JPS5855816A - Vortex flowmeter - Google Patents

Vortex flowmeter

Info

Publication number
JPS5855816A
JPS5855816A JP56155947A JP15594781A JPS5855816A JP S5855816 A JPS5855816 A JP S5855816A JP 56155947 A JP56155947 A JP 56155947A JP 15594781 A JP15594781 A JP 15594781A JP S5855816 A JPS5855816 A JP S5855816A
Authority
JP
Japan
Prior art keywords
vortex
sensor
noise
conversion amplifier
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56155947A
Other languages
Japanese (ja)
Other versions
JPS6047531B2 (en
Inventor
Hisashi Tamura
田村 久
Yoshiji Fukai
深井 吉士
Ichizo Ito
伊藤 一造
Kenichi Yoshioka
吉岡 賢一
Takehiro Sawayama
沢山 武弘
Toshio Aga
阿賀 敏夫
Kenta Mikuriya
健太 御厨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Yokogawa Hokushin Electric Corp
Yokogawa Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp, Yokogawa Hokushin Electric Corp, Yokogawa Electric Works Ltd filed Critical Yokogawa Electric Corp
Priority to JP56155947A priority Critical patent/JPS6047531B2/en
Publication of JPS5855816A publication Critical patent/JPS5855816A/en
Publication of JPS6047531B2 publication Critical patent/JPS6047531B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/325Means for detecting quantities used as proxy variables for swirl
    • G01F1/3287Means for detecting quantities used as proxy variables for swirl circuits therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

PURPOSE:To remove the influence of disturbing vibration effectively and to improve an S/N ratio, by arranging two sensors at two points where the ratio of the noise components due to the vibration of the vortex yielding body and the ratio of the noise component due to the strain of a pipe are substantially equal. CONSTITUTION:The vortex yielding body 13 yields K arm an vortex and receives buoyancy when fluid to be measured flows in the pipe which is not shown in the Figure. The piezoelectric sensors 14a and 14b are arranged on the two point M and N, where the ratio of the amplitudes of noise charges due to the vibration of the vortex yielding body 13 and the ratio of the amplitudes of the noise charges due to the strain of the pipe are substantially equal; i.e. a distribution curve (a) of the noise charges due to the vibration of the vortex yielding bldy 13 intersects a distribution curve (b) of the noise charges due to the strain of the pipe. The output charges q1 and q2 from the sensors 14a and 14b are applied to conversion amplifiers 21 and 22, converted into AC voltages e1 and e2, respectively, and added in an operator 23. Then a voltage e3, wherein influence of the noises due to the vibration of the vortex yielding body 13 is removed, is outputted.

Description

【発明の詳細な説明】 本発明は、カルマン渦を利用して流体の流速または流量
を測定する渦流量計に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vortex flow meter that uses Karman vortices to measure the flow velocity or flow rate of a fluid.

流体中に物体を置くと、物体の雨後側面から交互にかつ
規則的に渦が発生し、下流に渦列となって流れることが
古くから知られている。この渦列はカルマン渦列といわ
れ、単位時間当シの渦の生成数(渦周波数)が流体の流
速に比例している。
It has been known for a long time that when an object is placed in a fluid, vortices are generated alternately and regularly from the side of the object and flow downstream as a vortex train. This vortex street is called a Karman vortex street, and the number of vortices generated per unit time (vortex frequency) is proportional to the flow velocity of the fluid.

