JPS5822945A - Valuation apparatus for capability of oxygen sensor - Google Patents

Valuation apparatus for capability of oxygen sensor

Info

Publication number
JPS5822945A
JPS5822945A JP12202781A JP12202781A JPS5822945A JP S5822945 A JPS5822945 A JP S5822945A JP 12202781 A JP12202781 A JP 12202781A JP 12202781 A JP12202781 A JP 12202781A JP S5822945 A JPS5822945 A JP S5822945A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
oxygen sensor
sensor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12202781A
Other languages
Japanese (ja)
Inventor
Takeshi Kitahara
剛 北原
Kimitake Sone
曽根 公毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP12202781A priority Critical patent/JPS5822945A/en
Publication of JPS5822945A publication Critical patent/JPS5822945A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes

Abstract

PURPOSE:To improve the measuring accuracy, by providing a master sensor near an oxygen sensor and carrying out the feedback control of the air-fuel ratio of test gas basing on a detection signal of the master sensor. CONSTITUTION:Air from an air bomb 3 and gas from a propane bomb 4, are burned by a burner tester 7. Burned gas is supplied by the volume in accordance with opening and shutting of an electromagnetic valve 12 from a propane bomb for control 10 controlling the air-fuel ratio of combustion gas. Produced test gas is introduced into a piping 16 attached an oxygen sensor 1 and a master sensor 19. Detected signal of the sensor 19 is fed back to a triangular wave controlling device 20. An electromagnetic driving circuit 13 is ordered by the device 20 by increasing and decreasing a portion of a direct electric current of a triangular wave signal basing on the detected signal and opening and shutting control of the valve 12 is carried out. A capability valuation apparatus decreased the difference remarkably by this feedback control is realized.

Description

【発明の詳細な説明】 この発明は、酸素センサの性能を評価(検査)する装置
に関する、 一般に、エンジン等の排気中の酸素濃度を検出して、こ
れを空燃比の制御にフィードバックする酸素センサには
、比較的高精度の検出性能が要求される。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for evaluating (inspecting) the performance of an oxygen sensor, and generally relates to an oxygen sensor that detects oxygen concentration in exhaust gas from an engine, etc., and feeds it back to air-fuel ratio control. requires relatively high-precision detection performance.

このため、従来でF、1例えば第1図に示すような装置
!管用いて、酸素センサ1の性能を評価、判定し、良品
を選出している。
For this reason, in the past, F, 1, for example, a device as shown in FIG. The performance of the oxygen sensor 1 is evaluated and determined using a tube, and non-defective products are selected.

図中2は、燃焼ガス発生装置で、エアデンベ3からの空
気とプロパンがンペ4からのゾロノクンガスとか、配管
途中に設けられた流量または圧力制御弁5,6により、
予め決められた量で・櫂−ナテスタ7へ供給され、8の
点火装置によって着火されると燃焼ガスを発生する。
2 in the figure is a combustion gas generator, in which the air and propane from the air tank 3 are converted into gas from the pump 4, and the flow rate or pressure control valves 5 and 6 installed in the middle of the piping.
It is supplied in a predetermined amount to the paddle-natester 7, and when ignited by the igniter 8 generates combustion gas.

バーナテスタ7KFi、tた制御用エアダンべ9からの
空気と制御用プロパンがンペ10からのグロノfンガス
とか、それぞれリニア開度特性の電磁9pH,12を介
して適宜供給されるようになっている、 このうち、電磁弁12(またtill)は、電磁弁駆動
回路13によシ開閉され、その開閉時間および開度は、
三角波発生装置14からの信号によりコントロールされ
る。fcだし、この際電磁弁11(またFil 2 )
Fi、全閉、全開あるいは定開度に保たれる。
Burner tester 7KFi, air from control air damper 9 and propane for control are supplied as appropriate via gas from pump 10 or electromagnetic valves 9pH and 12 with linear opening characteristics, respectively. Among these, the solenoid valve 12 (also till) is opened and closed by the solenoid valve drive circuit 13, and its opening/closing time and opening degree are as follows.
It is controlled by a signal from a triangular wave generator 14. Since it is fc, at this time solenoid valve 11 (also Fil 2)
Fi, fully closed, fully open, or kept at a constant opening.

三角波発生装置14は、第2図の囚に示すような波形お
よび周期Tの三角波信号を出力し、これに応じて*a弁
12は、その信号の下ピーク値Pで全閉、信号か高くな
るにしたがって開き、上ビーク値Qで全開となるように
制御でれる。
The triangular wave generator 14 outputs a triangular wave signal with a waveform and period T as shown in the left side of FIG. It can be controlled so that it opens as the upper peak value Q increases and becomes fully open at the upper peak value Q.

