JPS5862552A - Performance measuring apparatus for air-fuel ratio - Google Patents

Performance measuring apparatus for air-fuel ratio

Info

Publication number
JPS5862552A
JPS5862552A JP16092281A JP16092281A JPS5862552A JP S5862552 A JPS5862552 A JP S5862552A JP 16092281 A JP16092281 A JP 16092281A JP 16092281 A JP16092281 A JP 16092281A JP S5862552 A JPS5862552 A JP S5862552A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
ratio sensor
combustion gas
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16092281A
Other languages
Japanese (ja)
Inventor
Takeshi Kitahara
剛 北原
Masaaki Uchida
正明 内田
Kimitake Sone
曽根 公毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP16092281A priority Critical patent/JPS5862552A/en
Publication of JPS5862552A publication Critical patent/JPS5862552A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/007Arrangements to check the analyser

Abstract

PURPOSE:To measure the performance of a sensor on the condition similar to that when the sensor is used by varying the air-fuel ratio of a mixed gas fed to a combustion gas generator cyclically. CONSTITUTION:A mixed gas is fed to a combustion gas generator 8 by way of an air feed pipeline 1a having reducing valves 2 and 3 and a solenoid valve 17 and a propane gas feed pipeline 1b having reducing valves 4 and 5 and a solenoid valve 7. A square wave oscillator is used for the signal generator 18, which controls the opening or closing of the valves 7 and 17 through a solenoid valve driving circuit 13. According to the closing and opening of the valves 7 and 17, and air-fuel ratio of the mixed gas to be fed to the generator 8 varies in a square wave. Outputs of an air-fuel sensor 9 and the signal generator 18 are inputted into a waveform processor 19 to be processed over many cycles.

Description

【発明の詳細な説明】 本発明は、内燃機関の空燃比制御に使用される空燃比セ
ンサ(酸素センサ等)の性能測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a performance measuring device for an air-fuel ratio sensor (such as an oxygen sensor) used for air-fuel ratio control of an internal combustion engine.

従来の空燃比セ/す性能測定装置としてし1、たとえば
第1図に示すよう力ものがある。
As a conventional air-fuel ratio performance measuring device, there is a powerful one as shown in FIG. 1, for example.

これは、プロパンガスと空気の混合ガスを燃焼させ、そ
の燃焼ガスを用いて空燃比センサ単体の性能を測定する
装置で、次の各部からなっている。
This is a device that burns a mixture of propane gas and air and uses the combustion gas to measure the performance of a single air-fuel ratio sensor, and consists of the following parts.

すなわち、1aは減圧弁2.6、電磁弁6を有する空気
供給管路、1bは減圧弁4.5、電磁弁7を有するプロ
パンガス供給管路、8は燃焼ガス発生装置であるバーナ
、9は被測定空燃比センサ、10は排気温度測定用の熱
雷対、11は点火装置、12は分析計用ガス採取管、1
6は電磁弁駆動1j31路、14はステップ電圧発生器
、15は応答特性測定装置、16は配録装置である。
That is, 1a is an air supply pipe having a pressure reducing valve 2.6 and a solenoid valve 6, 1b is a propane gas supply pipe having a pressure reducing valve 4.5 and a solenoid valve 7, 8 is a burner which is a combustion gas generator, 9 1 is an air-fuel ratio sensor to be measured, 10 is a thermal lightning pair for measuring exhaust temperature, 11 is an ignition device, 12 is a gas sampling pipe for an analyzer, 1
6 is a solenoid valve drive 1j31 path, 14 is a step voltage generator, 15 is a response characteristic measuring device, and 16 is a recording device.

