JPS5862342A - Method to estimate temperature of cooling water in engine - Google Patents

Method to estimate temperature of cooling water in engine

Info

Publication number
JPS5862342A
JPS5862342A JP15946881A JP15946881A JPS5862342A JP S5862342 A JPS5862342 A JP S5862342A JP 15946881 A JP15946881 A JP 15946881A JP 15946881 A JP15946881 A JP 15946881A JP S5862342 A JPS5862342 A JP S5862342A
Authority
JP
Japan
Prior art keywords
cooling water
water
engine
water temperature
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15946881A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamaguchi
博司 山口
Hiroshi Miwakeichi
三分一 寛
Kuniaki Sawamoto
沢本 国章
Tatsuro Morita
森田 達郎
Satoru Takizawa
滝沢 哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP15946881A priority Critical patent/JPS5862342A/en
Publication of JPS5862342A publication Critical patent/JPS5862342A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/227Limping Home, i.e. taking specific engine control measures at abnormal conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To obtain proper controls in engine when the temperature of water cannot be detected by some abnormality by gradually increasing the supply of fuel and estimating the temperature of water at the time of perfect ignition according to a characteristic curve between the supply amount of fuel and the temperature of water on the basis of the supply amount at the time of perfect ignition. CONSTITUTION:When 0.5> A-point voltage V> 4.5, a water-temperature detecting circuit 1 is considered to be abnormal, and an injection pulse width Ti is gradually increased as time elapses by a computing circuit 16 until a perfect ignition is detected by a perfect ignition detector 14 on the basis of a signal from a revolution detecting unit 5. When the perfect ignition detector 14 is on, the pulse width Ti is fixed and inputted into a water-temperature estimator 17, and the temperature of water is estimated according to a characteristic curve and memorized in a memory 4. For this estimation, since the generated amount of heat is proportional to an integrated number of revolutions before cooling water is circulated to a radiator, the integrated number of revolutions is obtained by the water-temperature detector 17 for estimating the increased value of the water temperature, and this result is added to the water temperature at the time of perfect ignition for estimating the water temperature during driving. On the basis of this estimated value, the pulse width Ti is computed by the computing circuit 16.

Description

【発明の詳細な説明】 この発明は、機関の冷却水温度を検出する通常の冷却水
温度検出回路等に異常が発生して、実際の冷却水温度の
検出ができなくなった場合に、別の系統から冷却水温度
を推定する方法に関する。
[Detailed Description of the Invention] This invention provides a method for detecting engine cooling water temperature when an abnormality occurs in the normal cooling water temperature detection circuit etc. that detects the engine cooling water temperature and the actual cooling water temperature cannot be detected. This article relates to a method for estimating cooling water temperature from a system.

従来の機関の冷却水検出装(行としては、例えば第1図
に示すようなものがある。図において、]はサーミスタ
式の機関の冷却水温度センサで、周囲の温度(すなわち
冷却水温度)が変化すると、抵抗値が変化する。電源電
圧Vccの分圧抵抗It。
Conventional engine cooling water detection device (for example, there is a line as shown in Figure 1. In the figure) is a thermistor-type engine cooling water temperature sensor, which detects the ambient temperature (i.e., cooling water temperature). When the voltage changes, the resistance value changes.The voltage dividing resistor It of the power supply voltage Vcc.

とR2の接続点Aの電圧は、冷却水温度に応じて決まり
、例えば冷却水温度が一40°Cの時はA点の電圧は4
■、120℃の時は】■をそれぞれ示す。
The voltage at the connection point A between
■, When the temperature is 120℃, 】■ is shown respectively.

この電圧はA/D (アナログ−ディジタル)変換器2
でA / I)変換され、そのディジタル値をCPU3
が読み込み、メモリ4に内蔵されている制御プログラム
や定数に基づいて、機関の各種制御(例えば燃料供給量
や点火時期等)のパラメータを演算処理し、出力してい
る。
This voltage is applied to A/D (Analog-Digital) converter 2
A/I) is converted and the digital value is sent to CPU3.
The control program reads the control program and calculates and outputs various engine control parameters (for example, fuel supply amount, ignition timing, etc.) based on the control program and constants stored in the memory 4.

