JPS58169029A - Vortex flowmeter - Google Patents

Vortex flowmeter

Info

Publication number
JPS58169029A
JPS58169029A JP57052921A JP5292182A JPS58169029A JP S58169029 A JPS58169029 A JP S58169029A JP 57052921 A JP57052921 A JP 57052921A JP 5292182 A JP5292182 A JP 5292182A JP S58169029 A JPS58169029 A JP S58169029A
Authority
JP
Japan
Prior art keywords
receiving body
force receiving
noise
vibration
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57052921A
Other languages
Japanese (ja)
Inventor
Ichizo Ito
伊藤 一造
Kiyoshi Odohira
尾土平 「あ」
Kenichi Yoshioka
吉岡 賢一
Yoshiji Fukai
深井 吉士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Yokogawa Hokushin Electric Corp
Yokogawa Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp, Yokogawa Hokushin Electric Corp, Yokogawa Electric Works Ltd filed Critical Yokogawa Electric Corp
Priority to JP57052921A priority Critical patent/JPS58169029A/en
Publication of JPS58169029A publication Critical patent/JPS58169029A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/325Means for detecting quantities used as proxy variables for swirl
    • G01F1/3259Means for detecting quantities used as proxy variables for swirl for detecting fluid pressure oscillations
    • G01F1/3266Means for detecting quantities used as proxy variables for swirl for detecting fluid pressure oscillations by sensing mechanical vibrations

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

PURPOSE:To obtain the flowmeter having an excellent S/N ratio, by arranging two sensors at two points, where the ratio of the noise component due to the vibration of a force receiving body is substantially equal to the noise component due to the strain of a pipe, performing signal conversion, and thereafter performing computation. CONSTITUTION:In a detector 10 of the vortex flowmeter, a tubular nozzle 12 is provided at a right angle with the pipe 11 wherein fluid to be measured flows. The pillar shaped force receiving body 13 is inserted at a right angle with the pipe passage 11 through the nozzle 12. The first piezoelectric sensor 14a and the second piezoelectric sensor 14b are compressed and fixed to the inside of a concave part 13 of the force receiving body 13 with a specified interval being provided. Electric charges q1 and q2 are detected by the piezoelectric sensors 14a and 14b. The noise electric charge due to the vibration of the force receiving body 13 and the noise electric charge due to the strain of the pipe are superimposed on the signal electric charges obtained from the lift of the vortex in the q1 and q2, respectively. They are computed in an operator through an operation amplifier.

Description

【発明の詳細な説明】 本発明は、カルマン渦を利用して流体の流速または流量
を測定する渦流量計に関する◎流体中に物体を置くと、
物体の雨後側面から交互にかつ規則的に渦が発生し、下
流に満月となって流れることが古くから知られている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vortex flowmeter that measures the flow velocity or flow rate of a fluid using Karman vortices.◎When an object is placed in a fluid,
It has been known for a long time that vortices are generated alternately and regularly from the sides of objects after rain, and flow downstream in the form of a full moon.

この満月はカルマン渦列といわれ、単位時間ahの渦の
生成数(渦周波数)が流体の流速に比例していゐ〇そこ
で、測定流体を導く管路内K1発生体を配置し、渦の生
成による揚力変化を受力体に設けた圧電素子、ストレン
ゲージ、容量やインダクタンス婢のセンナで検出し丸後
信号便換して流体の流速や流量を測定する渦流量計が実
用化されている。
This full moon is called a Karman vortex street, and the number of vortices generated per unit time ah (vortex frequency) is proportional to the flow velocity of the fluid. Therefore, a K1 generator is placed in the pipe that guides the measured fluid to generate vortices. A vortex flow meter has been put into practical use that detects the change in lift caused by a piezoelectric element, strain gauge, capacitance, or inductance sensor installed in the receiving body, and then converts the signal after the round to measure the flow velocity and flow rate of the fluid.

ところでこの種の渦流量計においては、ポンプなどによ
り励起される配管振動等の外乱振動による影響を受け、
特に低流速時の87N比が悪化するという欠点があった
However, this type of vortex flowmeter is affected by external vibrations such as piping vibrations excited by pumps, etc.
In particular, there was a drawback that the 87N ratio at low flow speeds deteriorated.

すなわち外乱振動が加わると、受力体が振動するととも
に、管路に取付けた変換6等の搭載物も振動する。受力
体が振動するとその質量分布等に基づく曲げモーメント
が受力体に作用し、また搭載物が振動すると管路歪みが
生じ、この歪みによりても受力体に曲げ篭−メントが作
用する。その結果センナには、渦の揚力に基づく曲げモ
ーメントによる信号成分に、受力体の振動に基づく曲げ
検出される。このため従来は受力体の振動によるノイズ
成分と管路歪によるノイズ成分の和が小さい点を実験的
に求めて、その点にセンサを取付ける等の対策がなされ
ているが、両ノイズ成分の大きさおよび位相差が外乱振
動の加速度と周波数によりてそれぞれ独立に変化し、両
ノイズ成分の和の小さい点も外乱振動の加速度の大きさ
とMILtiIL#!iの値によって変化するため、充
分々効果を上げていない。
That is, when external vibration is applied, the force receiving body vibrates, and the mounted objects such as the converter 6 attached to the conduit also vibrate. When the force-receiving body vibrates, a bending moment based on its mass distribution etc. acts on the force-receiving body, and when the loaded object vibrates, pipe distortion occurs, and this distortion also causes a bending moment to act on the force-receiving body. . As a result, the sensor detects bending based on the vibration of the force receiving body in the signal component due to the bending moment based on the lift of the vortex. For this reason, countermeasures have been taken in the past, such as experimentally finding a point where the sum of the noise component due to the vibration of the force receiving body and the noise component due to pipe distortion is small, and installing a sensor at that point. The magnitude and phase difference change independently depending on the acceleration and frequency of the disturbance vibration, and the point where the sum of both noise components is small also corresponds to the magnitude of the acceleration of the disturbance vibration and MILtiIL#! Since it changes depending on the value of i, it is not sufficiently effective.

