JPS603532A - Abnormality discriminating method of temperature sensor - Google Patents

Abnormality discriminating method of temperature sensor

Info

Publication number
JPS603532A
JPS603532A JP58110679A JP11067983A JPS603532A JP S603532 A JPS603532 A JP S603532A JP 58110679 A JP58110679 A JP 58110679A JP 11067983 A JP11067983 A JP 11067983A JP S603532 A JPS603532 A JP S603532A
Authority
JP
Japan
Prior art keywords
temperature sensor
abnormality
value
engine
output value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58110679A
Other languages
Japanese (ja)
Other versions
JPH0356417B2 (en
Inventor
Shunpei Hasegawa
俊平 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP58110679A priority Critical patent/JPS603532A/en
Publication of JPS603532A publication Critical patent/JPS603532A/en
Publication of JPH0356417B2 publication Critical patent/JPH0356417B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/005Circuits arrangements for indicating a predetermined temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature

Abstract

PURPOSE:To eliminate an erroneous confirmation of the first stage of starting of an engine, and to always discriminate an abnormality exactly by discriminating whether an output value of a temperature sensor is larger or smaller than a prescribed discriminating value, after a prescribed time in which the engine is capable of warming up enough after starting of the engine has elapsed, and discriminating an abnormality basing on a result of its discrimination. CONSTITUTION:A prescribed temperature TAO is set as a temperature TA of an absorbed air of the inside of a suction pipe 2 by initializing of a controlling circuit 14, and thereafter, whether the first prescribed time t1 has elapsed or not after starting of an engine 3 is discriminated. After the prescribed time t1 has elapsed, an output value VTA of a suction temperature sensor 9 is read, and whether the output value VTA of the suction temperature sensor is larger or smaller than a prescribed discriminating value VTAH is discriminated. In case the output value VTA of the suction temperature sensor 9 is larger than the discriminating value VTAH, whether a state of VTA>VTAH is continued exceeding the second prescribed time t2 or not is discriminated, and when it is continued exceeding the time t2, it is discriminated as an abnormality, it is alarmed and also stored, and thereafter, an F/S (fail safe) action is executed.

Description

【発明の詳細な説明】 本発明は、内燃エンジンの制御に用いられる温度センサ
の異常判別方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for determining abnormality in a temperature sensor used for controlling an internal combustion engine.

自動車等の内燃エンジン(以下単にエンジンと称する)
の作動状態を制御する方法の1つに、エンジンの燃利噴
fAmを制御するものがある。このものでは、絞り弁下
流の吸気管内の絶対圧P e 、Aを圧力センザで、及
びエンジン回転数を回転センサで検出し、このセンサの
検出出力を用いて基本燃料噴射時間Tiを決定し、更に
エンジン冷却水瀧Twや吸気温TA等の他のエンジン運
転パラメータ或いはエンジンの過渡的変化に応じて増量
又は減量補正係数を上記基本燃料噴射時間Tiに乗する
ことによって要求される燃料噴射量に対応した燃料噴射
時間Toutを算出している。
Internal combustion engines for automobiles, etc. (hereinafter simply referred to as engines)
One method of controlling the operating state of the engine is to control the fuel injection fAm of the engine. In this device, the absolute pressure P e , A in the intake pipe downstream of the throttle valve is detected by a pressure sensor, and the engine speed is detected by a rotation sensor, and the basic fuel injection time Ti is determined using the detection output of this sensor. Furthermore, the required fuel injection amount is determined by multiplying the basic fuel injection time Ti by an increase or decrease correction coefficient according to other engine operating parameters such as engine cooling water waterfall Tw and intake air temperature TA, or transient changes in the engine. The corresponding fuel injection time Tout is calculated.

上記冷却水温Tw及び吸気温TAはサーミスタ等の温度
センサで検出されるのであるが、この温度センサにおい
ては、温度信号が低温時高い電圧となるように設定され
、エンジンがおかれうる低温域において温度信号が飽和
する特性を持つようサーミスタと抵抗を組合ける場合が
多い。これはエンジンを温度に応じてきめ細かに制御し
たい領域で、温度信号変化率を大きく覆ることが要求さ
れることによるものである。
The above-mentioned cooling water temperature Tw and intake air temperature TA are detected by a temperature sensor such as a thermistor, and in this temperature sensor, the temperature signal is set to be a high voltage at low temperature, and in the low temperature range where the engine may be placed. A thermistor and a resistor are often combined so that the temperature signal saturates. This is because the temperature signal change rate is required to be largely covered in a region where it is desired to precisely control the engine according to the temperature.

この温度センサの異常を判別するために、従来は、飽和
した電圧より少し大きい値に所定判別値を設定し、エン
ジンの始動と同時に判別を行っていたが、部品の特性の
ばらつき等によって該所定判別値より大きい温度信号が
出力される場合があり、エンジンの始動初期に異常と誤
認する場合があった。
In order to determine whether there is an abnormality in the temperature sensor, conventionally, a predetermined determination value was set to a value slightly larger than the saturated voltage, and the determination was made at the same time as the engine started. There were cases where a temperature signal larger than the discrimination value was output, and it was sometimes mistaken as an abnormality at the beginning of the engine startup.

本発明は、かかる従来の欠点を解決づべくなされたもの
であり、エンジン始動初期の誤認をな(し、正確に異常
を判別し1qる温度センサの異常判別方法を提供するこ
とを目的とする。
The present invention has been made to solve these conventional drawbacks, and an object of the present invention is to provide a method for determining an abnormality in a temperature sensor that prevents misidentification at the initial stage of engine startup and accurately determines an abnormality. .