そこで、測定流体を導く管路内に渦発生体を配置し、渦
の生成による揚力変化を渦発生体(tたは受力体)に設
けた圧電素子、ストレンゲージ、容量やインダクタンス
等のセンサで検出した後信号変換して流体の流速や流量
を測定する渦流量計が実用化さ−れている。ところでこ
の種の渦流量針においては、ポンプなどにより励起され
る配管振動等の外乱振動による影響を受け、特に低流速
時の8/N比が悪化するという欠点が6つ九〇すなわち
外乱振動が加わると、渦発生体(tたは受力体)が振動
するとともに、管路に取付けた変換器等の搭載物も振動
する。渦発生体(または受力体)が振動するとその質量
分布等に基づく曲げモーメントが渦発生体(tたは受力
体)に作用し、また搭載物が振動すると管路歪みが生じ
、この歪みに工って4bill1発生体(tた社受力体
)に−げモーメントが作用する。その結果センナには、
渦の揚力に基づく曲げモーメントによる信号成分に、渦
発生体(tたは受力体)の振動に基づく―げモーメント
によるノイズ成分と、管路歪みに基づく曲げモーメント
によるノイズ成分とが重畳されて検出される。このため
従来は渦発生体(または受力体)の振動によるノイズ成
分と管路歪によるノイズ成分の和が小さい点を実験的に
求めて、その点にセンサを取付ける等の対策がなされて
いるが、両ノイズ成分の大きさおよび位相差が外乱振動
の加速度と周波数によってそれぞれ独立に変化し、両ノ
イズ成分の和の小さい点も外乱振動の加速度の大きさと
周波数の値によって変化するため、充分表効果を上げて
いない0 本発明は、渦発生体(また社受力体)に設けるセンサ部
の任意の2点において、渦発生体(または受力体)の振
動によるノイズ成分の比と、管路歪みによるノイズ成分
の比がそれぞれ外乱振動の加速度および周波数に関係な
く一定であることに着目し、2個のセ/すを両ノイズ成
分の比が実質的に眸しい2点に配置して各々信号変換し
た後演算することによって、外乱振動による影響を有効
に除去し、8/N比OJL好な渦流量針を実現したもの
である。
Therefore, sensors such as piezoelectric elements, strain gauges, capacitances, and inductances are installed in the vortex generator (t or force receiving body) by placing a vortex generator in the pipe that guides the fluid to be measured, and changes in lift due to the generation of the vortex. Vortex flowmeters have been put into practical use that measure the flow velocity and flow rate of fluid by detecting the flow rate and converting the signal. However, this type of vortex flow needle has six disadvantages: it is affected by external vibrations such as pipe vibrations excited by pumps, etc., and the 8/N ratio deteriorates especially at low flow speeds. When the force is applied, the vortex generating body (t or force receiving body) vibrates, and the equipment attached to the pipe, such as a transducer, also vibrates. When the vortex generating body (or force receiving body) vibrates, a bending moment based on its mass distribution etc. acts on the vortex generating body (t or force receiving body), and when the loaded object vibrates, pipe distortion occurs, and this distortion As a result, a moment acts on the 4bill1 generating body (the receiving force body). As a result, Senna has
The signal component due to the bending moment based on the lift of the vortex is superimposed with the noise component due to the bending moment based on the vibration of the vortex generating body (t or force receiving body) and the noise component due to the bending moment due to pipe distortion. Detected. For this reason, conventional measures have been taken, such as experimentally finding a point where the sum of the noise component due to vibration of the vortex generator (or force receiving body) and the noise component due to pipe strain is small, and installing a sensor at that point. However, the magnitude and phase difference of both noise components change independently depending on the acceleration and frequency of the disturbance vibration, and the point where the sum of both noise components is small also changes depending on the magnitude of the acceleration and frequency of the disturbance vibration, so it is sufficient No surface effect has been achieved.0 The present invention is capable of determining the ratio of noise components due to the vibration of the vortex generating body (or force receiving body) at any two points of the sensor section provided on the vortex generating body (or force receiving body); Focusing on the fact that the ratio of noise components due to pipe distortion is constant regardless of the acceleration and frequency of disturbance vibration, two cells are placed at two points where the ratio of both noise components is substantially close. By converting each signal and performing calculations, the influence of disturbance vibration is effectively removed, and a vortex flow rate needle with a good 8/N ratio OJL is realized.

第1図は本発明渦流量計の一実施例の外観図で、0)は
正面図、←)は側面図であり、第2図はその検出部を断
藺で示す構成説明図、第3図は本発明渦流量計の一実施
例を示す電気的接続図である。図において、10は渦流
量計検出器、20は渦流量計変換器である。
Fig. 1 is an external view of one embodiment of the vortex flowmeter of the present invention, 0) is a front view, ←) is a side view, Fig. 2 is a configuration explanatory diagram showing the detection section in section, and Fig. 3 The figure is an electrical connection diagram showing an embodiment of the vortex flowmeter of the present invention. In the figure, 10 is a vortex flowmeter detector, and 20 is a vortex flowmeter converter.

渦流量計検出器10において、11は測定流体が流れる
管路、12は管路11に直角に設けられた円筒状のノズ
ル、13はノズル12を通して管路11に直角に挿入さ
れた柱状の渦発生体で、ステンレス等からなりその上端
13aはノズル12にネジまたは溶接により固定され、
下端13bは管路11に支持されている。渦発生偉邪の
測定流体と接する部分13cは測定流体にカルマン渦列
を生ぜしめ、かつ揚力変化を安定強化するように例えば
台形等の断面形状を有し、また上端13a側には凹部1
3dを有してい石。
In the vortex flow meter detector 10, 11 is a pipe through which the fluid to be measured flows, 12 is a cylindrical nozzle provided perpendicularly to the pipe 11, and 13 is a columnar vortex inserted perpendicularly into the pipe 11 through the nozzle 12. The generator is made of stainless steel or the like, and its upper end 13a is fixed to the nozzle 12 by screws or welding.
The lower end 13b is supported by the conduit 11. The portion 13c of the vortex generator in contact with the measurement fluid has a cross-sectional shape such as a trapezoid, for example, so as to generate a Karman vortex street in the measurement fluid and stabilize and strengthen lift changes, and a recess 1 is provided on the upper end 13a side.
The stone has 3D.