また、装置の感度を高めゐためには、受力体の剛性を減
らすのが効果的であるが、受力体の固有振動数を下げる
欠点がある。また、装置の機能を向上させ、測定可能範
囲を拡大すると、測定可能範囲の上限が、受力体の固有
振動数に近ずく、状態と彦る。
Furthermore, in order to increase the sensitivity of the device, it is effective to reduce the rigidity of the force receiving body, but this has the disadvantage of lowering the natural frequency of the force receiving body. Furthermore, when the functions of the device are improved and the measurable range is expanded, the upper limit of the measurable range approaches the natural frequency of the force receiving body.

本発明は、これらの問題点を解決するものであるO 本発明は、受力体に設けるセンナ部の任意の2点におい
て、受力体の振動によるノイズ成分の比と、管路歪みK
よるノイズ成分の比がそれぞれ外乱振動の加速度および
周波数に関係なく一定であることに着目し、2個のセン
ナを両ノイズ成分の比が実質的に等しい2点に配置して
各々信号変換した後演算することKよって、外乱振動に
よる影響を有効に除去すると共に、受力体の渦による共
振時の共振ノイズの比が、振動によるノイズ比とほぼ等
しくなるように受力体を構成して、8/N比の良好な渦
流量計を実現したものである。
The present invention solves these problems.The present invention solves these problems by determining the ratio of the noise component due to the vibration of the force receiving body and the pipe distortion K at any two points of the sensor section provided on the force receiving body.
Focusing on the fact that the ratio of the noise components is constant regardless of the acceleration and frequency of the disturbance vibration, two sensors are placed at two points where the ratio of both noise components is substantially equal, and the signals are converted. By calculating K, the influence of disturbance vibration is effectively removed, and the force receiving body is configured so that the ratio of resonance noise when the force receiving body resonates due to the vortices is almost equal to the noise ratio due to vibration, This realizes a vortex flowmeter with a good 8/N ratio.

第1図は本発明渦流量計の一実施例の外観図で、(イ)
は正面図、←)は側面図であり、第2図はその検出部を
断面で示す構成説明図、第5図は本発明渦流量計の一実
施例を示す電気的接続図である。図において、10け渦
流量計検出器、20は渦流量計変換器である。
Figure 1 is an external view of one embodiment of the vortex flowmeter of the present invention, (a)
2 is a front view, ←) is a side view, FIG. 2 is a configuration explanatory diagram showing the detection section in cross section, and FIG. 5 is an electrical connection diagram showing one embodiment of the vortex flowmeter of the present invention. In the figure, 10 vortex flowmeter detectors and 20 are vortex flowmeter converters.

渦流量計検出器10において、11は測定流体が流れ為
管路、12は管路11に直角に設けられた円筒状のノズ
ル、13はノズル12を通して管路11に直角に挿入き
れた柱状の受力体で、ステンレス郷からなシその上端1
3iLはノズル12にネジまたは溶接によ)固定され、
下端13bは管路11に支持されている。
In the vortex flowmeter detector 10, 11 is a pipe through which the fluid to be measured flows, 12 is a cylindrical nozzle provided perpendicularly to the pipe 11, and 13 is a columnar nozzle inserted perpendicularly into the pipe 11 through the nozzle 12. It is a force receiving body, and its upper end 1 is from the stainless steel town.
3iL is fixed to the nozzle 12 (by screws or welding),
The lower end 13b is supported by the conduit 11.

