JPS5862516A - Vortex flow meter - Google Patents

Vortex flow meter

Info

Publication number
JPS5862516A
JPS5862516A JP56161122A JP16112281A JPS5862516A JP S5862516 A JPS5862516 A JP S5862516A JP 56161122 A JP56161122 A JP 56161122A JP 16112281 A JP16112281 A JP 16112281A JP S5862516 A JPS5862516 A JP S5862516A
Authority
JP
Japan
Prior art keywords
vortex
sensor
charge
vortex generator
piezoelectric sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56161122A
Other languages
Japanese (ja)
Other versions
JPH048730B2 (en
Inventor
Ichizo Ito
伊藤 一造
Tetsuo Ando
哲男 安藤
Yoshiji Fukai
深井 吉士
Kenichi Yoshioka
吉岡 賢一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Yokogawa Hokushin Electric Corp
Yokogawa Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp, Yokogawa Hokushin Electric Corp, Yokogawa Electric Works Ltd filed Critical Yokogawa Electric Corp
Priority to JP56161122A priority Critical patent/JPS5862516A/en
Publication of JPS5862516A publication Critical patent/JPS5862516A/en
Publication of JPH048730B2 publication Critical patent/JPH048730B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/325Means for detecting quantities used as proxy variables for swirl
    • G01F1/3259Means for detecting quantities used as proxy variables for swirl for detecting fluid pressure oscillations

Abstract

PURPOSE:To improve an S/N ratio of a vortex flow meter, by a method wherein two inverted polarization type piezo-electric sensors are located at a given distance in a sensor part, and the influence of a noise due to a disturbance vibration is eliminated through computation of a sensor output. CONSTITUTION:A cylindrical nozzle 12 is positioned at a right angle to a line 11 through which measuring fluid in a vortex discharge detector 10 flows, and a vortex generating body 13 is inserted through a nozzle 12 at a right angle to the line 11. Two inverted polarization type piezo-electric sensors 14a and 14b are fastened by press at a given distance in a concavity 13d in the vortex generating body 13. The sensors 14a and 14b are formed such that electrodes, separated to the right and left facing a flow direction of measuring fluid, are symmetrically mounted to the surface and the back of a piezo-electric element on a disc positioned so that its center coincides with the neutral axis of the vortex generating body 13, a charge in a reverse direction is generated between the two electrodes against a stress in a bending direction, and a charge due to a stress in a flow direction of fluid is cancelled.

Description

【発明の詳細な説明】 本発明は、カルマン渦を利用して流体の流速または流量
を測定する渦流量針に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vortex flow needle that utilizes Karman vortices to measure fluid velocity or flow rate.

流体中に物体を置くと、物体の雨後側面から交互にかつ
規則的に渦が発生し、下流に真列となって流れることが
古くから知られている。この真列はカルマン渦列といわ
れ、単位時間当艷の渦の生成数(渦周波数)が流体の流
速に比例している。
It has been known for a long time that when an object is placed in a fluid, vortices are generated alternately and regularly from the side of the object and flow downstream in a straight line. This true train is called a Karman vortex street, and the number of vortices generated per unit time (vortex frequency) is proportional to the flow velocity of the fluid.

そこで、測定流体を導く管路内に渦発生体を配置し、渦
の生成による揚力変化に基づく応力変化を渦発生体(ま
た社費方体)G凹部内に設けた圧電センサで検出した後
信号変換して流体の流速や流量を測定する渦流量針が実
用化されている。ところでこの種の渦流量計においては
、ポンプなどによシ励起される配管振動等の゛外乱振動
によるノイズの影響を受ける。すなわち、外乱振動が加
わると、渦発生体(tたは受力体)が振動するとともに
、管路に取付けた変換器等の搭載物も振動する。
Therefore, a vortex generator is placed in the pipe that guides the measurement fluid, and a piezoelectric sensor installed in the G recess of the vortex generator (also a social square) detects stress changes based on changes in lift caused by the vortex generation. A vortex flow needle that converts signals to measure fluid flow velocity and flow rate has been put into practical use. However, this type of vortex flow meter is affected by noise caused by external vibrations such as piping vibrations excited by a pump or the like. That is, when a disturbance vibration is applied, the vortex generator (t or force receiving body) vibrates, and the mounted object such as a transducer attached to the conduit also vibrates.