14はセンナ部で、渦発生体13の凹部13d内に第1
の圧電センサ14aと第2の圧電センt14bとが一定
間隔おいて抑圧固定されている。センサ部14において
、ステンレス等の下敷14cは第2の圧電センサ14b
と凹部13dの底面とのバッファの役目をし、凹部13
dの底面の加工上のあらさ管理の困難さを補うものであ
る。ステンレス等の第1(Dスペーサ14dとセラミッ
ク等の絶縁板14eおよびステンレス等の第2のスペー
サ14fは第1の圧電センナ14aと第2の圧電センサ
14bとの間隔を決めるとともに、両者の絶縁を行うた
めのものである。
14 is a senna part, and a first
The piezoelectric sensor 14a and the second piezoelectric center t14b are suppressed and fixed at a constant interval. In the sensor section 14, the underlay 14c made of stainless steel or the like is connected to the second piezoelectric sensor 14b.
serves as a buffer between the bottom surface of the recess 13d and the recess 13d.
This is to compensate for the difficulty in controlling the roughness during machining of the bottom surface of d. The first (D spacer 14d made of stainless steel, etc.), the insulating plate 14e (made of ceramic etc.), and the second spacer 14f (made of stainless steel, etc.) determine the distance between the first piezoelectric sensor 14a and the second piezoelectric sensor 14b, and also maintain the insulation between them. It is meant to be done.

ステンレス等の押し棒14gはセンナ14a、 14b
を押圧した状態で渦発生体13の上端13a %C溶接
され、センサ14a、 14bを押圧固定するものであ
る。なおセンナ部14は渦発生体13に下敷14cと押
し棒14gの上部のみで接触するようになっている。圧
電センサ14a、 14bは円板状の圧電素子pzから
なし、その中心が渦発生体13の中立軸と一致するよう
に配置されている。さらに圧電素子pzには第4図(イ
)の斜視図に示すようにその表と裏にそれぞれ測定流体
の流れ方向(図の矢印方向)に対して左右に分割して対
称的に電極d1. d2. d3. d4が設けられ、
かつ第4図←)に示す如く矢印方向(渦の揚力方向)の
力による曲げモーメントによって中立軸を挾んで互いに
逆方向に発生する応力(圧縮応力と引張応力)K対応し
て電極d□、d2間に生ずる電荷と、電極d3.d4間
に生ずる電荷とが同極性になるように反転分極されてい
る。このため第4図(ハ)K示すように同方向に発生す
る応力に対しては両電極間に互いに逆極性の電荷が発生
する。また測定流体の流れ方向のストレスによって発生
する電荷量は電極間でキャンセルされて出てこす、また
流れ方向の配管振動によって発生する電荷量も電極間で
互いにキャンセルされて出てこない。第1の圧電センサ
14aは電極d1.d2問および電極d3.d4間にそ
れぞれ生ずる同極性の電荷の和を出力電荷q1とし逆極
性の電荷をキャンセルするために、電極d1とd3とが
押し棒14gを介して共通に渦発生体13す々わち基準
点に接続され、電極d2とd4とがスペーサ14fを介
して共通にリード線61に接続されている。第2の圧電
センサ14bは電極d工、d2間および電極d3.d2
間にそれぞれ生ずる同極性の電荷の和を出力電荷q2と
し逆極性の電荷をキャンセルして、かつqよとは極性を
反転させるために、電極d1とd3がスペーサ14dを
介して共通にリード線e2に接続され、電極d2とd4
とが下敷14cを介して共通に渦発生体13すなわち基
準点Km続されている。リードIIe□、−2はセンサ
部14の各部品に設けられた貫通孔およびノ・−メチ、
クシール14hを介して外部に取り出され、渦流量計変
換器20に接続される。
Push rods 14g made of stainless steel etc. are Senna 14a and 14b.
While pressed, the upper end 13a of the vortex generator 13 is welded to press and fix the sensors 14a and 14b. The senna portion 14 is configured to come into contact with the vortex generator 13 only through the underlay 14c and the upper part of the push rod 14g. The piezoelectric sensors 14a and 14b are disk-shaped piezoelectric elements pz, and are arranged so that their centers coincide with the neutral axis of the vortex generator 13. Furthermore, as shown in the perspective view of FIG. 4(A), the piezoelectric element pz has electrodes d1. d2. d3. d4 is provided,
As shown in Fig. 4←), the stress (compressive stress and tensile stress) generated in opposite directions across the neutral axis due to the bending moment due to the force in the direction of the arrow (in the lifting force direction of the vortex) K corresponds to the electrode d□, The charge generated between electrodes d2 and electrodes d3. The polarization is reversed so that the electric charges generated between the terminals d4 and d4 have the same polarity. Therefore, as shown in FIG. 4(c)K, charges of opposite polarity are generated between the two electrodes in response to stresses occurring in the same direction. Further, the amount of electric charge generated due to stress in the flow direction of the measured fluid is canceled between the electrodes and does not come out, and the amount of electric charge generated due to pipe vibration in the flow direction is also canceled out between the electrodes and does not come out. The first piezoelectric sensor 14a has electrodes d1. d2 question and electrode d3. In order to use the sum of the charges of the same polarity generated between the electrodes d4 as the output charge q1 and cancel the charges of opposite polarity, the electrodes d1 and d3 are commonly connected to the vortex generator 13 via the push rod 14g, that is, the reference point. The electrodes d2 and d4 are commonly connected to the lead wire 61 via a spacer 14f. The second piezoelectric sensor 14b is connected between electrodes d and d2 and between electrodes d3 and d3. d2
Electrodes d1 and d3 are connected to a common lead wire through a spacer 14d in order to use the sum of charges of the same polarity generated between them as an output charge q2, cancel charges of opposite polarity, and invert the polarity of q. connected to e2, electrodes d2 and d4
and are commonly connected to the vortex generator 13, that is, the reference point Km via the underlay 14c. The leads IIe□, -2 are connected to the through holes and holes provided in each part of the sensor section 14,
It is taken out to the outside via the seal 14h and connected to the vortex flow meter converter 20.