受力体13の―j定流体と接する部分13cは測定流体
にカルミン製列を生ぜしめ、かつ揚力変化を安定強化す
るようK例えば台形等の断面形状を有し、また上端13
a Ill #ICは凹部13d l−有している。而
して、受力体13は渦による共振時KF51r登の共振
状郭電セン? 14mと第!の圧電センサ14bとが一
定間隔おいて抑圧固定されている。センナ部14におい
て、ステンレス等の下敷14cは第2の圧電センサ14
bと凹部13dの底面とのパラフチの役目をし、凹部1
3dの底面の加工上のあらさ管理の困難さを補う4ので
ある。ステンレス郷の第1のスペーサ14dとセラζツ
ク等の絶縁板14eおよびステンレス等の第!のスペー
サ14fは第1の圧電センサ14mと第2の圧電センサ
14bとの間隔を決めるとともに、両者の絶縁を行うた
めのものである。ステンレス等の押し棒14gはセンナ
14m、 14bを押圧し良状態で受力体13の上端1
3a K @接され、センサ14a、 14bを押圧固
定するものである。なおセンナ部14は渦発生体13に
下敷14cと押し棒14gの上部のみで接触するように
なっている。圧電センすれている。さらに圧電素子pz
 には第4図0)の斜視図に示すようkその表と裏にそ
れぞれ測定流体の流れ方向(図の矢印方向)に対して左
右に分割して対称的に電極d工、 d2. d3. d
4が設けられ、かつ第4図(ロ)K示す如く矢印方向(
渦の揚力方向)の力による■げモーメントによりて中立
軸を挾んで互いに逆方向に発生する応力(圧縮応力と引
張応力)K対応して電極d工、d2間に生ずる電荷と、
電極d3.d4間に生ずる電荷とが同極性になるように
反転分極されている。このため第4図fiK示すように
同方向に発生する応力に対しては両電極間に互いに逆極
性の電荷が発生する。壇た測定流体の流れ方向のストレ
スによって発生する電荷量は電極間でキャンセルされて
出てこす、また流れ方向の配管振動によって発生する電
荷量も電極間で互いにキャンセルされて出てこない。第
1の圧電センサ14aは電極d工、d2問および電極d
3. d、間にそれぞれ生ずる同極性の電荷の和を出力
電荷q1とし逆極性の電荷をキャンセルするために、電
極d□と63とが押し棒14gを介して共通に受力体1
3すなわち基準点に接続され、電極d2とd、とがスペ
ーサ14fを介して共通にリード1IIe1に接続され
ている。
The portion 13c of the force-receiving body 13 that is in contact with the constant fluid has a cross-sectional shape such as a trapezoid, for example, to produce a carmine column in the measured fluid and to stabilize and strengthen changes in lift, and the upper end 13
a Ill #IC has a recess 13d l-. So, when the force receiving body 13 resonates due to the vortex, is it a resonant electric sensor of KF51r? 14m and the 1st! The piezoelectric sensors 14b are suppressed and fixed at regular intervals. In the sensor part 14, the underlay 14c made of stainless steel or the like is connected to the second piezoelectric sensor 14.
b and the bottom of the recess 13d.
This is to compensate for the difficulty in controlling the roughness of the bottom surface of 3D. A first spacer 14d made of stainless steel, an insulating plate 14e made of ceramic or the like, and a first spacer made of stainless steel or the like! The spacer 14f is used to determine the distance between the first piezoelectric sensor 14m and the second piezoelectric sensor 14b, and to insulate them. A push rod 14g made of stainless steel or the like presses the senna 14m and 14b, and in good condition presses the upper end 1 of the force receiving body 13.
3a K @ is in contact and presses and fixes the sensors 14a and 14b. The senna portion 14 is configured to come into contact with the vortex generator 13 only through the underlay 14c and the upper part of the push rod 14g. The piezoelectric sensor is worn out. Furthermore, piezoelectric element pz
As shown in the perspective view of Fig. 4 (0), electrodes d are arranged symmetrically on the front and back sides of the electrodes divided into right and left sides with respect to the flow direction of the fluid to be measured (direction of the arrow in the figure), d2. d3. d
4 is provided, and the arrow direction (
Stress (compressive stress and tensile stress) generated in mutually opposite directions across the neutral axis due to the bending moment caused by the force (in the direction of the lifting force of the vortex)
Electrode d3. The polarization is reversed so that the electric charges generated between the terminals d4 and d4 have the same polarity. Therefore, as shown in FIG. 4, charges of opposite polarity are generated between the two electrodes in response to stresses occurring in the same direction. The amount of electric charge generated by the stress in the flow direction of the measured fluid is canceled between the electrodes and does not come out, and the amount of electric charge generated by pipe vibration in the flow direction is also canceled out between the electrodes and does not come out. The first piezoelectric sensor 14a includes electrodes d, d2 and electrodes d.
3. In order to make the sum of charges of the same polarity generated between the electrodes d and 63 the output charge q1 and cancel the charges of opposite polarity, the electrodes d□ and 63 are connected to the force receiving body 1 in common via the push rod 14g.
3, that is, the reference point, and the electrodes d2 and d are commonly connected to the lead 1IIe1 via the spacer 14f.