渦発生体(を九は受力体)が振動するとその質量分布等
に基づく曲げモーメントが渦発生体(tたは受力体)に
作用し、また搭載物が振動すると管路歪みが生じ、この
歪みによっても渦発生体(または受力体)に曲げモーメ
ントが作用する。その結果圧電センナには、渦の揚力に
基づく曲げモーメンFによる信号成分に、渦発生体(ま
たは受力体)の振動に基づく曲げモーメントによるノイ
ズ成分と、管路歪みに基づく曲げモーメントによるノイ
ズ成分とが重畳されて検出される。このように従来の渦
流量計では、外乱振動によるノイズの影響を受け、特に
低流速時の8/N比が悪化するという問題があった。
When the vortex generating body (9 is the force receiving body) vibrates, a bending moment based on its mass distribution etc. acts on the vortex generating body (t or force receiving body), and when the loaded object vibrates, pipe distortion occurs. This distortion also causes a bending moment to act on the vortex generating body (or force receiving body). As a result, the piezoelectric sensor has a signal component due to the bending moment F based on the lift of the vortex, a noise component due to the bending moment based on the vibration of the vortex generator (or force receiving body), and a noise component due to the bending moment due to pipe distortion. are detected in a superimposed manner. As described above, the conventional vortex flowmeter has a problem in that it is affected by noise caused by disturbance vibration, and the 8/N ratio deteriorates particularly at low flow speeds.

本発明は、渦発生体(tたは受力体)の凹部に設けたセ
ンサ部に生ずる渦の揚力による信号成分の応力分布と、
外乱振動によるノイズ成分の応力分布が相違している仁
とに着目し、センナ部内において第1の反転分極形の圧
電センナと第2の反転分極形の圧電センナを所定の間隔
をおいて配置して、各々の圧電センサの出力を信号変換
した後演算することによって、外乱振動によるノイズの
影響を有効に除去し、8/′N比の良好が渦流量針を簡
単な構成で実現したものである。
The present invention provides a stress distribution of a signal component due to the lift of a vortex generated in a sensor section provided in a recess of a vortex generating body (t or force receiving body);
Focusing on the fact that the stress distribution of noise components due to disturbance vibrations is different, a first inverted polarization type piezoelectric sensor and a second inverted polarization type piezoelectric sensor are arranged at a predetermined interval in the sensor part. By converting the output of each piezoelectric sensor into a signal and then calculating it, the effects of noise caused by disturbance vibration can be effectively removed, and a good 8/'N ratio has been achieved with a simple configuration of the vortex flow needle. be.

第1図は本発明の一実施例を示すt手番構成説明図、第
2図はその検出器部を1、断、面で示す構成説明図であ
り、第5図は本発明の一実施例を示す電気的接続図であ
る。図において、10は渦流量計検出器、20は渦流量
計変換器である。
FIG. 1 is an explanatory diagram of the t-turn configuration showing one embodiment of the present invention, FIG. 2 is a configuration explanatory diagram showing the detector section in section and plane, and FIG. FIG. 3 is an electrical connection diagram showing an example. In the figure, 10 is a vortex flowmeter detector, and 20 is a vortex flowmeter converter.

渦流量計検出器10において、11は測定流体が流れる
管路、12は管路11に直角に設けられた円筒状のノズ
ル、13はノズル12を通して管路11に直角に挿入さ
れた柱状の渦発生体で、ステンレス等からなりその上端
13mはノズル12にネジまた社溶接により固定され、
下端13bはネジによ抄管路11に支持されている。渦
発生体13の測定流体と接する部分13c ij測定流
体にカルマン渦列を生ぜしめ、かつ揚力変化を安定強化
するように例えば台形等の断面形状を有し、また上端1
3a側には凹部13dを有している。14はセンサ部で
、渦発生体13の凹部13d内に謔1の圧電センサ14
mと第2の圧電センサ14bとが一定間隔おいて、抑圧
固定されている。
In the vortex flow meter detector 10, 11 is a pipe through which the fluid to be measured flows, 12 is a cylindrical nozzle provided perpendicularly to the pipe 11, and 13 is a columnar vortex inserted perpendicularly into the pipe 11 through the nozzle 12. The generating body is made of stainless steel, etc., and its upper end 13 m is fixed to the nozzle 12 by screws or welding.
The lower end 13b is supported by the paper conduit 11 with a screw. The portion 13c ij of the vortex generator 13 in contact with the fluid to be measured has a cross-sectional shape, such as a trapezoid, so as to generate a Karman vortex street in the fluid to be measured and to stabilize and strengthen changes in lift, and the upper end 1
It has a recess 13d on the side 3a. 14 is a sensor section, and a piezoelectric sensor 14 is installed in the recess 13d of the vortex generator 13.
m and the second piezoelectric sensor 14b are fixed and suppressed at a constant interval.

