大
容量な装置を構成することができる。
Therefore, according to the fifth embodiment, the third embodiment
By using a thyristor 14 that can be manufactured with a large current rating instead of the self-extinguishing element 10, the voltage command of the AC-DC converter 2 and the control of the gate of the thyristor 14 are time-sequentially linked. It is possible to construct a large-capacity device without mechanical contacts.

【0029】また、交流−直流変換器2の電圧指令とサ
イリスタ14のゲートの制御を蓄電池電流を検出しシー
ケンス連動をとることで、機械的な接点を無くしかつ大
容量な装置を構成することができる。
Further, the voltage command of the AC-DC converter 2 and the control of the gate of the thyristor 14 are detected by detecting the storage battery current and linked in sequence, so that a mechanical contact can be eliminated and a large-capacity device can be constructed. it can.

【0030】実施例6.次に、図6はこの発明の実施例
6を示す構成図である。図6において、1ないし6およ
び13,14は前述と同様のもので、さらに、16は電
圧差検出器である。
Example 6. Next, FIG. 6 is a configuration diagram showing a sixth embodiment of the present invention. In FIG. 6, 1 to 6 and 13, 14 are the same as those described above, and 16 is a voltage difference detector.

【0031】この実施例6は、実施例5と比較して、直
流電流方向の検出として、比較的安価な電圧差検出器1
6を使用したものである。動作としては、常時は、サイ
リスタ14のゲートをオンさせておき、運転中に蓄電池
4に異常(故障)が発生した場合には、サイリスタ14
のゲートを中止し、蓄電池電流を電圧差検出器16によ
り検出し、ダイオード6に逆電圧が加わる場合、すなわ
ち充電方向に電流が流れている場合には、交流−直流変
換器2の電圧指令を蓄電池電圧より下げ、サイリスタ1
4に流れる電流を遮断し、また、順電圧が加わる場合、
すなわち放電方向に電流が流れている場合には、サイリ
スタ14の電流は遮断されているため、電圧指令はその
ままにする。
In comparison with the fifth embodiment, the sixth embodiment has a relatively inexpensive voltage difference detector 1 for detecting the direct current direction.
6 is used. As an operation, the gate of the thyristor 14 is normally turned on, and when an abnormality (failure) occurs in the storage battery 4 during operation, the thyristor 14
Of the storage battery current is detected by the voltage difference detector 16, and when a reverse voltage is applied to the diode 6, that is, when a current is flowing in the charging direction, the voltage command of the AC-DC converter 2 is set. Lower than battery voltage, thyristor 1
When the current flowing in 4 is cut off and a forward voltage is applied,
That is, when the current is flowing in the discharge direction, the current of the thyristor 14 is cut off, so that the voltage command is kept as it is.

【0032】従って、上記実施例6によれば、蓄電池電
流を直流スイッチの素子間電圧で検出しシーケンス連動
をとることで、機械的な接点を無くしかつ大容量の装置
を構成することができる。
Therefore, according to the sixth embodiment, by detecting the storage battery current by the inter-device voltage of the DC switch and performing the sequence interlocking, it is possible to eliminate the mechanical contact and construct a large-capacity device.

【0033】[0033]

【発明の効果】以上のように、この発明によれば、蓄電
池に異常(故障)が発生した場合には、蓄電池への充電
を切り離しを行い、交流電源が停電した場合には放電方
向に設けたスイッチを通じて負荷への電力供給が可能と
いう効果がある。
As described above, according to the present invention, when an abnormality (failure) occurs in the storage battery, the charge to the storage battery is disconnected, and when the AC power supply fails, the battery is provided in the discharging direction. The effect is that power can be supplied to the load through the switch.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1を示す構成図である。FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】この発明の実施例2を示す構成図である。FIG. 2 is a configuration diagram showing a second embodiment of the present invention.

【図3】この発明の実施例3を示す構成図である。FIG. 3 is a configuration diagram showing a third embodiment of the present invention.

【図4】この発明の実施例4を示す構成図である。FIG. 4 is a configuration diagram showing a fourth embodiment of the present invention.

【図5】この発明の実施例5を示す構成図である。FIG. 5 is a configuration diagram showing a fifth embodiment of the present invention.

【図6】この発明の実施例6を示す構成図である。FIG. 6 is a configuration diagram showing a sixth embodiment of the present invention.

【図7】従来の無停電電源装置の構成図である。FIG. 7 is a configuration diagram of a conventional uninterruptible power supply device.

【符号の説明】[Explanation of symbols]

1 交流電源 2 交流−直流変換器 3 直流−交流変換器 4 蓄電池 5 負荷 6 ダイオード 7 ダイオード 8 スイッチ 9 スイッチ 10 自己消弧素子 13 サイリスタ 14 サイリスタ 15 直流電流検出器 16 電圧差検出器 17 スイッチ 1 AC power supply 2 AC-DC converter 3 DC-AC converter 4 Storage battery 5 Load 6 Diode 7 Diode 8 Switch 9 Switch 10 Self-extinguishing element 13 Thyristor 14 Thyristor 15 DC current detector 16 Voltage difference detector 17 Switch