第2の圧電センサ14bは電極d1.d2問および電極
ds+ %関にそれぞれ生ずる同極性の電荷の和倉出力
電荷q2とし逆極性の電荷をキャンセルして、かつql
とは極性を反転させる九めに、電極d工とd3がスペー
サ14d を介して共通にリード線e2に接続され、電
極d2とd4とが下敷140 番介して共通に受力体1
3すなわち基準点に接続されている。リード線eよ、1
2はセンナ部14の各部品に設けられた貫通孔およびハ
ーメチックシール14hを介して外部に取)出され、渦
流量計変換器20に接続される。なお受力体13の凹部
13dとセンサ部14で囲まれた部分には結露防止のた
めに、露点の低いガスが封入されてお勤、押し棒14g
 Kは封入ガス用の連通孔141が設けられている。ま
たセンナ部14の各部品の厚さおよび材質は、温度便化
により初期押しつけ応力に変化が生じないように決定さ
れている・渦流量計変換器20は、2個の変換増幅器2
1.22と、これら変換増幅器21.22の出力の加算
または減算を行う演算器23と、変換器2oを管路11
に固定するためのプラケット24とを有している。変換
増幅器21 (22)としては、演算増幅器0p1(O
20)と、Op□(0P2)  の帰還回路に接続され
たコンデンサC工(C2)と抵抗R□(R2)の並列回
路からなるチャージアンプが示されておシ、演算増幅器
Op  の反転入力端子←)にリード線l!1が接続さ
れ、演算増幅器1 □・              
                    喀Op2の
反転入力端子←)KIJ−ド線e2が接続されている。
The second piezoelectric sensor 14b has electrodes d1. Let Wakura output charge q2 be the charge of the same polarity generated at d2 and electrode ds+%, cancel the charge of opposite polarity, and ql
In the ninth step of reversing the polarity, electrodes d and d3 are commonly connected to the lead wire e2 through the spacer 14d, and electrodes d2 and d4 are commonly connected to the force receiving body 1 through the underlay 140.
3, that is, connected to the reference point. Lead wire e, 1
2 is taken out to the outside through a through hole provided in each part of the sensor section 14 and a hermetic seal 14h, and connected to a vortex flowmeter converter 20. Note that a gas with a low dew point is filled in the area surrounded by the recess 13d of the force receiving body 13 and the sensor part 14 to prevent condensation.
K is provided with a communication hole 141 for the sealed gas. In addition, the thickness and material of each part of the sensor section 14 are determined so that the initial pressing stress does not change due to temperature adjustment.
1.22, an arithmetic unit 23 that adds or subtracts the outputs of these conversion amplifiers 21.22, and a converter 2o are connected to the pipe 11.
It has a placket 24 for fixing to. The conversion amplifier 21 (22) is an operational amplifier 0p1 (O
20) and a charge amplifier consisting of a parallel circuit of a capacitor C (C2) and a resistor R (R2) connected to the feedback circuit of Op (0P2) are shown, and the inverting input terminal of operational amplifier Op is shown. ←) Lead wire l! 1 is connected, operational amplifier 1 □・
The inverting input terminal of Op2 is connected to the KIJ-do line e2.

演算@23は、抵抗R3により帰還が施された演算増幅
器op からなり、O20の反転入力端子(−)に演算
抵抗R4を介して加えられる変換器21の出力電圧・、
と、抵抗R5と可変抵抗R6の直列回路を介して加えら
れる変換増幅器22の出力e2との加算を行うものが示
されている。
The operation @23 consists of an operational amplifier op which is fed back by a resistor R3, and the output voltage of the converter 21 is applied to the inverting input terminal (-) of O20 via the operational resistor R4.
, and the output e2 of the conversion amplifier 22, which is added through a series circuit of a resistor R5 and a variable resistor R6.

このように構成し九本発明渦流量針の動作を第5図を参
照して以下に説明する。受力体13は、管路11内に測
定流体が流れると、カル1ン渦を発生させるとともK、
渦の生成に基づく揚力変化を受ける。受力体13が揚力
を受けると、センナ部14に揚力による曲げモーメン)
MVが作用し、その内部には第S図に8で示す如きほぼ
直線の応力分布が生ずる。なお第5図における応力値は
圧電センナで検出した場合の電荷量の値で示しである。
The operation of the nine inventive vortex flow needles constructed in this manner will be described below with reference to FIG. When the measuring fluid flows into the pipe line 11, the force receiving body 13 generates a Curl vortex and K,
It undergoes lift changes based on the generation of vortices. When the force receiving body 13 receives a lift force, bending moment due to the lift force is applied to the senna section 14)
MV acts, and a nearly linear stress distribution as shown at 8 in FIG. S is generated inside the MV. Note that the stress values in FIG. 5 are shown in terms of the amount of charge when detected by a piezoelectric sensor.

、また受力体13はポンプ等により励起される外乱振動
によりても渦の揚力と同方向の力を受ける。この外乱振
動による力には、受力体13の振動によるモードと、搭
載物の振動に基づく管路歪みKよるモードがあや、セン
サ部14にはそれぞれのモードによって曲げモーメント
yα19Mα2が作用する。センサ部14の内部には、
受力体13の振動によるモーメンMα1の作用によりて
第$図Kmで示す如き曲線の応力分布が生じ、管路歪み
によるモーメントMα2の作用によって第5図Kbで示
す如きほぼ直線の応力分布が生ずる。その結果センサ部
14の圧電センサ14a、 14b K検出される電荷
qtt q2 Kは、それぞれ渦の揚力による信号電荷
に、受力体13の振動によゐノイズ電荷と管路歪みによ
るノイズ電荷とが重畳されてお勤、渦の揚力による信号
電荷の振幅を81(ω)、!32(ω)、受力体13の
振動によるノイズ電荷の振幅をA1(ω)、ム2(ω)
、管路歪みによるノイズ電荷の振幅をB1(ω)、B2
(ω) とすると次式でそれぞれ与えられる。
Furthermore, the force receiving body 13 receives a force in the same direction as the lifting force of the vortex due to disturbance vibrations excited by a pump or the like. The force due to this disturbance vibration has a mode due to the vibration of the force receiving body 13 and a mode due to the pipe distortion K based on the vibration of the loaded object, and a bending moment yα19Mα2 acts on the sensor section 14 depending on each mode. Inside the sensor section 14,
The action of the moment Mα1 caused by the vibration of the force-receiving body 13 causes a curved stress distribution as shown in Figure Km, and the action of the moment Mα2 due to pipe distortion creates a nearly linear stress distribution as shown in Figure 5 Kb. . As a result, the charges qtt q2 K detected by the piezoelectric sensors 14a and 14b of the sensor unit 14 are composed of a signal charge due to the lift of the vortex, a noise charge due to the vibration of the force receiving body 13, and a noise charge due to pipe distortion. The amplitude of the signal charge due to the lift of the vortex is 81 (ω)! 32 (ω), the amplitude of the noise charge due to the vibration of the force receiving body 13 is A1 (ω), and Mu2 (ω).
, the amplitude of noise charge due to pipe distortion is B1 (ω), B2
(ω) are given by the following equations.