センナIM!14において、ステンレス等の下敷14c
は第2の圧電センサ14bと凹部13dの底面とのバッ
ファの役目をし、凹部13dの底面の加工上のあらさ管
理の困難さを補v、1llll、ものである・ステンレ
ス等の第1のスペーサ14d表セラミック等の絶縁板1
4eおよびステンレス等の第2のスペーサ14fは第1
の圧電センサ14aと第2の圧電センサ14bとの間隔
を決めるとともに、両者の絶縁を行うためのものである
。ステンレス等の押し棒14gはセンサ14a、 14
bを押圧した状態で渦発生体13の上端13aに溶接さ
れ、センサ14a、 14bを押圧固定するものである
。なおセンナ部14は渦発生体13に下敷14cと押し
棒14gの上部のみで接触するようになっている。圧電
センサ14a、 14bは円板状の圧電素子PZTから
な9、その中心が渦発生体13の中立軸と一致するよう
に配置されている。さらに圧電素子PZTには第4図f
O斜視図に示すようにその表と裏にそれぞれ測定流体の
流れ方向(図の矢印方向)に対して左右に分割して対称
的に電極d1.d2.d3゜d4が設けられ、かつ第4
図←)に示す如く矢印方向(渦の揚力方向)の力による
曲げモーメントによって中立軸を挾んで互いに逆方向に
発生する応力(圧縮応力と引張応力)K対応して電極6
1142間に生ずる電荷と、電極d3.d4間に生ずる
電肩とが同極性になるように反転分極されている。この
ため第4図e今に示すように同方向に発生する応力に対
してL両電極間に互いに逆極性の電荷が発生する・を良
測定流体の流れ方向のストレスによって発生する電荷量
は一極間でキャンセルされて出てこす、また流れ方向の
配管振動によって発生する電荷量も電極間で互いに中ヤ
ンセルされて出てこない@第1の圧電センサ14aは電
極d1. d2問および電極das d4間にそれぞれ
生ずる同極性の電荷の和を出力電荷q□とし逆極性の電
荷をキャンセルする九めに1電極d1とd3とが押し棒
14gを介して共通に渦発生体13すなわち基準点に接
続され、電極d2とd4とがスペーサ14fを介して共
通にリード線e1に接続されている。第2の圧電センサ
14bは電極61162問および電極d3. d4間に
それぞれ生ずる同極性の電荷の和を出力電荷q2とし逆
極性の電荷をキャンセルして、かっqlとは極性を反転
させるために、電極d1とd3がスペーサ14dを介し
て共通にリード線e2に接続され、電極d2とd4とが
下敷14cを介して共通に渦発生体13す々わち基準点
に接続されている。リード線e1.e2はセンサ部14
の各部品に設けられた買通孔およびハーメチックシール
14hを介して外部に堆り出され、渦流量計変換器20
に接続される。なお渦発生体13の凹部13dとセンサ
部14で囲まれた部分には結露防止のために、露点の低
いガスが封入されており、押し棒14gには封入ガス用
の連通孔141が設けられている。またセンサ部14の
各部品の厚さおよび材質は、温度変化により初期押しつ
け応力に変化が生じないように決定されている。
Senna IM! 14, underlay 14c of stainless steel etc.
serves as a buffer between the second piezoelectric sensor 14b and the bottom surface of the recess 13d, and compensates for the difficulty in controlling roughness during processing of the bottom surface of the recess 13d.The first spacer is made of stainless steel or the like. 14d table Ceramic insulation board 1
4e and a second spacer 14f made of stainless steel etc.
This is to determine the distance between the second piezoelectric sensor 14a and the second piezoelectric sensor 14b, and to insulate them. The push rod 14g made of stainless steel etc. is the sensor 14a, 14
It is welded to the upper end 13a of the vortex generator 13 in a pressed state, and presses and fixes the sensors 14a and 14b. The senna portion 14 is configured to come into contact with the vortex generator 13 only through the underlay 14c and the upper part of the push rod 14g. The piezoelectric sensors 14 a and 14 b are disk-shaped piezoelectric elements PZT 9 and are arranged so that their centers coincide with the neutral axis of the vortex generator 13 . Furthermore, the piezoelectric element PZT is
As shown in the perspective view, electrodes d1. d2. d3°d4 are provided, and the fourth
As shown in Fig.
1142 and the electric charge generated between electrodes d3. The polarization is reversed so that the electric shoulder generated between d4 has the same polarity. Therefore, as shown in Figure 4e, charges of opposite polarity are generated between the two electrodes in response to stress occurring in the same direction.The amount of charge generated by stress in the flow direction of the fluid is the same. The amount of charge that is canceled between the electrodes and generated due to pipe vibration in the flow direction is also canceled between the electrodes and does not come out. The sum of charges of the same polarity generated between d2 and electrodes d4 is set as the output charge q□, and charges of opposite polarity are canceled.Ninthly, electrodes d1 and d3 are connected to a vortex generator in common via a push rod 14g. 13, that is, a reference point, and electrodes d2 and d4 are commonly connected to lead wire e1 via a spacer 14f. The second piezoelectric sensor 14b includes electrodes 61,162 and electrodes d3. The sum of the charges of the same polarity generated between the electrodes d4 is the output charge q2, and the charges of the opposite polarity are cancelled. In order to reverse the polarity of the electrodes d1 and d3, the electrodes d1 and d3 are connected to a common lead wire through the spacer 14d. e2, and the electrodes d2 and d4 are commonly connected to the vortex generator 13, that is, the reference point, via the underlay 14c. Lead wire e1. e2 is the sensor section 14
The vortex flow meter converter 20
connected to. In order to prevent condensation, a gas with a low dew point is filled in a portion of the vortex generator 13 surrounded by the recess 13d and the sensor portion 14, and the push rod 14g is provided with a communication hole 141 for the filled gas. ing. Further, the thickness and material of each component of the sensor section 14 are determined so that the initial pressing stress does not change due to temperature changes.