なお渦発生体13の凹部13dとセンサ部14で囲まれ
た部分には結露切土のために、露点の低いガスが封入さ
れており、押し棒14g Kは封入ガス用の連通孔14
1が設けられている。またセンサ部14の各部品の厚さ
および材質L1温度変化により初期押しつけ応力に変化
が生じないように決定されている。
Note that a gas with a low dew point is filled in the area surrounded by the concave portion 13d of the vortex generator 13 and the sensor portion 14 for dew condensation cutting, and the push rod 14gK is the communication hole 14 for the filled gas.
1 is provided. Further, the thickness of each component of the sensor section 14 and the material L1 are determined so that the initial pressing stress does not change due to temperature changes.

渦流量計変換器20は、2個の変換増幅器21.22と
、これら変換増幅器21.22の出力の加算を九は減算
を行う演算器23と、変換器20を管路11に固定する
ためのブラケット24とを有している。変換増幅器21
(22)としては、演算増幅器op□(OP2)と、O
P (OP )の帰還回路に接続されたコンデンサ  
  2 C1(C2)と抵抗R工(R2)の並列回路からなるチ
ャージアンプが示されており、演算増幅器Op1の反転
入力端子(→にリード11が接続され、演算増幅−OP
2の反転入力端子(−)にリード線e2が接続されてい
る。演算器23は、抵抗R3により帰還が施され九演算
増幅器opからなり、OP3の反転入力端子←)に演算
抵抗R4を介して加えられる変換器21の出力電圧e1
と、抵抗R5と可変抵抗R6の直列回路を介して加えら
れる変換増幅器22の出力@2との加算を行うものが示
されている。
The eddy flowmeter converter 20 includes two converter amplifiers 21 and 22, an arithmetic unit 23 that adds and subtracts the outputs of these converter amplifiers 21 and 22, and a converter 20 for fixing the converter 20 to the pipe line 11. It has a bracket 24 of. Conversion amplifier 21
(22) is an operational amplifier op□ (OP2) and O
A capacitor connected to the feedback circuit of P (OP)
2 A charge amplifier consisting of a parallel circuit of C1 (C2) and a resistor R (R2) is shown, and the lead 11 is connected to the inverting input terminal (→) of the operational amplifier Op1.
A lead wire e2 is connected to the inverting input terminal (-) of No.2. The arithmetic unit 23 is fed back by a resistor R3 and consists of nine operational amplifiers OP, and the output voltage e1 of the converter 21 is applied to the inverting input terminal ← of OP3 via the operational resistor R4.
, and the output @2 of the conversion amplifier 22, which is added through a series circuit of a resistor R5 and a variable resistor R6.

このように構成した本発明渦流量針の動作を第5図を参
照して以下に説明する。渦発生体13は、管路11内に
測定流体が流れると、カルマン員を発生させるとともに
、渦の生成に基づく揚力変化を受ける。渦発生体13が
揚力を受けると、センナ部14に揚力による曲げモーメ
ントMYが作用し、その内部には第5図にSで示す如き
ほぼ直線の応力分布が生ずる。なお第5図における応力
値は圧電センサで検出した場合の電荷量の値で示しであ
る。
The operation of the vortex flow needle of the present invention constructed as described above will be explained below with reference to FIG. When the measuring fluid flows into the pipe 11, the vortex generator 13 generates a Karman member and receives a lift change based on the generation of the vortex. When the vortex generating body 13 receives a lift force, a bending moment MY due to the lift force acts on the senna portion 14, and a substantially linear stress distribution as shown by S in FIG. 5 is generated inside the senna portion 14. Note that the stress values in FIG. 5 are shown as the amount of charge when detected by a piezoelectric sensor.