この従来の冷却水温度検出装置では、冷却水温度センサ
1やそのワイヤリングハーネスなどの冷却水検出回路に
、ショートまたは断線などの異常が発生すると、A点の
電圧は、ショートの場合は0■、断線の場合は抵抗R1
とR2で定まる最大分圧電圧Vmaxをそれぞれ示し、
実際の冷却水温度を検出することができずに、極端に高
い値か低い値を示す。そのため、このように冷却水温度
検出回路に異常が発生した場合には、すなわち、A点の
電圧が0.5 V以下または4.5V以上を示−た場合
には、実際の冷却水温度がいくらであっても、CP (
、J 3は冷却水温度が80°Cであるとみなしく推定
し)で、必要な処理を行なっている。
In this conventional cooling water temperature detection device, if an abnormality such as a short or disconnection occurs in the cooling water temperature sensor 1 or its wiring harness or other cooling water detection circuit, the voltage at point A will be 0 in the case of a short, In case of disconnection, resistor R1
and the maximum divided voltage Vmax determined by R2,
The actual cooling water temperature cannot be detected and shows extremely high or low values. Therefore, if an abnormality occurs in the cooling water temperature detection circuit, that is, if the voltage at point A shows 0.5 V or less or 4.5 V or more, the actual cooling water temperature will be No matter how much it is, CP (
, J3 assumes that the cooling water temperature is 80°C) and performs the necessary processing.

このため従来の冷却水温度検出装置では、冷却水温度検
出回路に異常が発生した場合には、実際の冷却水温度と
は太き(異なる値に基づいて機関の諸制御を行なうため
、制御が不適切かつ不正確′になり、特に、寒冷時の始
動ができなかったり、暖機時の運転性が悪いという問題
点があった。
For this reason, with conventional cooling water temperature detection devices, if an abnormality occurs in the cooling water temperature detection circuit, various controls of the engine are performed based on values that are different from the actual cooling water temperature. It is inappropriate and inaccurate, and has problems such as inability to start in cold weather and poor drivability during warm-up.

こ゛の発明は、このような従来“の問題点に着目してな
されたもので、冷却水温度検出回路が故障した場合には
、別の系統から冷却水温度を推定するものである。すな
わち機関の始動に際して、燃料供給量を最少値から徐々
に増量していき、完爆があった時の・燃料供給量からそ
の完爆時の冷却水温度を推定し、完爆後の機関運転中の
冷却水温度は、完爆後の機関の積算燃料供給扉、または
積算回転数から推定し、実際の冷却水温度に近い値を求
めることにより、上記問題点を解決することを目的とし
ている。
This invention was made by focusing on the conventional problems, and is designed to estimate the cooling water temperature from another system when the cooling water temperature detection circuit fails. When starting the engine, the amount of fuel supplied is gradually increased from the minimum value, and the cooling water temperature at the time of complete explosion is estimated from the fuel supply amount, and the temperature during engine operation after complete explosion is estimated. The purpose of the present invention is to solve the above problem by estimating the cooling water temperature from the cumulative fuel supply door or the cumulative rotational speed of the engine after complete explosion, and finding a value close to the actual cooling water temperature.

以下1.この発明を図面に基づし・て説明する。Below 1. This invention will be explained based on the drawings.

第2図は、この発明の機関の冷却水温度推定方法を実現
するための装置の一実施例を示すブロック図である。
FIG. 2 is a block diagram showing an embodiment of a device for realizing the engine cooling water temperature estimation method of the present invention.

図において、本装置は、第1図に示した従来装置、すな
わち冷却水温度センサ1、電源電圧Vcc、A/D変換
器2、抵抗R,,R2,CPU3、メモ1月に加えて、
機関の1回転毎に信号を発する回転検出装置5、スター
タモータをオ゛ン・オフさせるスタータモータスイッチ
6、各気筒に燃料を噴射する燃料噴射弁7、回転検出装
置5やスタータモータスイッチ6の信号等を入力し、燃
料噴射弁7の駆動信号等を出力する入出力制御回路8、
冷却水温度セ/す1の出力値が正常か否かを判別し、入
出力制御回路8を作動させる温度センサ判別回路9等か
ら構成される。
In the figure, in addition to the conventional device shown in FIG.
A rotation detection device 5 that emits a signal every revolution of the engine, a starter motor switch 6 that turns the starter motor on and off, a fuel injection valve 7 that injects fuel into each cylinder, a rotation detection device 5 and a starter motor switch 6. an input/output control circuit 8 that inputs signals etc. and outputs drive signals etc. for the fuel injection valve 7;
The temperature sensor determining circuit 9 determines whether the output value of the cooling water temperature sensor 1 is normal or not, and operates the input/output control circuit 8.