渦流量計変換器20は、2個の変換増幅器21.22と
、これら変換増幅器21.22の出力の加算または減算
を行う演算器23と、変換器20を管路11に固定ンプ
が示されておシ、演算増幅器op□の反転入力端子(→
にリード線rが接続され、演算増幅器OP2の反転入力
端子(→にリード線e2が接続されている。
The eddy flowmeter converter 20 includes two converter amplifiers 21 and 22, an arithmetic unit 23 that adds or subtracts the outputs of these converter amplifiers 21 and 22, and a fixed pump connected to the converter 20 in the conduit 11. Then, the inverting input terminal of the operational amplifier op□ (→
A lead wire r is connected to the inverting input terminal (→) of the operational amplifier OP2, and a lead wire e2 is connected to the inverting input terminal (→) of the operational amplifier OP2.

演算器23は、抵抗R3により帰還が施された演算増幅
器opからなり、Op  の反転□″久方力端子→に演
算3 抵抗Rを介して加えられる変換器21の出力電圧e□と
、抵抗R5と可変抵抗R6の直列回路を介して加えられ
る変換増幅器22の出力e2との加算を行うものが示さ
れている。
The arithmetic unit 23 consists of an operational amplifier OP to which feedback is provided by a resistor R3. What is shown is to add the output e2 of the conversion amplifier 22, which is added via a series circuit of R5 and variable resistor R6.

とのように構成した本発明渦流量計の動作を第S図を参
照して以下に説明する。渦発生体13は、管路11内に
測定流体が流れる。と、カルマン渦を発生させるとと%
に1渦の生成に基づく揚力変化を受ける。渦発生体13
が揚力を受けると、センサ部14に揚力による曲はモー
メントMYが作用し、その内部には第5ICE−で示す
如きほぼ直線の応力分布が生ずる。なお第5図における
応力値は圧電センナで検出した場合の電荷量の値で示し
である。
The operation of the vortex flowmeter of the present invention constructed as shown in FIG. 1 will be explained below with reference to FIG. The measurement fluid flows through the vortex generator 13 in the pipe line 11 . , and when a Karman vortex is generated, and %
It undergoes a lift change based on the generation of a single vortex. Vortex generator 13
When the sensor part 14 receives a lift force, a bending moment MY acts on the sensor part 14 due to the lift force, and a substantially linear stress distribution as shown by 5th ICE- is generated inside the sensor part 14. Note that the stress values in FIG. 5 are shown in terms of the amount of charge when detected by a piezoelectric sensor.

また渦発生体13はポンプ等により励起される外乱振動
によっても渦の揚力と同方向の力を受ける。
The vortex generator 13 also receives a force in the same direction as the lift of the vortex due to disturbance vibrations excited by a pump or the like.