つま夛、バーナテスタ7の燃焼ガス中にプロパンガス(
または空気)t1周周期で三角波状的に増減しながら供
給し、試験ガスを生成する。これにより、空燃比制御装
置15′t−構成している。
In the combustion gas of burner tester 7, propane gas (
(or air) is supplied while increasing and decreasing in a triangular waveform with a period of t1 to generate a test gas. This constitutes an air-fuel ratio control device 15't-.

この場合、試験ガスは、三角波発生装置114からの信
号の中心値R(上下ピーク値P、Qの平均値)で、理論
空燃比となるようK、前述の流量(tたは圧力)制御弁
5.6の開度や電磁弁11の開[が設定されている。
In this case, the test gas is supplied to the central value R (average value of the upper and lower peak values P and Q) of the signal from the triangular wave generator 114, and the above-mentioned flow rate (t or pressure) control valve The opening degree of 5.6 and the opening of the solenoid valve 11 are set.

そして、この試験ガスは、テスタ配管16に導入され、
その途中に被検査用の酸素センサ1が取付けられる。
Then, this test gas is introduced into the tester piping 16,
An oxygen sensor 1 to be inspected is attached on the way.

酸素センサ1は、試験ガスの空燃比変化に応じた信号を
出力し、その信号はデータ処理装f1117と記録装f
It18に送られる。
The oxygen sensor 1 outputs a signal according to the change in the air-fuel ratio of the test gas, and the signal is sent to the data processing device f1117 and the recording device f.
Sent to It18.

データ処理装置117では、その信号會第2図の03)
に示すような波形に処理し、上ピーク出力と下ピーク出
力との平均基準値Sより高出力の信号時間tをデータと
して測定、認識する。
In the data processing device 117, the signal station 03 in Fig. 2)
The signal is processed into a waveform as shown in , and the time t of a signal whose output is higher than the average reference value S of the upper peak output and the lower peak output is measured and recognized as data.

一方、このデータ処理装置!t17には、前記三角波発
生装置14から電磁弁12に開閉指令する三角波信号(
第2図の囚)か入力される。
On the other hand, this data processing device! At t17, a triangular wave signal (
The prisoner in Figure 2) is input.

そして、データ処理装置17は、その三角波信号の周期
Tと、酸素センサ1からの波形処理後の信号時間tとを
比較し、その比t/Tを検出する。
Then, the data processing device 17 compares the period T of the triangular wave signal and the signal time t after waveform processing from the oxygen sensor 1, and detects the ratio t/T.

具体的には、t/T1r多周期にわfcシ平均測定し、
その結果から酸素センサ1の性能を評価する。
Specifically, the fc average was measured over multiple periods of t/T1r,
The performance of the oxygen sensor 1 is evaluated based on the results.

この場合、t/Tか1/2に近い程良品と判定される。In this case, the closer it is to t/T or 1/2, the better the product is determined.

しかしながら、この従来装置にあっては、試験ガスの空
燃比制御が、グロノ9ンガス等の流量制御もしくけ圧力
制御によシ行なわれていたため、空燃比の設定が難しく
、また環境の変化によって設定空燃比に狂いが生じて、
酸素センサの性能を評価する上での誤差が大きくなって
しまうという問題かあった。
However, in this conventional device, the air-fuel ratio of the test gas was controlled by flow rate control or mechanical pressure control of groton gas, etc., making it difficult to set the air-fuel ratio, and setting the air-fuel ratio due to changes in the environment. An error occurs in the air-fuel ratio,
There was a problem in that the error in evaluating the performance of the oxygen sensor became large.

そこで本発明は、酸素センサの近傍にマスタセフf1i
取付け、このマスタセンサからの検出信号に基づいて試
験ガスの空燃比tフィードバック制御することによシ、
その設定精In高め、測定誤差管著しく低減した酸素セ
ンサ性能評価装置管提供することを目的とする。
Therefore, the present invention provides a master safety f1i near the oxygen sensor.
By installing and controlling the air-fuel ratio of the test gas based on the detection signal from this master sensor,
The purpose of the present invention is to provide an oxygen sensor performance evaluation device with increased setting precision and significantly reduced measurement errors.

以下、本発明の笑施例t−図面に基づいて説明する。EMBODIMENT OF THE INVENTION Hereinafter, a second embodiment of the present invention will be described based on the drawings.