本装置による空燃比センサの性能測定に際しては、バー
ナ8に供給する混合ガスの空燃比を次のように制御する
。1ず、減圧弁2.4により空気とノ[ノパンガスの基
本供給量を調整してベースとな4空燃比をきめ乙。この
ベースとなる空燃比は1、IJ 、7チ(過濃)あるい
はり一ン(稀薄)のいすゎかに設定する。、リッチに設
定した場合を寸、減月kjP6を調整して電磁弁6を開
けば、混合ガスに空気が加わり、空燃比をリーン状態と
することができる。すなわち、電磁弁6をON −) 
ol’ Fまたは011’ I−→ONに切替えること
により、混合ガスの空燃比はリーン→リッチ、リレチ→
リーンとステップ状に変化する。ステップ電圧発生器(
手動スイッチにより電圧をステップ状に変える)14で
ステップ電圧を発生させ、電磁弁駆動回路13により電
磁弁6を作動できるパワーに変換して伝えると、電磁弁
6はON→0FF4たはOFF’−+ONの動作をし、
これによる燃焼ガスのり一ン→リッチまたはリッチ→リ
ーンの状態変化に対応して空燃比センサ9に出力電圧が
発生する。
When measuring the performance of the air-fuel ratio sensor using this device, the air-fuel ratio of the mixed gas supplied to the burner 8 is controlled as follows. 1. First, adjust the basic supply amount of air and nopan gas using the pressure reducing valve 2.4 to determine the base air-fuel ratio. The base air-fuel ratio is set to 1, IJ, 7ch (rich) or 1in (lean). By adjusting kjP6 and opening the solenoid valve 6, air is added to the mixed gas and the air-fuel ratio can be brought to a lean state. In other words, turn on the solenoid valve 6 -)
By switching from ol' F or 011' I- to ON, the air-fuel ratio of the mixed gas changes from lean to rich to rich.
It changes in a lean and step-like manner. Step voltage generator (
When a step voltage is generated at step 14 (change the voltage stepwise using a manual switch), and is converted into power that can operate the solenoid valve 6 by the solenoid valve drive circuit 13 and transmitted, the solenoid valve 6 changes from ON to 0FF4 or OFF'- +ON operation,
An output voltage is generated in the air-fuel ratio sensor 9 in response to this change in the state of the combustion gas from lean to rich or from rich to lean.

第2図(a)、(b)はステップ電圧とこれに応答する
空燃比センサ出力電圧の波形を示す。応答特性測定装置
15は、この空燃比センサ出力電圧とステップ電圧を入
力して、空燃比セ/す出力電圧のある基準値から他の基
準値までの応答時間(第2図の1.および1f)を測定
する。また、空燃比センサ出力電圧の上下ピーク値、す
なわちリッチ側出力とり一ン側出方もこの応答特性測定
装置15で測定される。
FIGS. 2(a) and 2(b) show the step voltage and the waveform of the air-fuel ratio sensor output voltage in response thereto. The response characteristic measuring device 15 inputs the air-fuel ratio sensor output voltage and the step voltage, and calculates the response time from a certain reference value of the air-fuel ratio sensor output voltage to another reference value (1. and 1f in FIG. 2). ) to measure. The response characteristic measuring device 15 also measures the upper and lower peak values of the air-fuel ratio sensor output voltage, that is, the rich side output and the rich side output.

電磁弁6(D ON −+ OF F、OF ]!’−
+ON (D t’h 作は手動信号によるもので周期
性はなく、各動作の間隔は数十秒以上1であり、この装
置による測定では各動作は1回だけしが行なわない。
Solenoid valve 6 (D ON -+ OF F, OF]!'-
+ON (D t'h The operation is based on a manual signal and has no periodicity, and the interval between each operation is several tens of seconds or more. In measurement with this device, each operation is performed only once.

この装置は、たとえば工場出荷時の空燃比センサの性能
検査に用いられ、リッチ側出力がある検査基準値以下で
あること、リーン側出力がある検査基準値以上であるこ
と、1.がある検査基準値以下であること、1(がある
検査基準値以下であることが性能検査の条件となってい
る。
This device is used, for example, to test the performance of air-fuel ratio sensors at the time of factory shipment, and the rich side output is below a certain test standard value, and the lean side output is above a certain test standard value.1. The conditions for the performance test are that 1 (is below a certain test standard value) and 1 (is below a certain test standard value).