q1■81(ω)1i1nM+A 1(ω)sln4’
 t+81(ω豐)sin(ω’t+4(ω轡))  
   (1)q21j!32 (” )sin61t+
A2 ((1〕)81nω’t+82(u’)sin(
ω’t−1n(m’))     (2)ただし、ω:
信号電荷の角周波数 ωI:ノイズ電荷の角周波数 4(ω1):ノイズ電荷間の位相差 (1)式および(2)弐において、信号電荷の振幅S1
(ω)。
q1■81(ω)1i1nM+A 1(ω)sln4'
t+81(ω豐)sin(ω't+4(ω轡))
(1)q21j! 32 (”) sin61t+
A2 ((1))81nω't+82(u') sin(
ω't-1n(m')) (2) However, ω:
Angular frequency ωI of signal charge: Angular frequency 4 (ω1) of noise charge: Phase difference between noise charges In equations (1) and (2) 2, amplitude S1 of signal charge
(ω).

B2(ω)は渦の揚力すなわち渦周波数によってそれぞ
れ変化する。またノイズ電荷の振幅ム□(ω雪)。
B2(ω) varies depending on the lift force of the vortex, that is, the vortex frequency. Also, the amplitude of the noise charge is □ (ω snow).

A2(ω1)、B工(6Jつ、B2(ωつおよび位相差
φ(L、、・)も外乱振動の加速度訃よび周波数によっ
てそれぞれ変化するが、振幅の比ム2(ω’)/A工(
ヒ)およびB2(ω’)/B□(ωI)は外乱振動の加
速度および周波数の影響を受けず一定であり、しかも第
5図に示すように受力体13の振動によるノイズ電荷の
分布曲線−と、管路歪によるノイズ電荷の分布tabと
が交叉する2点が存在し、圧電センナ14m、 14b
のを付は位置M点とNAにおいては次式の関係を満足す
る。
A2(ω1), B(6J), B2(ω) and phase difference φ(L,...) also change depending on the acceleration and frequency of the disturbance vibration, but the amplitude ratio 2(ω')/A Engineering (
H) and B2(ω')/B□(ωI) are constant without being affected by the acceleration and frequency of disturbance vibration, and as shown in FIG. There are two points where - and the noise charge distribution tab due to pipe distortion intersect, and piezoelectric sensors 14m and 14b intersect.
The following equation is satisfied at the position M and NA.

そして(3)式を満足する2点の組合せは種々ムリ。There are various combinations of two points that satisfy equation (3).

例えば第6図に示すように1管路歪みによるソイN1点
およびMII 点とN“電点であってもよい。なお受力
体の振動による応力分布曲線は、受力体13およびセン
ナ部14の材質、形状1寸法によって第7図のax e
 lL2 * aaK示すように変化するが、(3)式
の関係を満足する2点は必ず存在する。第7図において
は、応力分布tB 111 a□H62g B3を生ず
るセンサ部14の寸法りはそれぞれL□# L2# L
3と異りている(t、、< L2< L3)が、説明を
簡便にする丸め基準寸法LoK換算して示しである。ま
た管路歪みによる応力分布線は搭載物の重さ等によって
も第8図のbl。
For example, as shown in FIG. 6, the soi N1 point, the MII point, and the N" electric point may be generated due to distortion of one pipe. Note that the stress distribution curve due to the vibration of the force receiving body is the same as that of the force receiving body 13 and the ax e in Figure 7 depending on the material and shape 1 dimension.
lL2 * aaK varies as shown, but there are always two points that satisfy the relationship in equation (3). In FIG. 7, the dimensions of the sensor section 14 that produce the stress distribution tB 111 a□H62g B3 are L□#L2#L, respectively.
3 (t, < L2 < L3) is shown in terms of the rounding standard dimension LoK to simplify the explanation. Also, the stress distribution line due to conduit distortion may vary depending on the weight of the loaded object, etc. as shown in Figure 8.

B2.B3に示すように変化するがM点とN点における
振幅の比B21(ωl)/B1□(句l)、B22(6
j)lB12(ω1)。
B2. The ratio of amplitudes at point M and point N varies as shown in B3.
j) lB12(ω1).

B23(ω’ )lB13(ω′)は岬しいので、搭載
物の重さ等が変っても(5)式は成立する。
Since B23(ω')lB13(ω') is steep, equation (5) holds true even if the weight of the loaded object changes.