第3図で、2はエアがンベ3からの空気と、プロパンガ
スぺ4からのプロノ々ンガスJ:ki4−tfスタフ円
で燃焼させて、燃焼ガスを発生する装置であシ、バーナ
テスタ7円には、その燃焼ガスの空燃比會増減するよう
に制御用プロパンがンベ10がらのプロパンガス(また
は制御用エアがンペ9からの空気)が、電磁弁12の開
閉に応じた量で供給されるようにしている。
In Figure 3, 2 is a device that generates combustion gas by burning the air from the air tank 3 and the propane gas J:ki4-tf from the propane gas pipe 4, and the burner tester is 7 yen. In order to increase or decrease the air-fuel ratio of the combustion gas, propane gas from the control propane tank 10 (or control air from the pump 9) is supplied in an amount according to the opening and closing of the solenoid valve 12. I'm trying to make it happen.

そして、これによシ生成された試験ガスは、被検査用の
酸素センサ1を取付けたテスタ配管16に導入されるが
、この酸素センサ1の近傍には、検出性能(分解能)の
極めて高いマスタセンサ19が設置される。
The test gas thus generated is introduced into the tester pipe 16 to which the oxygen sensor 1 to be tested is attached. A sensor 19 is installed.

マスタセンサ19は、酸素センサlと同じく試験ガスの
空燃比を検出し、その検出信号管三角波制御装置20に
フィードバックする。
The master sensor 19 detects the air-fuel ratio of the test gas in the same way as the oxygen sensor 1, and feeds back the detection signal to the triangular wave control device 20.

三角波制御装置2(1、第2図の(4)に示すような波
形、周期Tの三角波信号音出力すると共に、上記検出信
号に基づき三角波信号の直流分(中心値R)t−増減し
て、電磁弁駆動回路13に指令し、前記電磁弁12に開
閉制御する。これによシ、制御用プロノぐンガスの供給
量管調整して空燃比を設定し、空燃比のフィードバック
制御手段が構成される。
Triangular wave control device 2 (1) outputs a triangular signal sound with a waveform and period T as shown in (4) in Fig. 2, and also increases or decreases the DC component (center value R) of the triangular wave signal by t based on the detection signal. , to the electromagnetic valve drive circuit 13 to control the opening and closing of the electromagnetic valve 12. Accordingly, the air-fuel ratio is set by adjusting the supply amount of the control proton gas, and the air-fuel ratio feedback control means is configured. be done.

具体的には、マスタセンサ19からの検出信号を、三角
波制御装量20内でまず第2図の■)のような波形に処
理する。そして、この処理後の信号から、その上ピーク
出力と下ピーク出力との平均基準値Soより高い出力の
信号時間toを過去数周期にわたって測定し、この時間
1.と例えば三角波信号の周期Tとの時間比が常に一定
(1:2が良い)となるように、三角波信号の中心値R
t副制御て電磁弁12に開閉する。
Specifically, the detection signal from the master sensor 19 is first processed in the triangular wave control unit 20 into a waveform as shown in (■) in FIG. Then, from the signal after this processing, the signal time to where the output is higher than the average reference value So of the upper peak output and the lower peak output is measured over the past several cycles, and this time 1. For example, the center value R of the triangular wave signal is set so that the time ratio of the period T of the triangular wave signal is always constant (1:2 is good).
t sub-control to open and close the solenoid valve 12.

即ち、マスタセンサ19の検出信号忙基づいて、三角波
制御装置120から出力される三角波信号な相対的に増
減し、空燃比を制御するのであシ、したがって三角波信
号の中心値Rでは、常に理論空燃比に維持されると共に
、理論空燃比を境にして空燃比は三角波信号に応じて一
定の周期で均等に増減されるのである。
That is, the triangular wave signal output from the triangular wave control device 120 relatively increases or decreases based on the detection signal of the master sensor 19 to control the air-fuel ratio. The fuel ratio is maintained at a constant level, and the air-fuel ratio is evenly increased or decreased at regular intervals in accordance with the triangular wave signal, with the stoichiometric air-fuel ratio as the boundary.

その結果、常に設定通りの空燃比の試験ガスを供給する
ことができる。
As a result, it is possible to always supply the test gas with the set air-fuel ratio.

なお、被検査用の酸素センサiの検出信号は、三角波制
御装@20からの三角波信号と共に、データ処理装置1
17と記録装置l 8に入力され、従来例と同様にして
性能の評価判定がなされる。
Note that the detection signal of the oxygen sensor i to be tested is sent to the data processing device 1 together with the triangular wave signal from the triangular wave control device @20.
17 and a recording device 18, and the performance is evaluated in the same manner as in the conventional example.