しかし、この装置におけるリッチ→リーン、リーン→リ
ッチの空燃比変化はある静的々状態から他の静的力状態
への変化で、空燃比センサによるフィードバック制御に
より空燃比が脈動的変化を繰り返すセンサ使)11時の
状態とは大′いに異なるだめ、この装置を用いてリッチ
側出力、リーン側出力、Ill、L(の測定をしても、
その測定値はセンサを111両に搭載した状態での制御
性能、特に10七−ドなどのパターン走行における排出
ガス:1ニーを正確に反映したものでは々く、壕だ1回
だけの測定ではtr、tlの測定値のバラツキも大きい
。こ記 のため、上人装置による測定値は極端な不良品を晃つけ
ることにしか使えず、センサを車両に搭載した状態での
制御性能の評価は実車走行試験によるほかなかった。
However, the air-fuel ratio changes from rich to lean and lean to rich in this device are changes from one static state to another static force state, and the air-fuel ratio repeats pulsating changes due to feedback control by the air-fuel ratio sensor. Even if you use this device to measure the rich side output, lean side output, Ill, and L(), the condition will be very different from the one at 11 o'clock.
The measured value is an accurate reflection of the control performance with the sensor installed on the 111 cars, especially the exhaust gas during pattern running such as 107-7. There is also large variation in the measured values of tr and tl. For this reason, measurements made by the Jonin device could only be used to identify extremely defective products, and the only way to evaluate control performance with the sensor mounted on a vehicle was through actual vehicle driving tests.

本発明は上記の点にかんがみ、空燃比センサ単体でパタ
ーン走行における排出ガス量と良好な相関を有する測定
結果が得られ、実車走行試験によらずに使用状態での性
能評価ができる空燃比センサ性能測定装置を提供するこ
とを目的とする。
In view of the above points, the present invention provides an air-fuel ratio sensor that can obtain measurement results that have a good correlation with the amount of exhaust gas during pattern driving with a single air-fuel ratio sensor, and that can evaluate performance in use without conducting actual vehicle driving tests. The purpose is to provide a performance measurement device.

上記目的を達成するため本発明では、周期的に変化する
波形の空燃比変化信号により燃焼ガス発生装置に供給す
る混合ガスの空燃比を制御して、その空燃比をセンサ使
用時の状態に模疑して周期的に変化させ、燃焼ガス発生
装置による燃焼ガス中に配置した被測定空燃比センサの
周期的空燃比変化に応答する出力波形の立ち上がり勾配
と立ち下がり勾配との差を波形処理装置により算出して
表示するようにしたものである。
In order to achieve the above object, the present invention controls the air-fuel ratio of the mixed gas supplied to the combustion gas generator using an air-fuel ratio change signal with a waveform that changes periodically, and simulates the air-fuel ratio in the state when the sensor is used. A waveform processing device calculates the difference between the rising slope and falling slope of the output waveform in response to the periodic air-fuel ratio changes of the air-fuel ratio sensor to be measured, which is placed in the combustion gas produced by the combustion gas generator. It is calculated and displayed using the following formula.

以下、本発明の実施例を図面を用いて説明する。Embodiments of the present invention will be described below with reference to the drawings.

第6図は本発明の一実施例を示す概要図で、第1図と同
一符号は対応する部分を示し、その説明を省略する。
FIG. 6 is a schematic diagram showing an embodiment of the present invention, in which the same reference numerals as in FIG. 1 indicate corresponding parts, and the explanation thereof will be omitted.