圧電センナ14aの出力電荷q□は変換増幅器21に加
えられ、圧電−ンサ14bの出力電荷q2は反転されて
変換増幅器22に加えられ、それぞれ交流電圧e□+ 
82に変換された後演算器23に加えられる・演算器2
3は、el、 @2を加算し、その出力の3は次式で与
えられる。
The output charge q□ of the piezoelectric sensor 14a is applied to the conversion amplifier 21, and the output charge q2 of the piezoelectric sensor 14b is inverted and applied to the conversion amplifier 22, and the AC voltage e□+
After being converted into 82, it is added to the arithmetic unit 23.・Arithmetic unit 2
3 adds el, @2, and the output 3 is given by the following equation.

変換増幅器21.22のゲインをに工t B2とすると
、(1)式および(2)式から63は次式の如くなる。
If the gains of the conversion amplifiers 21 and 22 are expressed as tB2, 63 becomes the following equation from equations (1) and (2).

(5)式におい’f 、A2(’d )/A1(a+”
 ) k XびB2 (m’ )/Bl (U )は(
s)式の関係を満足するように選ばれているので、可変
抵抗R6を調整して、 を満足させれば、演算器23の出力e3け、となり、外
乱振動によるノイズの影響を有効に除去でB1石。
(5) Formula 'f, A2('d)/A1(a+''
) k X and B2 (m')/Bl (U) is (
Since it is selected to satisfy the relationship of equation s), if the variable resistor R6 is adjusted to satisfy the following, the output of the arithmetic unit 23 becomes e3, which effectively eliminates the influence of noise caused by external vibration. So B1 stone.

さて1以上の配管振動によるノイズを2ケの圧電素子の
信号比とノイズ比の差異を利用することKより回路処理
にて除去することを説明してきた。
Now, it has been explained that noise caused by one or more piping vibrations is removed by circuit processing using the difference between the signal ratio and noise ratio of two piezoelectric elements.

配管ノイズの影響があられれるのは比較的渦周波数が低
く信号レベルの小さい場合である・一方、渦周波数が高
くなると、受力体13の固有振動数と接近してくる。た
とえば、管路11の口径D −50ムで。
The influence of piping noise is felt when the vortex frequency is relatively low and the signal level is small. On the other hand, when the vortex frequency becomes high, it approaches the natural frequency of the force receiving body 13. For example, if the diameter of the conduit 11 is D-50 mm.

d/D−0,28(dは受力体の直径)流速70m/s
 Kお異なるが2〜3 kHz程度である・ 渦周波数が固有振動数fnに接近してくると、素子に固
有振動数fnのノイズの励起が着しくなシ信、 号処理
が困難となシ、測定流速の上限が事実上、この渦発生体
の共振ノイズの信号処理によって決定される。
d/D-0,28 (d is the diameter of the force receiving body) Flow velocity 70 m/s
K varies, but it is about 2 to 3 kHz. When the vortex frequency approaches the natural frequency fn, the element becomes difficult to excite noise at the natural frequency fn, and the signal processing becomes difficult. , the upper limit of the measured flow velocity is effectively determined by the signal processing of the resonant noise of this vortex generator.

受力体13の共振時のノイズは、第を図に示すようK、
受力体13の重心に荷重が作用した形のノイズとなる。
The noise at the time of resonance of the force receiving body 13 is K, as shown in the figure.
This results in noise in the form of a load acting on the center of gravity of the force receiving body 13.

M点とN、aKおかれた圧電素子に発生するノイ(5)
式でのλに等しければ、演算器の出力・3にはこの共振
ノイズは出てこない。
Noise generated in the piezoelectric element placed at point M and N, aK (5)
If it is equal to λ in the formula, this resonance noise will not appear in the output 3 of the arithmetic unit.

よって(5)式のλは、重心の位置と圧電素子の位置と
を考慮して は前二者の比におおよそ等しければ信号レベルが十分大
きいので実際上は影譬ない。
Therefore, considering the position of the center of gravity and the position of the piezoelectric element, if λ in equation (5) is roughly equal to the ratio of the former two, the signal level is sufficiently large, so there is no problem in practice.

なお、第9図#i第・図とではλの値が合致しないよう
に見えるが、説明の都合上に基因する−ので、実際上は
曲線は、M、N点間においては、基線0−OK平行な平
行線に近いものとな抄、13の・値は一致あるいは、お
およそ等しく表る。
It should be noted that although the value of λ does not seem to match in Figure 9 #i, this is due to the convenience of explanation.Actually, the curve between points M and N is based on the base line 0- OK, if the lines are close to parallel, the values of 13 will be the same or approximately equal.

第を図に訃いて、C曲線では、未だ、受力体の重心位置
が高すぎ、(8)式を満足しない。0曲線の如く、たと
えば重心を低くして、(8)式を満足すゐようKすれば
よい。
However, in curve C, the center of gravity of the force-receiving body is still too high and does not satisfy equation (8). For example, the center of gravity may be lowered like a 0 curve, and K may be set so as to satisfy equation (8).

この結果本発明によれば87N比を、圧電センナを1個
用いた従来の渦流量計に比して10倍以上改善できた。
As a result, according to the present invention, the 87N ratio could be improved by more than 10 times compared to the conventional vortex flowmeter using one piezoelectric sensor.