との外乱振動による力には、渦発生体13の振動による
モードと、搭載物の振動に基づく管路歪みによるモード
があシ、センサ部14にはそれぞれのモードによって曲
げモーメン)Mα12Mα2 が作用する・セ・す部1
4の内−に杜、渦発生体、3の振動によるモーメントM
α1の作用によって第5図にaで示す如き曲線の応力分
布が生じ、管路歪みによる   ゛モーメント路20作
用によって第5図にbで示す如きほぼ直線の応力分布が
生ずる。その結果センサ部14の圧電センサ14m、 
14bに検出される電荷q1sq2には、それぞれ渦の
揚力による信号電荷に、渦発生体の振動によるノイズ電
荷と管路歪みによるノイズ電荷とが重畳されており、渦
の揚力による信号電荷の振幅を81(・II)、 82
(/=す)、渦発生体13の振動によるノイズ電荷の振
幅をA1(””)、 A2C(バ)、管路歪みによるノ
イズ電荷の振幅をB□(ω’ ) * B2 (f、・
1)とすると次式でそれぞれ与えられる0 q1−81(ω)sinωt+A1((t)’)8in
(4t+B1(rt+’)81n(&J’t+d(ωつ
)(1)q2g+82((c’)sin”t+A2(、
co’)sin++’t+B2(m’)sin(u+’
t+4(u’)) (2)ただし、ω:信号電荷の角周
波数 cva:ノイズ電荷の角周波数 6(・−l):ノイズ電荷間の位相差 (1)式および(2)式において、信号電荷の振幅S1
(ω)。
The force due to the disturbance vibration has two modes: a mode due to the vibration of the vortex generator 13 and a mode due to pipe distortion due to the vibration of the loaded object, and a bending moment (Mα12Mα2) acts on the sensor unit 14 depending on each mode.・Se・Su part 1
In 4, there is a mori, a vortex generator, and a moment M due to vibration in 3.
The action of α1 produces a curved stress distribution as shown by a in FIG. 5, and the action of the moment path 20 due to conduit distortion produces a nearly linear stress distribution as shown by b in FIG. As a result, the piezoelectric sensor 14m of the sensor section 14,
In the charges q1sq2 detected at 14b, noise charges due to the vibration of the vortex generator and noise charges due to pipe distortion are superimposed on the signal charge due to the lift of the vortex, respectively, and the amplitude of the signal charge due to the lift of the vortex is 81(・II), 82
(/=su), the amplitude of the noise charge due to the vibration of the vortex generator 13 is A1 (''), A2C (ba), the amplitude of the noise charge due to pipe distortion is B□(ω') * B2 (f,・
1), then 0 q1-81(ω) sin ωt+A1((t)')8in given by the following equations, respectively.
(4t+B1(rt+')81n(&J't+d(ω)(1)q2g+82((c')sin"t+A2(,
co') sin++'t+B2(m') sin(u+'
t+4(u')) (2) However, ω: Angular frequency of signal charge cva: Angular frequency of noise charge 6(・-l): Phase difference between noise charges In equations (1) and (2), the signal Charge amplitude S1
(ω).

B2(ω)は渦の揚力すなわち渦周波数によってそれぞ
れ変化する。またノイズ電荷の振幅A1(ωす* A2
(0・′)。
B2(ω) varies depending on the lift force of the vortex, that is, the vortex frequency. In addition, the amplitude of the noise charge A1 (ωs* A2
(0・′).

B、(IJ−’)、 B2(6’)および位相差167
’)も外乱筆動の加速度および周波数によってそれぞれ
変化するが、振幅の比A2(、’)/A1(ω・)およ
びB2(g’)/B1(az’)は外乱振度の加速度お
よび周波数の影響を受けず一定であ〕、シかも嬉S図に
示すように渦発生体13の振動によるノイズ電荷の分布
曲線aと、管路歪によるノイズ電荷の分布線1とが交叉
する2点が存在し、圧電センサ14a、 1仙の取付は
位置M点とNJにをいて社次式の関係を満足する。
B, (IJ-'), B2 (6') and phase difference 167
') also change depending on the acceleration and frequency of the disturbance brush stroke, but the amplitude ratios A2(,')/A1(ω・) and B2(g')/B1(az') vary depending on the acceleration and frequency of the disturbance vibration. As shown in the S diagram, there are two points where the noise charge distribution curve a due to the vibration of the vortex generator 13 and the noise charge distribution line 1 due to pipe strain intersect. exists, and the mounting of the piezoelectric sensor 14a, 1x, satisfies the relationship of the following equation between the positions M and NJ.

そして(S)式を満足する2点の組合せ社種々あり、例
えば第6図に示すように、管路歪みによるノイズ電荷の
分布線すと傾きの異る分布線bI、bI′  と渦発生
体13の振動による分布曲線aとが交叉するMI点と1
1点およびMII 点と1lII点であってもよい。
There are various combinations of two points that satisfy equation (S), for example, as shown in Figure 6, the noise charge distribution line due to pipe distortion, the distribution line bI, bI' with different slopes, and the vortex generator. The MI point where the distribution curve a due to vibration of No. 13 intersects with 1
1 point, MII point and 1lII point.