本装置は、第1図に示す従来例と同様に、減圧弁2.4
により空気上プロパンガスの基本供給量を調整してベー
スとなる空燃比(リッチ)を設定し、それに減圧弁6と
電磁弁17により空気を加えてリーン状態を作ることが
できる。電磁弁17と電磁弁駆動回路16は空燃比制御
装置を構成する。電磁弁17として、数十〜数百112
 の高ガ1度で開閉し、そのデー−ティ比を変えること
により空気流量を連続的に調整できろものを使用すわば
、矩形波以外の任意の波形に対応して空気流11;゛を
制御ずイ】こともできるが、ここでは電磁弁17を第1
図の電磁弁6と同様のものとして、空気流:□;・を矩
形波状に変化させる場合について説明する。
This device is similar to the conventional example shown in FIG.
By adjusting the basic supply amount of propane gas on air to set a base air-fuel ratio (rich), air can be added to it using the pressure reducing valve 6 and the solenoid valve 17 to create a lean state. The solenoid valve 17 and the solenoid valve drive circuit 16 constitute an air-fuel ratio control device. As the solenoid valve 17, tens to hundreds of 112
If you use a device that can open and close at a high rate of 1 degree and adjust the air flow rate continuously by changing the duty ratio, the air flow rate can be adjusted to 11 degrees in response to any waveform other than a rectangular wave. It is also possible to control the solenoid valve 17 in the first
As a valve similar to the solenoid valve 6 shown in the figure, a case will be described in which the air flow: □;• is changed in a rectangular wave shape.

イ1;号発生装置18として矩形波発振器を用い、0.
6〜5秒周期で発生する矩形波状の空燃比変化幅シ;を
電磁弁駆動回路13に加えて電磁弁17を駆動するパワ
ーに変換し、この信号により電磁弁17を開閉させる。
A1: A square wave oscillator is used as the generator 18, and 0.
The rectangular wave-like air-fuel ratio change range, which occurs every 6 to 5 seconds, is applied to the solenoid valve drive circuit 13 and converted into power for driving the solenoid valve 17, and the solenoid valve 17 is opened and closed by this signal.

その結果、電磁弁17を通る空気流量は矩形波状に変化
し、したがって燃焼ガス発生装置であるバーナ8に供給
される混合ガスの空燃比もリッチ→リーン、リーン→リ
ソチト矩形波状に変化する。空燃比変化幅は、理論空燃
比を中心としてA/F=0.5〜2の間で設定する。
As a result, the air flow rate passing through the electromagnetic valve 17 changes in a rectangular wave pattern, and therefore the air-fuel ratio of the mixed gas supplied to the burner 8, which is a combustion gas generating device, also changes in a rectangular wave pattern from rich to lean and lean to lean. The air-fuel ratio change width is set between A/F=0.5 and 2 with the stoichiometric air-fuel ratio as the center.

以上により、空燃比の周期的変化は空燃比センサの使用
時の状態に近似したものとなる。
As a result of the above, the periodic change in the air-fuel ratio approximates the state when the air-fuel ratio sensor is in use.

この空燃比変化に応答してバーナ8の燃焼ガス中に配置
した被測定空燃比センサ9が発生する出力電圧と信号発
生器18の矩形波信号は波形処理装置19に入力され、
多周期にわたって波形処理される。必要に応じて、セン
サ出力および熱電対10で測定した排気温度を記録装置
16で記録する。
In response to this air-fuel ratio change, the output voltage generated by the air-fuel ratio sensor 9 to be measured placed in the combustion gas of the burner 8 and the rectangular wave signal of the signal generator 18 are input to the waveform processing device 19.
Waveform processing is performed over multiple cycles. If necessary, the sensor output and the exhaust temperature measured by the thermocouple 10 are recorded by the recording device 16.