なお上述では、変換増幅器21の出力・、と変換増幅器
22の出力e2を演算器23で加算する場合を例示した
が、圧電セy t 14a、 14bの出力電荷q11
q2のノイズ成分が同相の場合には演算器23で減算す
ればよい。また上述では圧電センナ14m、 14bの
出力電荷を利用する場合を例示したが、出力電圧を利用
して奄よい。この場合変換増幅器21.22としてはチ
ャージアンプの代わりに電圧増幅器が用いられる・また
上述では圧電センサ14a、 1仙として反転分極した
圧電素子を用いる場合を例示したが、反転分極しない圧
電素子を用いてもよい◎この場合圧電素子を左右に分割
し、一方を裏返しにして取付けて実質的に反転分極形に
してもよいし、また第1の圧電センサ14aと押し神1
4gの間および第2の圧電センサ14cの間にそれぞれ
絶縁板を設け、かつ圧電素子pzの電極d工とd3およ
び電極d2とd4を各々結線し%ρ為つ電極d□とd3
とにそれぞれリード線を接続すればよい。また第1.第
2の圧電センサを押し棒によって受力体13の凹部内に
押圧固定する場合を例示したが、ガラス等で封着固定し
てもよい。また上述では受力体13の凹部を上−側圧設
ける場合を例示したが、下端11にも設け、上端側の凹
部に第1の圧電センナを、下端側の凹部に第2の圧電セ
ンナを配置するようKして4よい・ また渦ftt tt検出器10として本実施例では、受
力体13の凹部13d内にセンサ部14を設ける場合を
例示し九が、受力体13の上端側に別体に渦発生体を設
けてもよい。なお、センナ部のセンナとしては、圧電セ
ンサに限らず、ストレンゲージ、容量やインダクタンス
等必要に応じて種々のセンナを用いることができる。た
だし圧電センナを用いる場合にはセンナ部に曲げモーメ
ントによって生ずる応力変化を直接検出できる利点があ
る。
In addition, in the above description, the case where the output of the conversion amplifier 21 and the output e2 of the conversion amplifier 22 are added by the arithmetic unit 23 was illustrated, but the output charge q11 of the piezoelectric cells y t 14a, 14b
If the noise components of q2 are in phase, the arithmetic unit 23 may subtract them. Further, although the above example uses the output charges of the piezoelectric sensors 14m and 14b, it is also possible to use the output voltage. In this case, voltage amplifiers are used instead of charge amplifiers as the conversion amplifiers 21 and 22.In addition, in the above example, a piezoelectric element with inverted polarization is used as the piezoelectric sensor 14a, but it is also possible to use a piezoelectric element without inverted polarization. ◎In this case, the piezoelectric element may be divided into left and right parts, and one side may be mounted upside down to form a substantially inverted polarization type, or the first piezoelectric sensor 14a and pusher 1
An insulating plate is provided between 4g and the second piezoelectric sensor 14c, and the electrodes d and d3 and the electrodes d2 and d4 of the piezoelectric element pz are connected respectively, and the electrodes d□ and d3 are connected to each other.
Just connect the lead wires to each. Also number 1. Although the case where the second piezoelectric sensor is pressed and fixed in the recess of the force receiving body 13 with a push rod has been illustrated, it may be sealed and fixed with glass or the like. Furthermore, although the case where the recessed portion of the force receiving body 13 is provided with upper-side pressure is illustrated above, it is also provided at the lower end 11, and the first piezoelectric sensor is placed in the recessed portion on the upper end side, and the second piezoelectric sensor is placed in the recessed portion on the lower end side. In this embodiment, as the vortex ftt tt detector 10, the sensor part 14 is provided in the recess 13d of the force receiving body 13. A separate vortex generator may be provided. Note that the sensor in the sensor section is not limited to a piezoelectric sensor, and various sensors such as a strain gauge, capacitance, inductance, etc. can be used as required. However, when a piezoelectric sensor is used, there is an advantage that changes in stress caused by bending moments in the sensor can be directly detected.

以上説明したように本発明においては、受力体の振動に
よるノイズの比と、管路歪みKよるノイズの比とが実質
的に等しい2点に%!個のセンナを配置してその出力を
各々信号変換した後演算することによって、外乱振動に
よる影I#を有効に除去し得るようにした。而して、鉤
信号の周波数の高い場合における受力体自体の共振をも
有効に除去し得るようKしえ。
As explained above, in the present invention, the ratio of noise due to vibration of the force receiving body and the ratio of noise due to pipe strain K are substantially equal to 2%! The shadow I# caused by external vibration can be effectively removed by arranging several sensors and converting their outputs into signals and then calculating them. In this way, it is possible to effectively eliminate the resonance of the force receiving body itself when the frequency of the hook signal is high.