第3図は第2図の温度センサ判別回路9のブロック図を
示す。図において、A点の電圧は比較器10および11
によりそれぞれ基準電圧0.5 Vおよび4.5 V 
 と比較され、一方の比較器10の出力はNOT回路1
2により反転され、NOT回路12と他方の比較器11
の出力がOR回路13に入力される。従って、01(1
回路13すなわち温度セ/す判別回路9の出力端子I3
からは、A点電圧が0.5 V〜4.5V以内の場合に
はロー信号(これはA点以前の冷却水温度検出回路が正
常であることを示す。)が、A点電圧が0.5V以下ま
たは4.5 V以上の場合にはハイ信号・(これは異常
であることを示す。)が出力され、冷却水温度検出回路
が正常が否がが判別される。
FIG. 3 shows a block diagram of the temperature sensor discrimination circuit 9 of FIG. 2. In the figure, the voltage at point A is
with reference voltages of 0.5 V and 4.5 V, respectively.
The output of one comparator 10 is compared with the NOT circuit 1.
2, the NOT circuit 12 and the other comparator 11
The output of is input to the OR circuit 13. Therefore, 01(1
Output terminal I3 of circuit 13, that is, temperature discrimination circuit 9
From this, when the A point voltage is within 0.5 V to 4.5 V, a low signal (this indicates that the cooling water temperature detection circuit before A point is normal), but when the A point voltage is 0. If the voltage is below .5V or above 4.5V, a high signal (indicating an abnormality) is output, and it is determined whether the cooling water temperature detection circuit is normal or not.

第゛4図は第2図の主要部CQ詳細なブロック図を示す
。図において、14は機関の完爆検出器で、回転検出装
置5の信号を受けて、機関が始動時に完爆したか否かを
検出する。機部が完爆すると回転数が急に高くなるので
、回転数の上昇率が所定値(例えば、200 rpm7
80msec = 2500rpn/ sec )以上
の時に、完爆検出器14はハイ信号を出力する。
FIG. 4 shows a detailed block diagram of the main part CQ of FIG. In the figure, reference numeral 14 denotes a complete explosion detector for the engine, which receives a signal from the rotation detection device 5 and detects whether or not the engine has completely exploded at the time of startup. When the engine part completely explodes, the rotation speed suddenly increases, so the increase rate of the rotation speed must be set to a predetermined value (for example, 200 rpm7).
80 msec = 2500 rpm/sec) or more, the complete explosion detector 14 outputs a high signal.

15はタイマで、スタータモー、タスイノチがオンにな
るとリセット(0になる)される。
15 is a timer, which is reset (set to 0) when the starter motor and tasinochi are turned on.

演算回路16は、スタータモータスイッチがオンで完爆
検出器14の出力がロー(オフ)の時は、第5図に示す
特性に従って、燃料噴射パルス巾T1(従って燃料供給
量)をタイマ15の値に応じて、最少の値から徐々に増
量していく。そして、機関が完爆し、完爆検出器14が
ハイ信号を出力すると、その時の燃料噴射パルス巾に固
定する。
When the starter motor switch is on and the output of the complete explosion detector 14 is low (off), the arithmetic circuit 16 sets the fuel injection pulse width T1 (therefore, the fuel supply amount) to the timer 15 according to the characteristics shown in FIG. Depending on the value, gradually increase the amount from the minimum value. Then, when the engine completes explosion and the complete explosion detector 14 outputs a high signal, the fuel injection pulse width is fixed at that time.

第6図に示すように、一般に、機関の冷却水温度Twと
、その温度Twにおいて燃料が爆発し機関が回転するの
に必要な燃料噴射パルス巾Ti(すなわち燃料供給量)
とは一定の関係があり、図の上限値りと下限値Eの間に
ある。すなわち、Twが低い程Tiが大きく、Filw
が高(なるに従ってT1は減少していき、Twがほぼ6
0℃以上では、T1は最少の一定値になる。そこで水温
推定器17は、完爆検出器14の出力がハイとなった所
で、演算回路16の固定された燃料噴射パルス巾T1の
値から、第6図の特性に基づいて冷却水温度Twを推定
し、この推定値をメモリ4に記憶する。
As shown in FIG. 6, generally speaking, the engine cooling water temperature Tw and the fuel injection pulse width Ti (i.e. fuel supply amount) required for the fuel to explode and the engine to rotate at that temperature Tw
There is a certain relationship between the upper limit value and the lower limit value E in the figure. That is, the lower Tw is, the larger Ti is, and the Filw
is high (T1 decreases as Tw becomes approximately 6)
Above 0° C., T1 becomes a minimum constant value. Therefore, at the point where the output of the complete explosion detector 14 becomes high, the water temperature estimator 17 calculates the cooling water temperature Tw based on the value of the fixed fuel injection pulse width T1 of the arithmetic circuit 16 based on the characteristics shown in FIG. is estimated and this estimated value is stored in the memory 4.