このように、本笑施例では、被検査用の酸素センサ1の
近傍にマスタセンサ19t−取付け、このマスタセンサ
19からの検出信号に基づいて試験ガスの空燃比をフィ
ードバック制御するように構成したので、空燃比の設定
が正確かつ容易になり、また環境、雰囲気が変化しても
空燃比か狂うことはなく、酸素センサ1の性能管極めて
高い精度で評価することができ、検査装量としての信頼
性が著しく向上する。
In this way, in this embodiment, the master sensor 19t is installed near the oxygen sensor 1 to be tested, and the air-fuel ratio of the test gas is feedback-controlled based on the detection signal from the master sensor 19. Therefore, the air-fuel ratio can be set accurately and easily, and even if the environment or atmosphere changes, the air-fuel ratio will not go out of order.The performance of oxygen sensor 1 can be evaluated with extremely high accuracy, and it can be used as an inspection load. reliability is significantly improved.

さらには、燃焼ガス発生装&2のゾロ/lンガスと空気
の流量設定が、それ程正確でなくても、これを補なうこ
とができ、その影響が排除されると共に、装置の段取シ
が簡素化される。
Furthermore, even if the flow rate settings of the combustion gas generator &2 for the gas and air are not very accurate, this can be compensated for, the influence of which is eliminated, and the setup of the equipment is simplified. Simplified.

以上説明した通り、本発明によれば、被検査用の酸素セ
ンサの近傍にマスタセンサラ設ケ、マスタセンサの検出
信号に基づいて試験ガスの空燃比ケフィードバック制御
するようにしたので、要求通シの空燃比を得ることがで
き、酸素センサの性能評価を適確に行なえるという効果
がある。
As explained above, according to the present invention, a master sensor is installed near the oxygen sensor to be tested, and the air-fuel ratio of the test gas is feedback-controlled based on the detection signal of the master sensor. This has the advantage that the air-fuel ratio can be obtained and the performance of the oxygen sensor can be evaluated accurately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置の構成図、第2図(AJFi三角波信
号を示すグラフ、第2図(6)は波形処理された酸素セ
ンサの出力信号を示すグラフ、第3図は本発明の実施例
を示す構成図である。 1・・・酸素センサ、2・・・燃焼ガス発生装量、3・
・・エア?ンペ、4・・・プロパンがンペ、5.6・・
・流量または圧力制御弁、7・・・/4−ナテスタ、8
・・・点火装置、9・・・制御用エアゲンベ、lO・−
・制御用ゾロノ臂ンがンベ、11.12・・・電磁弁、
13・・・電磁弁駆動回路、14・・・三角波発生装置
、15・・・空燃比制御装置、16・・・テスタ配管、
17・・・データ処理装置、1 g−・・記録装置、1
9・・・マスタセンサ、20・・・三角波制御装置。 特許出願人  日童自動車株式会社
Fig. 1 is a configuration diagram of a conventional device, Fig. 2 is a graph showing an AJFi triangular wave signal, Fig. 2 (6) is a graph showing a waveform-processed output signal of an oxygen sensor, and Fig. 3 is an embodiment of the present invention. It is a configuration diagram showing 1. Oxygen sensor, 2. Combustion gas generation amount, 3.
··air? Power, 4... Propane, power, 5.6...
・Flow rate or pressure control valve, 7.../4-Na tester, 8
...Ignition device, 9...Control air generator, lO・-
・Control armrest, 11.12...Solenoid valve,
13... Solenoid valve drive circuit, 14... Triangular wave generator, 15... Air-fuel ratio control device, 16... Tester piping,
17...Data processing device, 1 g-...Recording device, 1
9... Master sensor, 20... Triangular wave control device. Patent applicant Nippon Motor Co., Ltd.

Claims (1)