電磁弁7は測定中全閉にしておく。この1L磁弁7と減
圧弁5は、始業時暖気を早めたり、極度のリッチ状態を
作るのに使’5゜′ 測定中の他の条件として、周囲の気温はほぼ一定(たと
えば18±5℃)に管理し、排気温度は650〜700
℃の間Q所定値になるようにガス流口、、1 量を設定する。
The solenoid valve 7 is kept fully closed during the measurement. The 1L solenoid valve 7 and the pressure reducing valve 5 are used to accelerate warming up at the start of work or to create an extremely rich condition. ℃), and the exhaust temperature is 650 to 700.
Set the amount of gas flow port so that the Q value remains at a predetermined value during ℃.

波形処理装置19はディジタル計算機などで構成されて
いる。次に、第4図を参照して波形処理法を説明する。
The waveform processing device 19 is composed of a digital computer or the like. Next, the waveform processing method will be explained with reference to FIG.

矩形波信号〔第4図(a)〕の1周期(i IlNに対
応する空燃比センサ出力電圧〔第4図(1+) 〕の最
大値を100係出力、最小値を0%出力とし、矩形波信
号がリーン側からリッチ側に変わ−】た瞬間からセンサ
出力が50%に達する′までの時間′11.、センサ出
力が5o%以−りである時間1(・′1゛、台−ち上が
り勾配(i   binθ17、立ち下がり − 勾配(i「−1an O(を波形処理によって測定する
The maximum value of the air-fuel ratio sensor output voltage [Fig. 4 (1+)] corresponding to one period (i IIN) of the rectangular wave signal [Fig. 4 (a)] is set as 100 coefficient output, the minimum value as 0% output, and The time from the moment when the wave signal changes from the lean side to the rich side until the sensor output reaches 50% is '11.', and the time when the sensor output is 50% or more (1) The rising slope (i bin θ17) and the falling slope (i'-1 an O) are measured by waveform processing.

この(111、(1「は、センサ出力の上ドビーク値間
の所定の基準値におけろ勾配、あるいは所定の基飴値か
ら他の所定の基準値までの応答時間より割算される平均
勾配として求められろ。1波形処理装置19は、このT
   旧゛、Or、()「の値を多周期「 ) にわだり平均して3つ出し、′l゛1、H,’l”、(
11、(ilそわぞれの値と、(i「−G、 (ミd(
))すなわち\ン一ち十かり勾配と立ち下がり勾配との
差および上下ピーク値を表示する。
This (111, (1) is the slope at a predetermined reference value between the upper doveak values of the sensor output, or the average slope divided by the response time from the predetermined reference value to another predetermined reference value. The single waveform processing device 19 calculates this T.
Average the values of old ゛, Or, ()'' over multiple periods ``
11. The values of (il and
)) That is, the difference between the slope and the falling slope and the upper and lower peak values are displayed.

本装置によると、燃焼ガス発生装置に供給されろ混合ガ
スの空燃比がセンサ使用時の状態に近似して周期的に変
化するため、これにともなう被測定空燃比センサの応答
波形から得られたT11、RT、Gr、G、、、dGの
値は、車両に搭載した状態での空燃比センサの制御性能
を正確に反映したものと々る。第5図は本装置により測
定されたd(i値(msec/V)とパターン走行時の
排出NOx惜(g/km  )との関係を示し、この両
者の間に良好な相関があることがわかる。これは、車両
用エンジンの空燃比制御において、センサ応答波形の立
ち−Lがり勾配に対し立ち下がり勾配が大(d()値が
大)であれば、空燃比はリーン側に制御されて排出NO
x量が増大し、逆に立ち下がり勾配が小(dG値が小)
であれば、空燃比はリッチ側に制御されて排出NOx量
が減少することによるもので、このようなdG値と排出
ガス量との関係は本装置による測定結果からはじめて確
認された。
According to this device, the air-fuel ratio of the mixed gas supplied to the combustion gas generator changes periodically, approximating the state when the sensor is used. The values of T11, RT, Gr, G, . . . dG accurately reflect the control performance of the air-fuel ratio sensor when mounted on the vehicle. Figure 5 shows the relationship between the d(i value (msec/V)) measured by this device and the NOx emissions (g/km) during pattern running, and it is clear that there is a good correlation between the two. This means that in the air-fuel ratio control of a vehicle engine, if the falling slope of the sensor response waveform is large (the d() value is large) compared to the rising slope of the sensor response waveform, the air-fuel ratio is controlled to the lean side. Emission NO.
x amount increases, and conversely, the falling slope is small (dG value is small)
If so, this is because the air-fuel ratio is controlled to the rich side and the amount of exhaust NOx decreases, and this relationship between the dG value and the amount of exhaust gas was confirmed for the first time from the measurement results using this device.