を六員発生体13はポンプ等によシ励起される外乱振動
によっても渦の揚力と同方向の力を受ける0この外乱振
動による力には、渦発生体13の振動によるモードと、
搭載物の振動に基づく管路歪みによるモードがあり、セ
ンサ部14にはそれぞれのモードによって曲げモーメン
トMα1t Mα2が作用する。センサ部14の内部に
は、渦発生体13の振動によるモーメントM:t1の作
用によって第5図にaで示す如き曲線の応力分布が生じ
、管路歪みによるモーメン)M、T2の作用によって第
5図にbで示す如きほぼ直線の応力分布が生ずる。その
結果センサ部14の圧電セイサ14a、 14bに検出
される電荷q工。
The six-member generator 13 also receives a force in the same direction as the lift of the vortex due to disturbance vibrations excited by a pump or the like.The force due to this disturbance vibration has a mode due to the vibration of the vortex generator 13,
There are modes due to pipe distortion caused by vibrations of the loaded object, and bending moments Mα1t Mα2 act on the sensor section 14 depending on the respective modes. Inside the sensor part 14, a stress distribution of a curve as shown in FIG. A nearly linear stress distribution as shown by b in FIG. 5 occurs. As a result, a charge q is detected by the piezoelectric sensors 14a and 14b of the sensor section 14.

q2には、それぞれ渦の揚力による信号電荷に、渦発生
体の振動によるノイズ電荷と管路歪みによるノイズ電荷
とが重畳されてお9、渦の揚力による信号電荷の振幅を
S□(’、I)、 52(−j+) 、渦発生体13の
振動によるノイズ電荷の振幅をA□(ω’)、A2(・
)I’)、管路歪みによるノイズ電荷の振幅をB1(o
 +)、 B2(’・1)とすると次式でそれぞれ与え
られる0 q1−i91(ω)sin’++t+A1(ω+ )6
1nω’t+B1(ωす8in(b+ ’t+i(ω 
つ)    (1)q2IIIIS2(lすsin ・
、t+A2(14+’ )81fb++菅t+B2(、
,1’)Sin(r、+ ’ t+d(ta’ )) 
    (2)ただし、 ω:信号電荷の角周波数 ω1:ノイズ電荷の角周波数 d(61’):ノイズ電荷間の位相差 (1)式および(2)式において、信号電荷の振幅8x
 G)J ) tS2(ω)は渦の揚力すなわち渦周波
数によってそれぞれ変化する。またノイズ電荷の振幅A
□(0戸)。
In q2, a noise charge due to the vibration of the vortex generating body and a noise charge due to pipe distortion are superimposed on the signal charge due to the lift of the vortex9, and the amplitude of the signal charge due to the lift of the vortex is expressed as S□(', I), 52(-j+), the amplitude of the noise charge due to the vibration of the vortex generator 13 is expressed as A□(ω'), A2(・
)I'), the amplitude of the noise charge due to pipe distortion is B1(o
+), B2('・1), then 0 q1-i91(ω)sin'++t+A1(ω+)6 given by the following equations, respectively.
1nω't+B1(ωsu8in(b+ 't+i(ω
) (1) q2IIIS2(lsin ・
, t+A2(14+')81fb++kan t+B2(,
,1')Sin(r,+'t+d(ta'))
(2) However, ω: Angular frequency of signal charge ω1: Angular frequency of noise charge d(61'): Phase difference between noise charges In equations (1) and (2), amplitude of signal charge 8x
G) J) tS2(ω) varies depending on the lift force of the vortex, that is, the vortex frequency. Also, the amplitude A of the noise charge
□ (0 houses).

A2 Co戸)、 B1(ω’)p B2(z+’) 
 kよヒ位相差t<ω’> 4外乱振動の加速度および
周波数によってそれぞれ変化するが、振幅の比A2(W
’)/A□(rす’)およびB2Coz” ) / B
よ(rr戸)は外乱振度の加速度および周波数の影響を
受けず一定であり、しかも第5図に示すように渦発生体
13の振動によるノイズ電荷の分布曲線aと、管路歪に
よるノイズ電荷の分布線すとが交叉する2点が存在し、
圧電センナ14a、 14b O取付は位置y点とN点
においては次式の関係を満足する。
A2 Co door), B1(ω')p B2(z+')
The phase difference t<ω'> 4 varies depending on the acceleration and frequency of the disturbance vibration, but the amplitude ratio A2 (W
')/A□(rs') and B2Coz")/B
y(rr) is constant without being affected by the acceleration and frequency of the disturbance vibration, and as shown in FIG. There are two points where the charge distribution lines intersect,
The piezoelectric sensor 14a, 14b O mounting satisfies the following relationship at the positions y point and N point.