表お渦発生体の振動による応力分布曲線は、渦発生体1
3およびセンサ部14の材質、形状1寸法によって第7
図のa□、a□t aSに示すように変化するが、(3
)式の関係を満足する2点は必ず存在する。第7図にお
いては、応力分布曲線fL1p &2p !L3を生ず
るセンサ部14の寸法りはそれぞれLx # B2 e
 B3と異っている(L工<B2<B3)が、説明を簡
便にするため基準寸法LOに換算して示しである。また
管路歪みによる応力分布線は搭載物の重さ等によっても
第8図のbl、b2.b3に示すように変化するがM点
とN点における振幅の比B21(”)/B11((力、
 B22GIJ’)/B工2(ω’ ) l B23(
tニー) / B13(ω1)は等しいので、搭載物の
重さ等が変っても(5)式は成立する。
The stress distribution curve due to the vibration of the vortex generator shown in the table shows the stress distribution curve of the vortex generator 1.
3 and the material and shape 1 dimensions of the sensor part 14.
It changes as shown in a□, a□t aS in the figure, but (3
) There are always two points that satisfy the relationship of the equation. In FIG. 7, the stress distribution curve fL1p &2p! The dimensions of the sensor section 14 that generate L3 are Lx # B2 e
Although it is different from B3 (L engineering<B2<B3), it is shown converted to the standard dimension LO for the sake of simplicity. Also, the stress distribution lines due to conduit distortion may vary depending on the weight of the loaded object, etc. in bl, b2, etc. It changes as shown in b3, but the ratio of amplitudes at point M and point N is B21('')/B11((force,
B22GIJ')/B engineering 2(ω') l B23(
t knee) / B13 (ω1) are equal, so equation (5) holds true even if the weight of the loaded object changes.

圧電センサ14aの出力電荷q1は変換増幅器21に加
えられ、圧電センサ14bの出力電荷q2は反転されて
変換増幅器22に加えられ、それぞれ交流電圧e□T 
62に変換された後演算器23に加えられる。演算器2
3は、e□t e2を加算し、その出力e3は次式で与
えられる。
The output charge q1 of the piezoelectric sensor 14a is applied to the conversion amplifier 21, and the output charge q2 of the piezoelectric sensor 14b is inverted and applied to the conversion amplifier 22, respectively, so that the AC voltage e□T
62 and then added to the arithmetic unit 23. Arithmetic unit 2
3 adds e□t e2, and its output e3 is given by the following equation.

変換増幅器21.22のゲインをKxs K2とすると
、(1)式および(2)式からe3B3代の如くなる。
If the gains of the conversion amplifiers 21 and 22 are Kxs K2, then from equations (1) and (2), it becomes e3B3 generation.

1 (5)式において、A2(ωl)/A1(/力およびB
2(fII’ )/B1(’・・I)は(s)式の関係
を満足するように選ばれているので、可変抵抗R6を調
整して、 を満足させれば、演算器23の出力e3は、となり、外
乱振動に入よるノイズの影蕃を有効に除去できる。その
結果本発明によれば197N比を、圧電セ/すを1個用
いた従来の渦流量針に比して10倍以上改善できた。
1 In equation (5), A2(ωl)/A1(/force and B
2(fII')/B1('...I) is selected to satisfy the relationship of equation (s), so if the variable resistor R6 is adjusted to satisfy the following, the output of the calculator 23 will be e3 becomes, and the influence of noise introduced into the disturbance vibration can be effectively removed. As a result, according to the present invention, the 197N ratio could be improved by more than 10 times compared to the conventional vortex flow rate needle using one piezoelectric cell.

また渦発生体13の振動によるノイズ電荷は、渦発生体
13およびセンサ部14の形状、材質1寸法等を選べば
第7図の分布曲線tL2に示すように零となる2点(P
I Q)が存在する。しかも零となる2点(P、 Q)
の位置は、外乱振動の加速度および周波数によって変わ
らない。したがって圧電センサ14a。
Furthermore, the noise charge caused by the vibration of the vortex generator 13 becomes zero at two points (P) as shown in the distribution curve tL2 in FIG.
IQ) exists. Moreover, there are two points (P, Q) that are zero.
The position of does not change depending on the acceleration and frequency of the disturbance vibration. Hence the piezoelectric sensor 14a.