この関係を利用すれば、被測定空燃比センサが排出ガス
規制に適応した制御性能を有しているか否かをdG値か
らただちに判定できろ。なお、Tr’、RT、上下ピー
ク値は、性能検査において異常なセンサの発見に用いら
れる。
By using this relationship, it is possible to immediately determine from the dG value whether the air-fuel ratio sensor to be measured has control performance that complies with exhaust gas regulations. Note that Tr', RT, and upper and lower peak values are used to discover abnormal sensors in performance tests.

本装置は、空燃比の周期的変化に対する応答波形の1周
期分だけをとってもセンサの動特性を反映した測定結果
が得られるが、多周期にわたる平均値をとることによっ
て測定値のバラツキをより小さくすることができる。
This device can obtain measurement results that reflect the dynamic characteristics of the sensor by taking just one period of the response waveform to periodic changes in the air-fuel ratio, but by taking the average value over multiple periods, the variation in measured values can be reduced. can do.

上記実施例では空燃比を矩形波状に変化させる場合につ
いて述べたが、空燃比変化信号として矩形波以外の三角
波、台形波、正弦波などを用いても同様な効果が得られ
る。また、既知の特性を有する空燃比センサをマスタセ
ンサとして用い、このマスタセンサの出力信号で混合ガ
スの空燃比をフィードバック制御することにより空燃比
を準周期的に変化させれば、センサ使用時の状態により
近い条件で被測定空燃比センサの性能測定ができる4゜ 本装置の測定対象となる空燃比センサには、ンルコニア
系酸素セ/す、チタニア系酸素センタ、酸化コバルト系
酸素センサ1.その他の酸素センサ、′1: および−酸化炭素センサ等がある。
Although the above embodiment describes the case where the air-fuel ratio is changed in the form of a rectangular wave, similar effects can be obtained by using a triangular wave, trapezoidal wave, sine wave, etc. other than the rectangular wave as the air-fuel ratio change signal. In addition, if an air-fuel ratio sensor with known characteristics is used as a master sensor and the air-fuel ratio of the mixed gas is changed quasi-periodically by feedback-controlling the air-fuel ratio of the mixed gas using the output signal of this master sensor, it is possible to change the air-fuel ratio when using the sensor. 4. The performance of the air-fuel ratio sensor to be measured can be measured under conditions closer to the actual state.The air-fuel ratio sensors that can be measured by this device include an luconia-based oxygen sensor, a titania-based oxygen sensor, and a cobalt oxide-based oxygen sensor. There are other oxygen sensors, such as '1: and carbon oxide sensors.