また、完爆後の機関の冷却水温度は、冷却水温度が低く
てサーモスタンドが閉じており、従って冷却水が機関と
ラジェータの間を循環しない場合は、機関の熱発生量に
ほぼ比例して上昇していく。
In addition, the engine cooling water temperature after a complete explosion will be approximately proportional to the amount of heat generated by the engine if the cooling water temperature is low and the thermostand is closed, and therefore the cooling water does not circulate between the engine and the radiator. It continues to rise.

この熱発生量は機関の積算回転数にほぼ比例する。The amount of heat generated is approximately proportional to the cumulative rotational speed of the engine.

このため水温推定器17は、回転検出装置5がもの回転
信号により求めた積算回転数から冷却水温度の」−外分
を推定し、この上昇分を完爆時の推定冷却水温度に加え
ることにより、運転中の冷却水温度を推定し、メモリ4
の内容を変更していく。
For this reason, the water temperature estimator 17 estimates the minus part of the cooling water temperature from the cumulative rotational speed obtained from the rotation signal of the rotation detection device 5, and adds this increase to the estimated cooling water temperature at the time of complete explosion. estimates the cooling water temperature during operation and stores it in memory 4.
We will change the contents of

第4図において、18は演算回路16の出力(燃料噴射
パルス巾Ti)  を一時格納するレジスタ、19は回
転検出装置5の信号を入力゛シて機関が1回転する毎に
燃料噴射弁7を開弁させる基準パルスを発生する基準パ
ルス発生器、20はクロック信号を発するクロック、2
1は基準パルス発生器19がもの基準パルスによりリセ
ット(0になる)されてクロック信号をカウントするカ
ウンタ、nは比較器で、レジスタ18の燃料噴射パルス
巾Tiとカウンタ2】のカウントを比較し、基準パルス
が入力されてから、カウントが燃料噴射パルス巾1゛1
より小さい間、トランジスタTをオフにして燃料噴射弁
7を開き、カラン)=Ti  となった時点以降はトラ
ンジスタTをオンにして、燃料噴射弁7を閉じる。なお
、Nは機関回転数信号、Qは吸入空気量信号である。
In FIG. 4, 18 is a register that temporarily stores the output (fuel injection pulse width Ti) of the arithmetic circuit 16, and 19 is a register that inputs a signal from the rotation detection device 5 to activate the fuel injection valve 7 every time the engine rotates once. a reference pulse generator that generates a reference pulse for opening the valve; 20 a clock that generates a clock signal; 2;
1 is a counter that counts the clock signal when the reference pulse generator 19 is reset (set to 0) by the reference pulse, and n is a comparator that compares the fuel injection pulse width Ti of the register 18 with the count of the counter 2. , after the reference pulse is input, the count reaches the fuel injection pulse width 1゛1.
While Ti is smaller, the transistor T is turned off and the fuel injection valve 7 is opened, and from the time when Ti = Ti is reached, the transistor T is turned on and the fuel injection valve 7 is closed. Note that N is an engine speed signal and Q is an intake air amount signal.

次に作用を説明する。Next, the effect will be explained.

第2図において、装置の各要素への電源が投入されると
、温度センサ判別回路9により先ず冷却水温度センサ1
の出力値、すなわちA点の電圧をチェックし、0.5〜
4.5 Vの間にあれば、冷却水温度検出回路に異常は
ないので、その電圧値を用いて、機関の通常の各種制御
を行なう。
In FIG. 2, when the power to each element of the device is turned on, the temperature sensor discrimination circuit 9 first turns on the cooling water temperature sensor 1.
Check the output value, that is, the voltage at point A, and check if it is 0.5~
If the voltage is between 4.5 V and there is no abnormality in the cooling water temperature detection circuit, the voltage value is used to perform various normal engine controls.

しかし、A点の電圧が0.5 V以下または4.5■以
上の場合は、冷却水温度センサ1およびそのワイヤリン
グハーネスなどの冷却水温度検出回路に異常(ショート
または断線)があると見なし、次のような制御を行なう
However, if the voltage at point A is 0.5 V or less or 4.5 V or more, it is assumed that there is an abnormality (short circuit or disconnection) in the cooling water temperature detection circuit such as the cooling water temperature sensor 1 and its wiring harness. The following control is performed.