14bをセンサ部14において、渦発生体13の振動に
よるノイズ電荷が零となる2点(p、 Q) K配置す
ると、ノイズ成分社管路歪みによるノイズ電荷のみとな
り□、圧電センサ14m、 14bの出力電荷q1 +
 ’Q2 F′1次式でそれぞれ与えられる。 − q 1 □81(ω)sinr++t+8l−(61’
 )sin(’6 ’ t+6<’)!>)     
           (a)q2xs2(r++)s
inrot+B2(r戸)sin(ω’t+d(u>つ
)(9)よって、演算器23の出力e3は、 と表り、ノイズ電荷の振幅の比B2(旬つ/B1(cy
’)は一定(A1)であるので、可変抵抗R6を調整し
て、を満足させれば、演算器23の出力e3は、となり
、外乱振動によるノイズの影響を有効に除去で會る。
If 14b is placed in the sensor section 14 at two points (p, Q) where the noise charge due to the vibration of the vortex generator 13 is zero, only the noise charge due to the pipe distortion becomes the noise component, □, and the piezoelectric sensors 14m and 14b. Output charge q1 +
'Q2 F' are given by linear equations. - q 1 □81(ω) sinr++t+8l-(61'
) sin('6 't+6<')! >)
(a) q2xs2(r++)s
inrot+B2(r)sin(ω't+d(u>tsu)(9) Therefore, the output e3 of the arithmetic unit 23 is expressed as
') is constant (A1), so if the variable resistor R6 is adjusted to satisfy the expression e3, the output e3 of the arithmetic unit 23 becomes, which effectively eliminates the influence of noise caused by external vibration.

なお上述では、変換増幅器21の出力e工と変換増幅器
22の出力e2を演算器23で加算すb場合を例示した
が、圧電センサ14a、 14bの出力電荷q□、q2
のノイズ成分が同相の場合には演算器23で減算すれば
よい。また上述fは圧電センサ14a、 14bの出力
電荷を利用する場合を例示したが、出力電圧を利用しで
もよい。□この場合変換増幅器21.22としてはチャ
ージアンプ6代りに電圧増幅器が用いられる。を九上述
では圧蝋セ/す14m、 14bとして反転分極し九圧
電素子を用いる場合を例示したが、ニオブ酸リニウムの
よう−に反転分極で゛きない圧電素子を膚いる場合には
、圧電素子゛を左右に分割し、一方を裏返しにして取付
けて実質的に反転分極形にすればよい。
In addition, in the above description, the case where the output e of the conversion amplifier 21 and the output e2 of the conversion amplifier 22 are added by the arithmetic unit 23 was exemplified, but the output charges q□, q2 of the piezoelectric sensors 14a and 14b
If the noise components are in phase, the arithmetic unit 23 may perform subtraction. Moreover, although the above-mentioned example f uses the output charges of the piezoelectric sensors 14a and 14b, it is also possible to use the output voltage. □In this case, a voltage amplifier is used as the conversion amplifier 21, 22 instead of the charge amplifier 6. In the above, the case where a piezoelectric element with reverse polarization is used as a pressure wax cell 14m and 14b is illustrated, but when using a piezoelectric element that cannot be reversely polarized, such as linium niobate, piezoelectric The element may be divided into left and right parts, and one side may be mounted upside down to form a substantially reverse polarization type.

また渦流置針検出器10として本実施例では、渦発生体
13の凹部13d内にセンサ部14を設ける場合を例示
したが、渦発生体13の下流側に渦の生成による揚力変
化を受ける受力体を設け、受力体の凹部内にセンナ部を
設けてもよい。
Furthermore, in this embodiment, the sensor section 14 is provided in the recess 13d of the vortex generator 13 as the vortex positioning needle detector 10. A body may be provided, and a senna portion may be provided within the recessed portion of the force receiving body.