そして(3)式を満足する2点の組合せは種々あり、例
えば第6図に示すように、管路歪みによるノイズ電荷の
分布線すと傾きの異る分布@b+、b”  と渦発生体
13の振動による分布曲線aとが交叉するM′点とN1
点およびM”点とNl1点であってもよい。なお渦発生
体の振動による応力分布曲線は、渦発生体13およびセ
ンサ部14の材質、形状1寸法によって第7図のalt
IL2.B3に示すように変化するが、(5)式の関係
を満足する2点は必ず存在する。第7図においては、応
力分布曲線a1.a2.a3を生ずるセンサ部14の寸
法りはそれぞれLl、B2.B3と異っている(L□<
B2〈B3)が、説明を簡便にするため基準寸法り。に
換算して示しである。また管路歪みによる応力分布線は
搭載物の重さ等によっても第8図のb□、B2.B3に
示すように変化するがM点とN点における振幅の比B2
□(′d′)lB□□(ωI)、B22(011)lB
12(ω’)、 n23(r、、+’)lB13(a+
’)  は等しいので、搭載物の重さ等が変っても(5
)式は成立する。
There are various combinations of two points that satisfy equation (3). For example, as shown in Figure 6, the noise charge distribution line due to pipe distortion has a distribution with a different slope @b+,b" and a vortex generator. The point M' where the distribution curve a due to vibration of No. 13 intersects with N1
The stress distribution curve due to the vibration of the vortex generator 13 and the sensor section 14 may be the alt point in FIG.
IL2. Although it changes as shown in B3, there are always two points that satisfy the relationship in equation (5). In FIG. 7, the stress distribution curve a1. a2. The dimensions of the sensor section 14 that produce a3 are Ll, B2. Different from B3 (L□<
B2 and B3 are standard dimensions for ease of explanation. The figure is converted to . In addition, the stress distribution lines due to pipe distortion may vary depending on the weight of the loaded object, etc. in Fig. 8, b□, B2. The amplitude ratio at point M and point N varies as shown in B3.
□('d')lB□□(ωI), B22(011)lB
12(ω'), n23(r,,+')lB13(a+
') are the same, so even if the weight of the loaded object changes, (5
) formula holds true.

圧電センナ14aの出力電荷q□は変換増幅器21に加
えられ、圧電センサ14bの出力電荷q2は反転されて
変換増幅器22に加えられ、それぞれ交流電圧e□t 
B2に変換された後演算器23に加えられる。演算器2
3は、e工t B2を加算し、その出力e3は次式で与
えられる。
The output charge q□ of the piezoelectric sensor 14a is applied to the conversion amplifier 21, and the output charge q2 of the piezoelectric sensor 14b is inverted and applied to the conversion amplifier 22, and the AC voltage e□t is respectively
After being converted into B2, it is added to the arithmetic unit 23. Arithmetic unit 2
3 adds e-tB2, and its output e3 is given by the following equation.

変換増幅器21.22のゲインをに工、に2とすると、
(1)式および(2)式から03は次式の如くなる。
If the gain of the conversion amplifier 21 and 22 is set to 2, then
From equations (1) and (2), 03 becomes as shown in the following equation.

(5)式において、A2(・!l1)lA1(c・戸)
およびB2(0重)lB□(er戸)は(3)式の関係
を満足するように選ばれているので、可変抵抗R6を調
整して、 R4N2 1−□・ λ−−〇 R5+R6に1(6) を満足させれば、演算器23の出力e3は、となり、外
乱振動によるノイズの影響を有効に除去できる。その結
果本発明によればS/N比を、圧電センサを1個用いた
従来の渦流量計に比して10倍以上改善できた。
In equation (5), A2(・!l1)lA1(c・door)
and B2 (0 weight) lB□ (er door) are selected to satisfy the relationship of equation (3), so adjust the variable resistor R6 and set 1 to R4N2 1-□・λ--〇R5+R6 If (6) is satisfied, the output e3 of the arithmetic unit 23 is as follows, and the influence of noise due to disturbance vibration can be effectively removed. As a result, according to the present invention, the S/N ratio could be improved by more than 10 times compared to a conventional vortex flowmeter using one piezoelectric sensor.

なお上述では、変換増幅器21の出力e1と変換増幅器
22の出力e2を演算器23で加算する場合を例示した
が、圧電センサ14a、 14bの出力電荷q1y q
2のノイズ成分が同相の場合には演算器23で減算すれ
ばよ2い。ま九上述では圧電センサ14a、 14bの
出力電荷を利用する場合を例示したが、出力電圧を利用
してもよい。この場合変換増幅器21.22としてはチ
ャージアンプの代りに電圧増幅器が用いられる。また上
述では圧電センサ14a、 14bとして反転分極した
圧電素子を用いる場合を例示したが、反転分極しない圧
電素子を用いてもよい。この場合圧電素子を左右に分割
し、一方を裏返しにして取付けて実質的に反転分極形に
してもよいし、また館1の圧電センサ14aと押し棒1
4gの間および第2の圧電センサ14cの間にそれぞれ
絶縁板を設け、かつ圧電素子pzの電極d1とd3およ
び電極d2とd4を各々結線し、かつ電極d□とd3と
にそれぞれリード線を接続すればよい。また第1.第2
の圧電センナを押し棒によって渦発生体の凹部内に押圧
固定する場合を例示し九が、ガラス等で封着固定しても
よい。を九上述では渦発生体の凹部を上端側に設ける場
合を例示したが、下端側にも設け、上端側の凹部に第1
の圧電センナを、下端側の凹部に第2の圧電センサを配
置するようにしてもよい。
In the above description, the case where the output e1 of the conversion amplifier 21 and the output e2 of the conversion amplifier 22 are added by the arithmetic unit 23 has been illustrated, but the output charges q1y q of the piezoelectric sensors 14a and 14b
If the two noise components are in phase, the arithmetic unit 23 can subtract them. Although the above example uses the output charges of the piezoelectric sensors 14a and 14b, the output voltage may also be used. In this case, a voltage amplifier is used as the conversion amplifier 21, 22 instead of a charge amplifier. Moreover, although the case where piezoelectric elements with reverse polarization are used as the piezoelectric sensors 14a and 14b is illustrated above, piezoelectric elements without reverse polarization may be used. In this case, the piezoelectric element may be divided into left and right parts, and one side may be mounted upside down to form a substantially inverted polarization type, or the piezoelectric sensor 14a of the building 1 and the push rod 1
4g and between the second piezoelectric sensor 14c, electrodes d1 and d3 and electrodes d2 and d4 of the piezoelectric element pz are connected, and lead wires are connected to the electrodes d□ and d3, respectively. All you have to do is connect. Also number 1. Second
In this example, the piezoelectric sensor is pressed and fixed in the recess of the vortex generator by a push rod, but it may also be sealed and fixed with glass or the like. In the above, the case where the recess of the vortex generator is provided on the upper end side is illustrated, but it is also provided on the lower end side, and the first recess is provided on the upper end side.
A second piezoelectric sensor may be disposed in a recess on the lower end side of the piezoelectric sensor.