スタータモータスイッチ6がオンになると、タイマ15
がリセット(0になる)され、作動し始める。同時に完
爆検出器14が回転検出装置5かもの機関回転信号から
、機関が完爆したか否かを検出し、完爆しない間はロー
信号(オフ)を出力する。
When starter motor switch 6 is turned on, timer 15
is reset (to 0) and starts operating. At the same time, the complete explosion detector 14 detects whether or not the engine has completely exploded from the engine rotation signal from the rotation detector 5, and outputs a low signal (off) while the engine is not completely exploded.

完爆検出器14がオフの間は、演算回路16は、タイマ
15の出力に応じて第5図の特性に従って、燃料噴射パ
ルス巾Ti (従って燃料供給量)を演算し出力する。
While the complete explosion detector 14 is off, the calculation circuit 16 calculates and outputs the fuel injection pulse width Ti (therefore, the fuel supply amount) according to the characteristics shown in FIG. 5 in accordance with the output of the timer 15.

このTiはレジスタ18に一時格納される(第7図(1
)) )。一方、基準パルス発生器19かも機関1回転
毎の基準信号が発せられると、(第7図(a))、カウ
ンタ21がリセットされてクロンク加か′らのクロック
信号がカウントされ始め(第7図(C))、同時に比較
器22を介してトランジスタTがオフとなり°、燃料噴
射弁7が開いて、゛、°燃料噴射が開始さ。
This Ti is temporarily stored in the register 18 (Fig. 7 (1)
)) ). On the other hand, when the reference pulse generator 19 also generates a reference signal for each revolution of the engine (Fig. 7(a)), the counter 21 is reset and the clock signal from the clock input starts to be counted (Fig. 7(a)). At the same time, the transistor T is turned off via the comparator 22, the fuel injection valve 7 is opened, and fuel injection begins.

れろ(第7図(d))。カウンタ21の値がレジスタ1
8のTiより小さい間は燃料噴射弁7は開き続け、カウ
ンタ21の値=Ti  となった時に、比較器ρはトラ
ンジスタTをオンにして燃料噴射弁7が閉じる。従って
、演算回路16により第5図の特性に応じて、スタータ
モータスイッチ6オン、すなわちタイマ15のリセット
後の所定時間経過後について演算された燃料噴射パルス
巾1゛iに従って、燃料が供給される。
Rero (Figure 7(d)). The value of counter 21 is register 1
The fuel injection valve 7 continues to open while the value of the counter 21 is smaller than Ti of 8, and when the value of the counter 21 becomes equal to Ti, the comparator ρ turns on the transistor T and the fuel injection valve 7 closes. Therefore, fuel is supplied according to the fuel injection pulse width 1゛i calculated by the calculation circuit 16 according to the characteristics shown in FIG. .

機関が完爆しない間は、時間の経過と共に燃料噴射パル
ス巾Tiは徐々に大きくなり、燃料供給量が徐々に増量
される。
While the engine does not completely explode, the fuel injection pulse width Ti gradually increases with the passage of time, and the amount of fuel supplied is gradually increased.

機関が完爆し、完爆検出器14の出力がオンになると、
演算回路16の出力である燃料噴射パルス巾Ti は固
定されて、水温推定器17に入力される。
When the engine completes a complete explosion and the output of the complete explosion detector 14 turns on,
The fuel injection pulse width Ti, which is the output of the arithmetic circuit 16, is fixed and input to the water temperature estimator 17.

水温推定器17はそのTiから、第6図の特性に従って
、完爆があった時点での冷却水温度Twを推定し、この
推定値をメモリ4に記憶させろ。
The water temperature estimator 17 estimates the cooling water temperature Tw at the time of complete explosion from the Ti, according to the characteristics shown in FIG. 6, and stores this estimated value in the memory 4.