以上説明したように本発明の渦流量計においては、渦発
生体(または受力体)の凹部に設けたセンサ部に生ずる
渦の揚力による信号成分の応力分布と、外乱振動による
ノイズ成分の応力分布の相違に基づいて、第1.第2の
反転分極形の圧電センサを用いその出力を各々信号変換
した後演算して、外乱振動によるノイズの影響を有効に
除去するようにしているので、87N比を良好にでき、
またセンサ部からのリード線が2本ですむ等センナ部の
構成を簡単にできる。
As explained above, in the vortex flowmeter of the present invention, the stress distribution of the signal component due to the lift of the vortex generated in the sensor section provided in the recess of the vortex generating body (or force receiving body), and the stress distribution of the noise component due to disturbance vibration. Based on the difference in distribution, the first. Since the second inverted polarization type piezoelectric sensor is used and its output is converted into signals and then calculated, the influence of noise caused by disturbance vibration is effectively removed, so a good 87N ratio can be achieved.
In addition, the structure of the sensor section can be simplified since only two lead wires are needed from the sensor section.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明渦流量計の一実施例の構成説明図、第2
図はその検出器部分の断藺図、第5図は本発明渦流量計
の一実施例を示す電気的接続図、111481は本発明
に用いる圧電センサの一例を示す構成説明図、第5図〜
第6図は本発明渦流量針の動作を説明するための特性曲
線である。 10・・・渦流置針検出器、11・・・管路、13・・
・・渦発生体、13d・・・渦発生体の凹部、14・・
・センサ部、14a・・・第1の圧電−kyt、14b
・・・第2の圧電センサ、2o・・・渦流置針変換器、
21.22・・・変換増幅器、23・・・演算器。 第1図 (イ) 招3図 (ロ) 3 篤6図 帛7回
Fig. 1 is an explanatory diagram of the configuration of one embodiment of the vortex flowmeter of the present invention;
The figure is a cross-section diagram of the detector part, FIG. 5 is an electrical connection diagram showing one embodiment of the vortex flowmeter of the present invention, 111481 is a configuration explanatory diagram showing an example of the piezoelectric sensor used in the present invention, FIG. ~
FIG. 6 is a characteristic curve for explaining the operation of the vortex flow needle of the present invention. 10...Eddy current positioning needle detector, 11...Pipe line, 13...
...Vortex generator, 13d...Concavity of vortex generator, 14...
-Sensor part, 14a...first piezoelectric kyt, 14b
... second piezoelectric sensor, 2o... eddy current positioning needle transducer,
21.22... Conversion amplifier, 23... Arithmetic unit. Figure 1 (a) Invitation 3 (b) 3 Atsushi 6 illustration 7 times

Claims (1)

【特許請求の範囲】[Claims] 測定流体にその流速に応じたカルマン渦を生成させる渦
発生体の凹部内また性渦発生体の下流側に配置された受
力体の凹部内にセンサ部を設けた渦流量針において、セ
ンナ部は前記凹部内に順次積み重ねられる金属の下敷と
、第2の反転分極形の圧電センサと、第2の金属のスペ
ーサと、絶縁板と、第1の金属のスペーサと、第1の反
、転分極形の圧電センサおよびこれら積み重ね部分を抑
圧固定するための金属の押し棒とを有することを特徴と
する渦流量計。
In a vortex flow rate needle, a sensor section is provided in a recess of a vortex generator that generates a Karman vortex according to the flow velocity of the fluid to be measured, or in a recess of a force receiving body disposed downstream of the vortex generator. is a metal underlay, a second inverted polarization type piezoelectric sensor, a second metal spacer, an insulating plate, a first metal spacer, and a first inverted polarization type piezoelectric sensor, which are stacked in order in the recess. A vortex flowmeter characterized by having a polarized piezoelectric sensor and a metal push rod for suppressing and fixing these stacked parts.
JP56161122A 1981-10-09 1981-10-09 Vortex flow meter Granted JPS5862516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56161122A JPS5862516A (en) 1981-10-09 1981-10-09 Vortex flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56161122A JPS5862516A (en) 1981-10-09 1981-10-09 Vortex flow meter

Publications (2)

Publication Number Publication Date
JPS5862516A true JPS5862516A (en) 1983-04-14
JPH048730B2 JPH048730B2 (en) 1992-02-18

Family

ID=15729015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56161122A Granted JPS5862516A (en) 1981-10-09 1981-10-09 Vortex flow meter

Country Status (1)

Country Link
JP (1) JPS5862516A (en)

Also Published As

Publication number Publication date
JPH048730B2 (en) 1992-02-18

Similar Documents

Publication Publication Date Title
US4437350A (en) Vortex flow metering apparatus
US4381680A (en) Mass flow meter
EP0560970A1 (en) Noise rejecting vortex flowmeter
JPS5862516A (en) Vortex flow meter
JPS5855816A (en) Vortex flowmeter
JPS58160813A (en) Vortex flow meter
JPS5855817A (en) Vortex flowmeter
JP4670152B2 (en) Vortex flow meter
JPH11258016A (en) Vortex flow meter
JPH0320618A (en) Vortex flowmeter
JP2893855B2 (en) Mass flow meter
JPS6244339Y2 (en)
JP2893847B2 (en) Mass flow meter
JPS6011461Y2 (en) Flow velocity flow measuring device
JP2739353B2 (en) Mass flow meter
JPS58169029A (en) Vortex flowmeter
JPS5928342Y2 (en) force detector
JP2003149023A (en) Vortex flowmeter
JPS5924363B2 (en) vortex flow meter
JP2765100B2 (en) Online density meter
JPS6244338Y2 (en)
JPH07225141A (en) Vortex flowmeter
JPH04296622A (en) Vortex flow meter
JPS6244337Y2 (en)
JPH11248500A (en) Eddy flowmeter