また渦流量計検出器10として本実施例では、渦発生体
13の凹部13d内にセンサ部14を設ける場合を例示
したが、渦発生体13の下流側に渦の生成による揚力を
受ける受力体を設け、受力体の凹部内にセンサ部を設け
てもよい。々お、センサ部のセンサとしては、圧電セン
サに限らず、ストレンゲージ、容量やインダクタンス等
必要に応じて種々のセンナを用いることができる。えだ
し圧電センナを用いる場合にはセンサ部に曲げモーメン
)Kよって生ずる応力変化を直接検出できる利点がある
Further, in this embodiment, the sensor section 14 is provided in the recess 13d of the vortex generator 13 as the vortex flowmeter detector 10, but the receiving force on the downstream side of the vortex generator 13 receives the lift force due to the generation of the vortex. A body may be provided, and the sensor portion may be provided within the recess of the force receiving body. Furthermore, the sensor of the sensor section is not limited to a piezoelectric sensor, and various sensors such as a strain gauge, capacitance, inductance, etc. can be used as required. When using an elongated piezoelectric sensor, there is an advantage that stress changes caused by bending moment (K) can be directly detected in the sensor section.

以上説明したように本発明においては、渦発生体(また
は受力体)の振動によるノイズの比と、管路歪みによる
ノイズの比とが実質的に等しい2点に、2Ilのセンサ
を配置してその出力を各々信号変換した後演算するとと
Kよって、外乱振動による影響を有効に除去しているの
で、Six比の良好な渦流量計が得られる。
As explained above, in the present invention, 2Il sensors are arranged at two points where the ratio of noise due to vibration of the vortex generator (or force receiving body) and noise due to pipe distortion are substantially equal. If the outputs are converted into signals and then calculated, the influence of disturbance vibrations is effectively removed, so a vortex flowmeter with a good Six ratio can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明渦流量計の一実施例の構成説明図、第2
図はその検出器部分の断面図、第3図は本発明渦流量針
の一実施例を示す電気的接続図、第4図は本発明に用い
る圧電センサの一例を示す構成説明図、第5図〜第8図
は本発明渦流量計の動作を説明するための特性曲線であ
る。 10・・・渦流量計検出器、11・・・管路、13・・
・渦発生体、13d・・・渦発生体の凹部、14・・・
センサ部、14a・・・第1の圧電センサ、14b・・
・第2の圧電センサ、20・・・渦流量計変換器、21
.22・・・変換増幅器、23・・・演算器。 731図 (イ) 5m2図 帛3図 (ロ) 応力 3 第6因
Fig. 1 is an explanatory diagram of the configuration of one embodiment of the vortex flowmeter of the present invention;
3 is an electrical connection diagram showing one embodiment of the eddy flow needle of the present invention, FIG. 4 is a configuration explanatory diagram showing an example of the piezoelectric sensor used in the present invention, and FIG. 8 are characteristic curves for explaining the operation of the vortex flowmeter of the present invention. 10...Vortex flow meter detector, 11...Pipeline, 13...
- Vortex generator, 13d... Concavity of vortex generator, 14...
Sensor section, 14a...first piezoelectric sensor, 14b...
- Second piezoelectric sensor, 20... Vortex flow meter converter, 21
.. 22... Conversion amplifier, 23... Arithmetic unit. Figure 731 (a) 5m2 diagram 3 (b) Stress 3 6th factor

Claims (2)