完爆後の機関の冷却水温度の推定は、次のようにして行
う。一般に、完爆後に運転を続ける機関の冷却水温度は
、冷却水温度が低くてサーモスタットが閉じており、従
って冷却水が機関とラジェータの間を循゛環していない
間は、機関の熱発生量にほぼ比例して上昇していく。こ
の熱発生量は機関の積算回転数に比例する。従って完爆
後は、回転検出装置5の回転信号から水温推定器17に
おいて積算回転数を求め、これから完爆後の冷却水温度
の上昇分が推定できる。この上昇分は前述の完爆時の冷
却水温度に加えれば、運転中の冷却水温度を推定するこ
とができる。この推定値はメモリ4においてそれまでの
推定値に代わって記憶され、この新しい推定値に基づい
て演算回路16は燃料噴射パルス巾Tiを演算し出力し
、このTiにより前述と同様の動作で燃料供給を行う。
The engine cooling water temperature after a complete explosion is estimated as follows. In general, the cooling water temperature of an engine that continues to operate after a complete explosion is low and the thermostat is closed, so while the cooling water is not circulating between the engine and the radiator, the engine's heat generation It increases almost in proportion to the amount. The amount of heat generated is proportional to the cumulative rotational speed of the engine. Therefore, after a complete explosion, the water temperature estimator 17 calculates the cumulative rotational speed from the rotation signal from the rotation detection device 5, and from this the increase in the cooling water temperature after the complete explosion can be estimated. By adding this increase to the above-mentioned cooling water temperature at the time of complete explosion, the cooling water temperature during operation can be estimated. This estimated value is stored in the memory 4 instead of the previous estimated value, and based on this new estimated value, the calculation circuit 16 calculates and outputs the fuel injection pulse width Ti, and uses this Ti to fuel the fuel in the same manner as described above. supply.

完爆後の運転中は、熱発生量の増大、積算回転数の増加
、従って冷却水温度の上昇に伴って、はぼ第6図に示す
特性のように、燃料噴射パルス巾・′1゛1 は徐々に
小さくされる。そして、推定冷却水温度が80°C(こ
の80℃は、サーモスタットのオン°・オフの設定温度
である。、“)に達したところで、推定温度を80℃に
固定するようにする。そしてそJ1以降は、演算回路1
6はN(機関回転数)とQ(吸入空気量)およびメモリ
4の値を入力し、運転条件に見合った燃料噴射パルス巾
を演算し、燃訓噴射址を制御する。
During operation after a complete explosion, as the amount of heat generated increases, the cumulative rotational speed increases, and therefore the cooling water temperature rises, the fuel injection pulse width increases as shown in Figure 6. 1 is gradually reduced. Then, when the estimated cooling water temperature reaches 80°C (this 80°C is the thermostat ON/OFF setting temperature), the estimated temperature is fixed at 80°C. From J1 onwards, arithmetic circuit 1
6 inputs N (engine speed), Q (intake air amount) and the values in the memory 4, calculates a fuel injection pulse width that matches the operating conditions, and controls the fuel injection area.

燃料噴射パルス巾の積算値、すなわち燃料供給量の積算
値から行ってもよい。あるいは、余り正確ではないが、
完爆後の経過時間から熱発生量を推定して、冷却水温度
の上昇分を求めることも可能である。
The determination may be made from the integrated value of the fuel injection pulse width, that is, the integrated value of the fuel supply amount. Or, less accurately,
It is also possible to estimate the amount of heat generation from the elapsed time after the complete explosion and determine the amount of increase in the cooling water temperature.

以上説明してきたように、この発明によれば、冷却水温
度検出回路の異常を検出した際に、機関の始動操作を最
少の燃料供給量から開始して、その燃料供給量を徐々に
増量していき、機関の完爆があった時の燃料供給量から
完爆時の機関の冷却水温度を推定し、完爆後の冷却水温
度の上昇分は、完爆時かもの積算燃料供給量または積算
回転数から推定するようにしたため、冷却水温度検出回
路の異常発生時にも、実際の冷却水温度に近い推定温度
に基づいて機関の諸制御を適切かつ正確に行うことがで
き、特に、寒冷時の始動性が向上し、暖機時の運転性も
保たれるという効果が得られる。
As explained above, according to the present invention, when an abnormality in the cooling water temperature detection circuit is detected, the engine starting operation is started from the minimum fuel supply amount, and the fuel supply amount is gradually increased. Then, the engine cooling water temperature at the time of a complete explosion is estimated from the fuel supply amount at the time of a complete explosion, and the increase in the cooling water temperature after a complete explosion is calculated as the cumulative fuel supply amount at the time of a complete explosion. Or, since it is estimated from the cumulative rotation speed, even when an abnormality occurs in the cooling water temperature detection circuit, various controls of the engine can be appropriately and accurately performed based on the estimated temperature that is close to the actual cooling water temperature. The effect is that starting performance in cold weather is improved and drivability is maintained during warm-up.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の機関の冷却水温度検出装置のブロック図
、第2図はこの発明の機関の冷却水温度推定方法を実現
するための装置のブロック図、第3図は第2図の温度セ
ンサ判別回路のブロック図、第4図は第2図の主要部C
のブロック図、第5図はタイマの値と燃料噴射パルス巾
の特性図、第6図は冷却水温度と機関回転に必要な燃料
噴射パルス[IJの特性図、第7図は第4図におけろ燃
料噴射弁制御を説明するためのタイムチャートである。 ]・・・冷却水温度センサ、3・・・CI) U、4・
・・メモリ、      5・・・回転検出装置、6・
・・スタータモータスイッチ、7・・・燃料噴射弁、9
・・・温度センサ判別回路、】4・・・完爆検出器、1
5・・・タイマ、      16・・・演算回路、1
7・・・水温推定器、   18・・・レジスタ、19
゛・・・基準パルス発生器、21・−・カウンタ、22
・・・比較器。 特許量・願人 日産自動車株式会社 特許出願代理人 弁理士  山 本 恵 − 尾2図 乳3図 尾6図
FIG. 1 is a block diagram of a conventional engine cooling water temperature detection device, FIG. 2 is a block diagram of a device for realizing the engine cooling water temperature estimation method of the present invention, and FIG. 3 is a block diagram of a conventional engine cooling water temperature detection device. A block diagram of the sensor discrimination circuit, Figure 4 is the main part C of Figure 2.
Figure 5 is a characteristic diagram of timer value and fuel injection pulse width, Figure 6 is a characteristic diagram of cooling water temperature and fuel injection pulse required for engine rotation [IJ characteristic diagram, Figure 7 is a diagram of characteristics of fuel injection pulse width] It is a time chart for explaining fuel injection valve control. ]...Cooling water temperature sensor, 3...CI) U, 4.
・・Memory, 5・Rotation detection device, 6・
...Starter motor switch, 7...Fuel injection valve, 9
... Temperature sensor discrimination circuit, ]4 ... Complete explosion detector, 1
5...Timer, 16...Arithmetic circuit, 1
7...Water temperature estimator, 18...Register, 19
゛...Reference pulse generator, 21...Counter, 22
...Comparator. Patent amount/Applicant Nissan Motor Co., Ltd. Patent application agent Megumi Yamamoto - 2 figures, 3 figures, 6 figures