以上の説明から明らかなように本発明による空燃比セン
サ性能測定装置は、周期的な空燃比変化に応答する空燃
比センサの出力波形がらパターン走行時における車両の
排出ガス量と良好な相関を有する測定結果が得られるの
で、実車走行試験によらずに車両に搭載した状態での空
燃比センサの制御性能を適確に評価することができ、工
場出荷時の性能検査あるいは試作品の性能評価等に用い
て実益が大きい。
As is clear from the above description, the air-fuel ratio sensor performance measuring device according to the present invention has a good correlation between the output waveform of the air-fuel ratio sensor that responds to periodic air-fuel ratio changes and the amount of exhaust gas of the vehicle during pattern driving. Since the measurement results can be obtained, it is possible to accurately evaluate the control performance of the air-fuel ratio sensor installed in the vehicle without conducting actual vehicle driving tests, and is useful for performance inspections at the time of factory shipment or performance evaluation of prototypes. It has great benefits when used for.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は空燃比センサ性能測定装置の従来例の概要図、
第2図はその空燃比変化信号と空燃比センサ出力波形図
、第3図は本発明の一実施例を示す概要図、第4図はそ
の空燃比変化信号と空燃比センサ出力波形図、第5図は
本装置により測定されたdG値とパターン走行時におけ
る排出NoX量との関係を示す図である。 1a・・・空気供給管路 1b・・・プロパンガ、ス供給管路 8・・・燃焼ガス発生装置であるバーナ9・・・被測定
空燃比センサ 16・・・電磁弁駆動回路 17・・・空燃比制御装置である電磁弁18、・・信号
発生装置である矩形波発振器19・・・波形処理装置 代理人弁理士 中村純之助 第1凶 慈気 1 本業直によ“ vJ ・            ・ ・ ・        ・ ・    ・
Figure 1 is a schematic diagram of a conventional example of an air-fuel ratio sensor performance measurement device.
Fig. 2 is a diagram of the air-fuel ratio change signal and the output waveform of the air-fuel ratio sensor, Fig. 3 is a schematic diagram showing an embodiment of the present invention, and Fig. 4 is a diagram of the air-fuel ratio change signal and the output waveform of the air-fuel ratio sensor. FIG. 5 is a diagram showing the relationship between the dG value measured by this device and the amount of NoX discharged during pattern running. 1a... Air supply pipe 1b... Propane gas, gas supply pipe 8... Burner 9, which is a combustion gas generator... Air-fuel ratio sensor to be measured 16... Solenoid valve drive circuit 17... Solenoid valve 18, which is an air-fuel ratio control device... Rectangular wave oscillator 19, which is a signal generator...Waveform processing device Patent attorney Junnosuke Nakamura Daiichi Kyōjiki 1 Main job: vJ ・ ・ ・ ・ ・・ ・

Claims (1)

【特許請求の範囲】 (1)燃焼ガスを用いて空燃比センサ単体の性能を測定
する装置において、燃焼ガス発生装置と、周期的に変化
する波形の空燃比変化信号を発生する信号発生装置と、
該信号発生装置が発生する空燃比変化信号に応じて前記
燃焼ガス発生装置に供給される混合ガスの空燃比を制御
する空燃比制御I装置々、前記燃焼ガス発生装置による
燃焼ガス中に配置6′シた被測定空燃比センサの出力電
圧と前記空燃比変化信号とを入力して前記空燃比センサ
の出幻波形の立ち上がり勾配とケち下がり勾配との差を
算出し表示する波形処理装置を具備したことを特徴とす
る空燃比センサ性能測定装置。 (2)前記波形処理装置は、空燃比センサ出力波形の)
′Lち上がり勾配と立ち下がり勾配との差を多周期にわ
たり平均して算出することを特徴とする特許請求の範囲
(1)項記載の空燃比センサ性能測定装置。 (5)前記波形処理装置は、空燃比センサ出力波形の上
下ピーク値間の所定の基準値における立ち上がり勾配と
立ち下がり勾配との差、あるいは上下ピーク値間の所定
の基準値から他の所定の基準値までの応答時間より算出
される平均的立ち上がり勾配と立ち下がり勾配との差を
算出することを特徴とする特許請求の範囲(1)項記載
の空燃比センサ性能測定装置。
[Scope of Claims] (1) A device for measuring the performance of a single air-fuel ratio sensor using combustion gas, comprising: a combustion gas generator; a signal generator that generates an air-fuel ratio change signal with a periodically changing waveform; ,
Air-fuel ratio control I devices for controlling the air-fuel ratio of the mixed gas supplied to the combustion gas generation device according to the air-fuel ratio change signal generated by the signal generation device, arranged in the combustion gas from the combustion gas generation device 6 a waveform processing device that inputs the output voltage of the air-fuel ratio sensor to be measured and the air-fuel ratio change signal to calculate and display the difference between the rising slope and the falling slope of the emerging waveform of the air-fuel ratio sensor; An air-fuel ratio sensor performance measuring device characterized by comprising: (2) The waveform processing device controls the air-fuel ratio sensor output waveform)
1. The air-fuel ratio sensor performance measuring device according to claim 1, wherein the difference between the rising slope and the falling slope is calculated by averaging over multiple periods. (5) The waveform processing device calculates the difference between the rising slope and the falling slope at a predetermined reference value between the upper and lower peak values of the air-fuel ratio sensor output waveform, or the difference between the rising slope and the falling slope at a predetermined reference value between the upper and lower peak values. The air-fuel ratio sensor performance measuring device according to claim (1), characterized in that the difference between the average rising slope and falling slope calculated from the response time to the reference value is calculated.
JP16092281A 1981-10-12 1981-10-12 Performance measuring apparatus for air-fuel ratio Pending JPS5862552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16092281A JPS5862552A (en) 1981-10-12 1981-10-12 Performance measuring apparatus for air-fuel ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16092281A JPS5862552A (en) 1981-10-12 1981-10-12 Performance measuring apparatus for air-fuel ratio