【特許請求の範囲】 1、燃焼ガスの発生装置と、そのガスの空燃比を一定局
期で増減する空燃比制御装置とで、被検査用の酸素セン
サの試験ガスを生成し、その空燃比に応じて出力される
センサ信号管データ処理装置と記録装置に入力して該酸
素センサの性能を評価する装置において、酸素センサの
近傍にマスタセンサを設け、このマスタセンサの検出信
号に基づいて試験ガスの空燃比をフィードバック制御す
る手段を設けたことを特徴とする酸素センサ性能評価装
置。 2、前記制御手段は、マスタセンサの検出信号が平均基
準値より高い時間kfillJ定し、この時間がある時
間周期に対して一定比となるように、空燃比を制御する
装置である特許請求の範囲第1項記載の酸素センサ性能
評価装置。
[Claims] 1. A combustion gas generator and an air-fuel ratio control device that increases or decreases the air-fuel ratio of the gas at regular intervals generate test gas for the oxygen sensor to be inspected, and adjust the air-fuel ratio. In a device that evaluates the performance of an oxygen sensor by inputting a sensor signal tube output according to a data processing device and a recording device, a master sensor is provided near the oxygen sensor, and a test is performed based on the detection signal of this master sensor. An oxygen sensor performance evaluation device characterized by having a means for feedback controlling the air-fuel ratio of gas. 2. The control means is a device for determining the time kfillJ during which the detection signal of the master sensor is higher than the average reference value, and controlling the air-fuel ratio so that this time becomes a constant ratio with respect to a certain time period. The oxygen sensor performance evaluation device according to scope 1.
JP12202781A 1981-08-04 1981-08-04 Valuation apparatus for capability of oxygen sensor Pending JPS5822945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12202781A JPS5822945A (en) 1981-08-04 1981-08-04 Valuation apparatus for capability of oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12202781A JPS5822945A (en) 1981-08-04 1981-08-04 Valuation apparatus for capability of oxygen sensor

Publications (1)

Publication Number Publication Date
JPS5822945A true JPS5822945A (en) 1983-02-10

Family

ID=14825773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12202781A Pending JPS5822945A (en) 1981-08-04 1981-08-04 Valuation apparatus for capability of oxygen sensor

Country Status (1)

Country Link
JP (1) JPS5822945A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648601A (en) * 1994-11-14 1997-07-15 Toyota Jidosha Kabushiki Kaisha Apparatus for analyzing air/fuel ratio sensor characteristics
DE10001251A1 (en) * 2000-01-14 2001-07-19 Bosch Gmbh Robert Gas burner has controller that detects coarse gas quality change, activates lambda probe if threshold exceeded, drives actuator to adjust gas-air mixture based on lambda probe/sensor signals

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648601A (en) * 1994-11-14 1997-07-15 Toyota Jidosha Kabushiki Kaisha Apparatus for analyzing air/fuel ratio sensor characteristics
DE10001251A1 (en) * 2000-01-14 2001-07-19 Bosch Gmbh Robert Gas burner has controller that detects coarse gas quality change, activates lambda probe if threshold exceeded, drives actuator to adjust gas-air mixture based on lambda probe/sensor signals
DE10001251B4 (en) * 2000-01-14 2005-01-27 Robert Bosch Gmbh Method for controlling or regulating a gas burner

Similar Documents

Publication Publication Date Title
JP4746239B2 (en) Method for obtaining NOx concentration
US4462376A (en) Method and apparatus for determining and controlling the exhaust gas recirculation rate in internal combustion engines
JPH04503844A (en) Method and apparatus for testing control ability of tank vent valve
JP2019158758A (en) Apparatus and method for evaluating response time of gas sensor
US5648601A (en) Apparatus for analyzing air/fuel ratio sensor characteristics
KR102526378B1 (en) Method and control device for regulating the filling level of a catalytic converter
US7721529B2 (en) Exhaust system providing in situ sensor calibration
US5041265A (en) Hydrogen gas analyzer with improved delivery system
JPS5827045A (en) Method of measuring air-fuel ratio
US7146803B2 (en) Method and arrangement for monitoring the operability of a secondary air system
JPH04212052A (en) Apparatus and method for measuring on-line energy flow for natural gas
JPS6114350B2 (en)
JPS5822945A (en) Valuation apparatus for capability of oxygen sensor
EP0273765B2 (en) Apparatus for evaluating an oxygen sensor
JPH0335155A (en) Method and device for evaluating air-fuel ratio sensor
JP4256767B2 (en) Combustion control method and apparatus for gas engine
Zhang et al. Fast hybrid sensor for soot of production CI engines
JPH05119006A (en) Device for measuring concentration of hydrogen carbide
JPH10142220A (en) Device for estimating combustibility of coal
US6372120B1 (en) Method for determining a nitrogen oxide concentration
EP0089630A2 (en) Device for measuring oxygen concentration in exhaust gas
JP2608146B2 (en) Oxygen sensor characteristic evaluation method and device
Rahman et al. Partial Flow Dilution System with Double Dilution for PM Sampling under Transient Test-Cycles
US7069157B2 (en) Heat sensitive flow meter and fuel controller
JPS6340833A (en) Exhaust gas analyzer