【特許請求の範囲】[Claims] (1)測定流体が流れる管路と、この管路に取付けられ
測定流体にその流速に応じたカル1ン渦を生成させる渦
発生体と、この渦発生体に設けた凹部内に固定された第
1.第2のセンナと、第1センサよりの信号が加えられ
る第1の変換増幅器と、第2のセンサよりの信号が加え
られる第2の変換増幅器と、第1の変換増幅器の出力と
第2の変換増幅器の出力とを加算または減算する演算器
とを有し、前記第1のセンサと第2のセンサは外乱振動
に基づ〈渦発生体の振動によるノイズの比と外乱振動に
基づく管路歪によるノイズの比とが実質的に等しくなる
2点に配置したことを特徴とする渦流量計。
(1) A conduit through which the fluid to be measured flows, a vortex generator attached to the conduit to generate a vortex in the measured fluid according to the flow velocity, and a vortex generator fixed in a recess provided in the vortex generator. 1st. a second sensor, a first conversion amplifier to which a signal from the first sensor is added, a second conversion amplifier to which a signal from the second sensor is added, and an output of the first conversion amplifier and a second conversion amplifier; and an arithmetic unit that adds or subtracts the output of the conversion amplifier, and the first sensor and the second sensor are configured based on the disturbance vibration. A vortex flowmeter characterized in that the vortex flowmeter is arranged at two points where the ratio of noise due to distortion is substantially equal.
(2)測定流体が流れる管路と、この管路に堆付けられ
測定流体にその流速に応じたカル1ン渦を生成させる渦
発生体と、この渦発生俸囮より生成されたカルマン渦が
作用する受力体と、との受力体に設けた凹部内に固定さ
れた第1.第2のセンナと、第1のセンサよりの信号が
加えられる第1の変換増幅器と、第2のセンサよりの信
号が加えられる第2の変換増幅器と、第1の変換増幅器
の出力と第2の変換増幅器の出力とを加算または減算す
る演算器とを有し、前記第1のセンナと第2のセンサは
外乱振動に基づく受力体の振動によるノイズの比と外乱
振動に基づく管路歪によるノイズの比とが実質的に畔し
く表る2点に配置したことを特徴とする渦流量計。
(2) A conduit through which the measurement fluid flows, a vortex generator installed in this conduit that generates a Karman vortex in the measurement fluid according to its flow velocity, and a Karman vortex generated by this vortex generation decoy. a first force-receiving member fixed in a recess provided in the force-receiving member; a second sensor, a first conversion amplifier to which a signal from the first sensor is added, a second conversion amplifier to which a signal from the second sensor is added, an output of the first conversion amplifier and a second conversion amplifier; and an arithmetic unit that adds or subtracts the output of the conversion amplifier of A vortex flowmeter characterized in that the vortex flowmeter is arranged at two points where the ratio of noise to noise is substantially sharply expressed.
JP56155947A 1981-09-30 1981-09-30 vortex flow meter Expired JPS6047531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56155947A JPS6047531B2 (en) 1981-09-30 1981-09-30 vortex flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56155947A JPS6047531B2 (en) 1981-09-30 1981-09-30 vortex flow meter

Publications (2)

Publication Number Publication Date
JPS5855816A true JPS5855816A (en) 1983-04-02
JPS6047531B2 JPS6047531B2 (en) 1985-10-22

Family

ID=15616997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56155947A Expired JPS6047531B2 (en) 1981-09-30 1981-09-30 vortex flow meter

Country Status (1)

Country Link
JP (1) JPS6047531B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02244583A (en) * 1989-03-17 1990-09-28 Sharp Corp Mat-form electric heater

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212353U (en) * 1985-07-08 1987-01-26
JPS62102770A (en) * 1985-10-30 1987-05-13 株式会社 福山不動 Low frequency treatment jig utilizing earphone
JPH0412995Y2 (en) * 1988-07-12 1992-03-27

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02244583A (en) * 1989-03-17 1990-09-28 Sharp Corp Mat-form electric heater

Also Published As

Publication number Publication date
JPS6047531B2 (en) 1985-10-22

Similar Documents

Publication Publication Date Title
US4437350A (en) Vortex flow metering apparatus
US4258565A (en) Force detector
US4381680A (en) Mass flow meter
JPS5855816A (en) Vortex flowmeter
JPS58160813A (en) Vortex flow meter
JPS5855817A (en) Vortex flowmeter
JPS58169029A (en) Vortex flowmeter
JPH11258016A (en) Vortex flow meter
GB2068551A (en) Vortex Shedding Flow Measuring Device
JPH048730B2 (en)
JP2893855B2 (en) Mass flow meter
JPH0641888B2 (en) SAW force sensor
JPH07225141A (en) Vortex flowmeter
JPH0498122A (en) Acoustic volumeter
JPH0569170B2 (en)
JP2893847B2 (en) Mass flow meter
JPH0569369B2 (en)
JPS5928342Y2 (en) force detector
JPS5924363B2 (en) vortex flow meter
JPS6244339Y2 (en)
JP2739353B2 (en) Mass flow meter
SU1624331A1 (en) Instrument pressure transducer
JPH0357920A (en) Coriolis mass flowmeter
JPS6032809B2 (en) Flow velocity flow measuring device
JPH0198926A (en) Mass flowmeter