Claims (1)

【特許請求の範囲】[Claims] (1)冷却水温度検出回路等に異常が発生し、実際の冷
却水温度を検出することができない時に、機関への燃料
供給量を最少値に設定して機関の始動を開始し、次いで
燃料供給量を徐々に増量し、機関の完爆があった時の燃
料供給量から、燃料供給量と冷却″/:Q温度との間の
特性曲線に従って、完爆時の冷却水温度を推定すること
を特徴とする機関の冷却水温度推定方法。 ′(2)完爆後の機関の冷却水温度の上昇分を、完爆後
の機関への積算燃料供給量または機関の積算回転数から
推定することを特徴とする特許請求の範囲第1項記載の
方法。
(1) When an abnormality occurs in the cooling water temperature detection circuit, etc. and the actual cooling water temperature cannot be detected, start the engine by setting the amount of fuel supplied to the engine to the minimum value, and then Gradually increase the supply amount, and from the fuel supply amount at the time of complete engine explosion, estimate the cooling water temperature at the time of complete explosion according to the characteristic curve between fuel supply amount and cooling''/:Q temperature. A method for estimating engine cooling water temperature, characterized by: '(2) Estimating the increase in engine cooling water temperature after complete explosion from the cumulative amount of fuel supplied to the engine or the cumulative engine rotational speed after complete explosion. A method according to claim 1, characterized in that:
JP15946881A 1981-10-08 1981-10-08 Method to estimate temperature of cooling water in engine Pending JPS5862342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15946881A JPS5862342A (en) 1981-10-08 1981-10-08 Method to estimate temperature of cooling water in engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15946881A JPS5862342A (en) 1981-10-08 1981-10-08 Method to estimate temperature of cooling water in engine

Publications (1)

Publication Number Publication Date
JPS5862342A true JPS5862342A (en) 1983-04-13

Family

ID=15694423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15946881A Pending JPS5862342A (en) 1981-10-08 1981-10-08 Method to estimate temperature of cooling water in engine

Country Status (1)