Publications (1)

Publication Number Publication Date
JPS5862552A true JPS5862552A (en) 1983-04-14

Family

ID=15725183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16092281A Pending JPS5862552A (en) 1981-10-12 1981-10-12 Performance measuring apparatus for air-fuel ratio

Country Status (1)

Country Link
JP (1) JPS5862552A (en)

Similar Documents

Publication Publication Date Title
US4125018A (en) Method of and means for accurately measuring the calorific value of combustible gases
JPS6022293B2 (en) Method for analyzing and controlling the composition of a fuel mixture supplied to an internal combustion engine
FR2626673B1 (en) METHOD AND DEVICE FOR MEASURING THE HEAT POWER OF A VEHICLE BY A FUEL CURRENT
US4030349A (en) Engine analysis apparatus
JPH0362898B2 (en)
JPH08136494A (en) Analyzing apparatus for characteristic of air-fuel ratio sensor
EP0407128B1 (en) Method of evaluating air-fuel ratio sensor and apparatus therefor
US6277268B1 (en) System and method for monitoring gaseous combustibles in fossil combustors
JPS5862552A (en) Performance measuring apparatus for air-fuel ratio
JP2608146B2 (en) Oxygen sensor characteristic evaluation method and device
US4002429A (en) Method and apparatus for measuring the concentration of combustible components of a gas mixture
Haslett et al. Equivalence ratio meter
JPS63306310A (en) Combustion control method and combustion control device using said method
JPS6095341A (en) Evaluating device of performance of air fuel ratio sensor
JPH01155257A (en) Evaluating method of exhaust gas sensor for engine
Powell et al. Stoichiometric Air-Fuel ratio control analysis
JPS57208443A (en) Apparatus for evaluating performance of oxygen sensor
ES476954A1 (en) Internal combustion engine utilising liquefied gaseous fuel.
KR101464486B1 (en) air-fuel ratio control a control apparatus and system depending on heating value change and a control method using it
JP2004011487A (en) Specifying method and device of gas fuel
JPS5822945A (en) Valuation apparatus for capability of oxygen sensor
Franke et al. Employing an lonization Sensor for Combustion Diagnostics in a Lean Burn Natural Gas Engine
JP2503055B2 (en) Oxygen sensor characteristics evaluation method
JPS5616024A (en) Inspecting method of combustion of combusting apparatus
Shaikin et al. Effect of the chemical composition of fuel on the duration of the ion current signal during combustion