この結果、本発明によれば、S/N比の良効な渦流量計
を実現することかで龜る。
As a result, according to the present invention, it is difficult to realize a vortex flow meter with a good S/N ratio.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明渦流量計の一実施例の構成説明図、第2
図はその検出輪部分の断面図、第S図は本発明渦流量計
の一実施例を示す電気的接続図、第4図は本発明に用い
る圧電センサの一例管示す構成説明図、第5図〜第9図
は本発明渦流量計の動作を説明するための特性曲線であ
る。 10・・・渦流量計変換器、11・・・管路、13・・
・受力体、13d・・・受力体の凹部、14・・・セン
ナ部、14&・・・第1の圧電センナ、14b・・・第
2の圧電センサ、 20・・・渦流量計変換器、21.
22・・・変換増幅器、23・・・演算器〇′、ビレ %/[!1 (/l) 茅 zrB 憂 31!1 !J4 図 (イ) d。 応 力 第 fl!l lj 1g41!1 芽 7 図 Z 芽 3 m 99[!1
Fig. 1 is an explanatory diagram of the configuration of one embodiment of the vortex flowmeter of the present invention;
The figure is a sectional view of the detection wheel portion, Figure S is an electrical connection diagram showing an embodiment of the vortex flow meter of the present invention, Figure 4 is a configuration explanatory diagram showing an example of a piezoelectric sensor used in the present invention, and Figure 5 9 to 9 are characteristic curves for explaining the operation of the vortex flowmeter of the present invention. 10...Vortex flowmeter converter, 11...Pipe line, 13...
・Force receiving body, 13d... Concavity of force receiving body, 14... Senna portion, 14 &... First piezoelectric sensor, 14b... Second piezoelectric sensor, 20... Eddy flowmeter conversion Vessel, 21.
22... Conversion amplifier, 23... Arithmetic unit 〇', Vire%/[! 1 (/l) Kaya zrB Yuu 31!1! J4 Figure (a) d. Stress No. fl! l lj 1g41!1 Bud 7 Figure Z Bud 3 m 99[! 1

Claims (1)

【特許請求の範囲】[Claims] 測定流体が流れる管路と、該管路に挿入固定された受力
体と、該受力体に設けられた凹部内に固定された第1.
$2センナと、第1センサよ動の信号が加えられる第1
0変換増幅器と、第2センナよ)O信号が加えられる第
2変換増幅器と、第1変換増幅SO出力と第2変換増幅
器の出力とを加算または減算する演算器とを具備し、前
記第1センナと第2センナは外乱振動に基づく受力体の
振動によるノイズの比と外乱振動に基づく管路歪による
ノイズの比とが等しくなる二点に配置されると共に#配
受力体の渦による共振時における前記二個のセンナによ
シ検出される共振ノイズの比が前記外乱振動によるノイ
ズの比とおおよそ婢しくなるように受力体を構成してな
る渦流量計。
A conduit through which a measurement fluid flows, a force receiving body inserted and fixed in the conduit, and a first force receiving body fixed in a recess provided in the force receiving body.
$2 sensor and a first sensor to which a signal of movement is applied.
0 conversion amplifier, a second conversion amplifier to which an O signal is added, and an arithmetic unit that adds or subtracts the output of the first conversion amplification SO output and the output of the second conversion amplifier, The senna and the second senna are placed at two points where the ratio of noise due to vibration of the force-receiving body based on external vibration is equal to the ratio of noise due to pipe distortion due to external vibration, and A vortex flowmeter comprising a force receiving body configured such that a ratio of resonance noise detected by the two sensors during resonance is approximately equal to a ratio of noise caused by the disturbance vibration.
JP57052921A 1982-03-31 1982-03-31 Vortex flowmeter Pending JPS58169029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57052921A JPS58169029A (en) 1982-03-31 1982-03-31 Vortex flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57052921A JPS58169029A (en) 1982-03-31 1982-03-31 Vortex flowmeter

Publications (1)

Publication Number Publication Date
JPS58169029A true JPS58169029A (en) 1983-10-05

Family

ID=12928290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57052921A Pending JPS58169029A (en) 1982-03-31 1982-03-31 Vortex flowmeter

Country Status (1)

Country Link
JP (1) JPS58169029A (en)

Similar Documents

Publication Publication Date Title
US4437350A (en) Vortex flow metering apparatus
US5069074A (en) Apparatus and method for measuring the mass flow rate of material flowing through at least one vibrating conduit
US4381680A (en) Mass flow meter
JPS5855816A (en) Vortex flowmeter
US9976890B2 (en) Vibrating flowmeter and related methods
JPS58169029A (en) Vortex flowmeter
JPS5855817A (en) Vortex flowmeter
JPS58160813A (en) Vortex flow meter
JP3200826B2 (en) Coriolis mass flowmeter
JPH11258016A (en) Vortex flow meter
JPH048730B2 (en)
JPH07225141A (en) Vortex flowmeter
JPH0783721A (en) Vibration type measuring apparatus
JP2976765B2 (en) Coriolis mass flowmeter
JP2893855B2 (en) Mass flow meter
JP2929731B2 (en) Karman vortex flowmeter and method of manufacturing the same
JPS6396517A (en) Mass flowmeter
JPH08122120A (en) Coriolis mass flowmeter
JPS5928342Y2 (en) force detector
JP2893847B2 (en) Mass flow meter
JPH0569170B2 (en)
JPH03199922A (en) Coriolis mass flowmeter
JPH06235652A (en) Mass flowmeter
JPS5924363B2 (en) vortex flow meter
JPH01107113A (en) Vortex flowmeter