Country Link
JP (1) JPS5862342A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2524552A1 (en) * 1982-04-02 1983-10-07 Nissan Motor EMERGENCY SYSTEM AND METHOD FOR DERIVING THE TEMPERATURE OF THE COOLING FLUID OF AN ENGINE IN AN ELECTRONIC ENGINE CONTROL SYSTEM
JPS58204566A (en) * 1982-05-25 1983-11-29 Toshiba Corp Image sensor
JPS5961741A (en) * 1982-10-01 1984-04-09 Fuji Heavy Ind Ltd Self-diagnostic system of internal combustion engine
JPS6189957A (en) * 1984-10-08 1986-05-08 Aisan Ind Co Ltd Fuel controlling method in time of trouble happening in temperature sensor
JPS63173830A (en) * 1987-01-13 1988-07-18 Nippon Denso Co Ltd Control device for vehicle mounted with internal combustion engine
EP0282636A2 (en) * 1987-03-19 1988-09-21 VDO Adolf Schindling AG Idle control system for an internal combustion engine
JPH01172665A (en) * 1987-12-28 1989-07-07 Aisin Aw Co Ltd Fail-safe controller for electronic control type automatic transmission
JPH04187854A (en) * 1990-11-21 1992-07-06 Mitsubishi Electric Corp Idle number-of-revolution controller for engine
EP0663520A1 (en) * 1994-01-07 1995-07-19 Lucas Industries Public Limited Company Method and system for validating the output of a sensor
JP2014105687A (en) * 2012-11-29 2014-06-09 Mitsubishi Motors Corp Cooling water temperature estimating device for engine and engine control device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2524552A1 (en) * 1982-04-02 1983-10-07 Nissan Motor EMERGENCY SYSTEM AND METHOD FOR DERIVING THE TEMPERATURE OF THE COOLING FLUID OF AN ENGINE IN AN ELECTRONIC ENGINE CONTROL SYSTEM
US4556029A (en) * 1982-04-02 1985-12-03 Nissan Motor Company, Limited Back-up system and method for engine coolant temperature sensor in electronic engine control system
JPS58204566A (en) * 1982-05-25 1983-11-29 Toshiba Corp Image sensor
JPS5961741A (en) * 1982-10-01 1984-04-09 Fuji Heavy Ind Ltd Self-diagnostic system of internal combustion engine
JPH0415387B2 (en) * 1982-10-01 1992-03-17 Fuji Heavy Ind Ltd
JPS6189957A (en) * 1984-10-08 1986-05-08 Aisan Ind Co Ltd Fuel controlling method in time of trouble happening in temperature sensor
JPS63173830A (en) * 1987-01-13 1988-07-18 Nippon Denso Co Ltd Control device for vehicle mounted with internal combustion engine
EP0282636A2 (en) * 1987-03-19 1988-09-21 VDO Adolf Schindling AG Idle control system for an internal combustion engine
JPH01172665A (en) * 1987-12-28 1989-07-07 Aisin Aw Co Ltd Fail-safe controller for electronic control type automatic transmission
JPH04187854A (en) * 1990-11-21 1992-07-06 Mitsubishi Electric Corp Idle number-of-revolution controller for engine
EP0663520A1 (en) * 1994-01-07 1995-07-19 Lucas Industries Public Limited Company Method and system for validating the output of a sensor
JP2014105687A (en) * 2012-11-29 2014-06-09 Mitsubishi Motors Corp Cooling water temperature estimating device for engine and engine control device

Similar Documents

Publication Publication Date Title
JPH0366506B2 (en)
US7137295B2 (en) Thermostat malfunction detecting system for engine cooling system
US4370962A (en) System for producing a pulse signal for controlling an internal combustion engine
US4993392A (en) Apparatus for controlling heater for heating oxygen sensor
JP3419225B2 (en) Thermostat failure detector for engine cooling system
JPS639094B2 (en)
JPS5862342A (en) Method to estimate temperature of cooling water in engine
US4148283A (en) Rotational speed detecting apparatus for electronically-controlled fuel injection systems
US4951633A (en) Hot start method for a combustion engine
JP4174954B2 (en) Thermostat failure detection device for internal combustion engine
JP2002004932A (en) Diagnostic device for abnormality in engine system
JP2002364441A (en) Abnormality detection device of thermostat for engine temperature adjusting
JP3480281B2 (en) Thermostat abnormality detection device
JP2000104549A (en) Abnormality diagnosing device for cooling device for engine
KR0169869B1 (en) Method for detecting abnormalities in a crank angle sensor and apparatus for detecting abnormalities in a crank angle sensor
JPS603532A (en) Abnormality discriminating method of temperature sensor
JP2003176720A (en) Device for detecting failure of thermostat in engine cooling system
JPH0734943A (en) Abnormality detecting device for cooling water temperature sensor for internal combustion engine
JP2011185230A (en) Abnormality determining device of water temperature sensor
JP2611525B2 (en) Idle speed control device
JP2504181B2 (en) Internal combustion engine controller
JP2566832B2 (en) Fuel supply device for internal combustion engine
JP2515575Y2 (en) Timing pulse generator for internal combustion engine controller
JP2000274303A (en) Electronic control device for vehicle
JPS6219581B2 (en)