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 交流電源の電力を直流電力に変換する交
流−直流変換器と、この交流−直流変換器によって変換
された直流電力を交流電力に逆変換する直流−交流変換
器と、これら変換器間の直流回路に接続されて充放電す
る蓄電池等のエネルギー蓄積手段とを備えた電源装置に
おいて、上記変換器間の直流回路と上記エネルギー蓄積
手段との間に、エネルギー蓄積手段の異常の際に充電電
路を切り離し、エネルギー蓄積手段の保護を行う第1の
スイッチと、この第1のスイッチに並列接続されて上記
交流−直流変換器の入力停電時には充電方向に対しては
電流をブロックし放電方向に対しては電流を流して負荷
へのエネルギー供給を可能にする第2のスイッチとを有
する直流スイッチを備えたことを特徴とする電源装置。
1. An AC-DC converter for converting the power of an AC power supply into DC power, a DC-AC converter for converting the DC power converted by the AC-DC converter back into AC power, and these conversions. In a power supply device equipped with an energy storage means such as a storage battery that is connected to a DC circuit between the converters and charges and discharges, when an abnormality occurs in the energy storage means between the DC circuit between the converters and the energy storage means. The first switch for disconnecting the charging circuit to protect the energy storage means and the first switch which is connected in parallel with the first switch and blocks the current in the charging direction and discharges when the AC-DC converter has an input power failure. A power supply device comprising a direct current switch having a second switch that allows a current to flow in the direction to supply energy to the load.
JP5000214A 1993-01-05 1993-01-05 Power supply apparatus Pending JPH06209533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5000214A JPH06209533A (en) 1993-01-05 1993-01-05 Power supply apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5000214A JPH06209533A (en) 1993-01-05 1993-01-05 Power supply apparatus

Publications (1)

Publication Number Publication Date
JPH06209533A true JPH06209533A (en) 1994-07-26

Family

ID=11467712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5000214A Pending JPH06209533A (en) 1993-01-05 1993-01-05 Power supply apparatus

Country Status (1)

Country Link
JP (1) JPH06209533A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2126533A1 (en) * 1997-08-13 1999-03-16 Proyectos Y Tecnologia Electro Novel switching system applicable in diverse apparatuses provided with continuous power-supply systems
JP2002191138A (en) * 2000-12-19 2002-07-05 Toshiba Battery Co Ltd Uninterruptive power supply device
JP2011029009A (en) * 2009-07-27 2011-02-10 Ntt Facilities Inc Lithium ion battery pack management device, control method, and lithium ion battery pack system
CN102074986A (en) * 2010-12-29 2011-05-25 河北创科电子科技有限公司 Electric power single-group storage battery DC system and storage battery discharging method
JP2012105431A (en) * 2010-11-09 2012-05-31 Nec Fielding Ltd Uninterruptible power supply device, power supply processing method, and power supply processing program
CN102841317A (en) * 2011-06-23 2012-12-26 康舒科技股份有限公司 battery simulator
JP2013048497A (en) * 2011-07-26 2013-03-07 Gs Yuasa Corp Uninterruptible power supply device and power supply device
CN103840543A (en) * 2012-11-27 2014-06-04 中国移动通信集团广西有限公司 Power supply method and device for UPS backup battery packs
JP2018064365A (en) * 2016-10-12 2018-04-19 株式会社東芝 Power conversion device for electric vehicle and power conversion method for electric vehicle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2126533A1 (en) * 1997-08-13 1999-03-16 Proyectos Y Tecnologia Electro Novel switching system applicable in diverse apparatuses provided with continuous power-supply systems
JP2002191138A (en) * 2000-12-19 2002-07-05 Toshiba Battery Co Ltd Uninterruptive power supply device
JP2011029009A (en) * 2009-07-27 2011-02-10 Ntt Facilities Inc Lithium ion battery pack management device, control method, and lithium ion battery pack system
JP2012105431A (en) * 2010-11-09 2012-05-31 Nec Fielding Ltd Uninterruptible power supply device, power supply processing method, and power supply processing program
CN102074986A (en) * 2010-12-29 2011-05-25 河北创科电子科技有限公司 Electric power single-group storage battery DC system and storage battery discharging method
CN102841317A (en) * 2011-06-23 2012-12-26 康舒科技股份有限公司 battery simulator
JP2013048497A (en) * 2011-07-26 2013-03-07 Gs Yuasa Corp Uninterruptible power supply device and power supply device
CN103840543A (en) * 2012-11-27 2014-06-04 中国移动通信集团广西有限公司 Power supply method and device for UPS backup battery packs
JP2018064365A (en) * 2016-10-12 2018-04-19 株式会社東芝 Power conversion device for electric vehicle and power conversion method for electric vehicle

Similar Documents

Publication Publication Date Title
KR100997559B1 (en) System for providing assured power to a critical load
EP1465318A2 (en) Uninterruptible power supply system
JP2006246616A (en) Uninterruptible power supply
KR101021598B1 (en) Device of voltage compensation for a momentary power failure
JPH06209533A (en) Power supply apparatus
JP2000102196A (en) Uninterruptible power supply
Bhakar et al. A new fault-tolerant scheme for switch failures in dual active bridge DC-DC converter
JP3428005B2 (en) Operation control method of distributed interconnection system
JP2005027430A (en) Power conversion system
JP2011223731A (en) Uninterruptible power supply system and control method using the same
JPH05276671A (en) Parallel redundant uninterruptible power supply
CN111463892A (en) Novel alternating current-direct current mixed supply type uninterruptible power supply structure, device and method
JP2008055918A (en) Control method for dc feeder system
JP3402886B2 (en) Distributed power equipment
KR101785662B1 (en) Apparatus for protecting a battery
JPH06189469A (en) Uninterruptible power supply
JPS63107431A (en) Non-interrupted electric source
JPH09130995A (en) Uninterruptive power supply
JPS62250876A (en) Voltage type inverter unit
JPS6118423B2 (en)
JPH07203639A (en) Uninterruptible power supply
JP2001008382A (en) Power supply apparatus for uninterruptible work
JP3725827B2 (en) Standby power system and operation method thereof
JPH09261894A (en) Composite backup power supply system
JP2022121939A (en) Uninterruptible power supply system