本発明による温度センサの異常判別方法は、エンジンの
始動から所定時間経過後、温度センサの出力値と所定判
別値との大小判別を行い、その判別結果に基づいて異常
の判別を行う方法である。
The temperature sensor abnormality determination method according to the present invention is a method of determining the magnitude of the output value of the temperature sensor and a predetermined discrimination value after a predetermined period of time has elapsed from the start of the engine, and determining the abnormality based on the determination result. .

以下、本発明の実施例を図面を参照して詳細に説明する
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図において、1は1アフイルタであり、このフィル
タ1を経lζ吸入空気は吸気管2内を通ってエンジン3
へ供給され、吸気管2内に設けられた絞り弁4によって
その空気量が調節される。5は例えばポテンショメータ
からなり、絞り弁4の開度に応じたレベルの出)〕電圧
を発生するスロワh )L= ltl Ut > W・
6°”@%”2″′otl*401 。
In Fig. 1, reference numeral 1 indicates an afterfilter, and the intake air passes through this filter 1, passes through the intake pipe 2, and passes through the engine 3.
The amount of air is regulated by a throttle valve 4 provided in the intake pipe 2. 5 is, for example, a potentiometer, which generates a level according to the opening degree of the throttle valve 4.
6°”@%”2″’otl*401.

流の絶対圧PEAに応じたレベルの出力電圧を発生する
吸気絶対圧センサ、7はエンジン3の冷ノ、1水温に応
じたレベルの出力電圧を発生する冷却水温センサ、8は
エンジン3のクランクシャフト〈図示Iず)の回転角が
トップデッドはンタ(TDC)のときパルス化@ (T
DC信号)を発生するクランク角センサ、9は吸気管2
内の吸入空気の温度に応じたレベルの出力電圧を発生す
る吸気温センナ、10は排気ガス中の酸素濃度に応じた
レベルの出力電圧を発生する酸素濃度センサ、11は排
気管、12は三元触媒である。13はインジェクタであ
り、エンジン3の吸入バルブ(図示せず)近傍の吸気管
2に設けられ、入力パルス期間に応じた量の燃料をエン
ジン3へ噴射供給するようになされている。スロットル
開度センサ5、吸気絶対圧センサ6、冷却水温センサ7
、クランク角センサ8、吸気温センサ9及び酸素miセ
ンサ10の各出力電圧は制御回路14に入力される。
7 is the intake absolute pressure sensor that generates an output voltage at a level corresponding to the absolute pressure PEA of the engine 3, 1 is a cooling water temperature sensor that generates an output voltage at a level corresponding to the water temperature, and 8 is the crank of the engine 3. When the rotation angle of the shaft (not shown) is top dead (TDC), it is pulsed
9 is the intake pipe 2.
10 is an oxygen concentration sensor that generates an output voltage at a level corresponding to the oxygen concentration in the exhaust gas; 11 is an exhaust pipe; 12 is an exhaust gas sensor; It is the original catalyst. Reference numeral 13 denotes an injector, which is provided in the intake pipe 2 near an intake valve (not shown) of the engine 3, and is configured to inject and supply fuel to the engine 3 in an amount corresponding to an input pulse period. Throttle opening sensor 5, intake absolute pressure sensor 6, cooling water temperature sensor 7
, crank angle sensor 8, intake temperature sensor 9, and oxygen mi sensor 10 are input to the control circuit 14.

制御回路14は、例えばマイクロコンピュータ等のいわ
ゆるマイクロプロセッサにより構成され、所定のプログ
ラムに沿って基本燃料噴射時間Ti及びこの基本燃料噴
射時間Tiに増量又は減量補5− 正係数を乗することによって得られる実際の燃料噴射量
に対応した燃料噴射時間TO1ltの演算処理を行う。
The control circuit 14 is constituted by a so-called microprocessor such as a microcomputer, for example, and calculates the basic fuel injection time Ti and the basic fuel injection time Ti according to a predetermined program. The fuel injection time TO1lt corresponding to the actual fuel injection amount is calculated.

第2図は制御回路14の具体的構成を示すブロック図で
ある。第2図において、制御回路14はプログラムに応
じてディジタル演算処理を行うCPU(中央演算回路)
15を有している。CPU15には入出力バス16が接
続され、入出力バス16を介してCPU15にデータ信
号或いはアドレス信号が入出力するようになされている
。入出力バスは、A/D変換器17、MPX (マルチ
プレクサ)18、カウンタ19、ROM(IJ−ドーオ
ン・メモリ)201RAM (ランダム・アクセス・メ
モリ〉21及びインジェクタ11の駆動回路22が各々
接続されている。MP、X18はCPU15の命令に応
じてセンサ5〜7.9及び10の各出力信号のいずれか
一つの信号をレベル変換回路23を介して選択的にA/
D変換器17に中継供給するスイッチである。カウンタ
1っは波形整形回路24を介して供給されるクランク角
セン6− サ8の出力パルスの発生周期を計測する。
FIG. 2 is a block diagram showing a specific configuration of the control circuit 14. As shown in FIG. In FIG. 2, the control circuit 14 is a CPU (central processing circuit) that performs digital arithmetic processing according to a program.
It has 15. An input/output bus 16 is connected to the CPU 15, and data signals or address signals are input/output to/from the CPU 15 via the input/output bus 16. The input/output bus is connected to an A/D converter 17, an MPX (multiplexer) 18, a counter 19, a ROM (IJ-do-on memory) 201, a RAM (random access memory) 21, and a drive circuit 22 for the injector 11. MP, X18 selectively converts any one of the output signals of sensors 5 to 7.9 and 10 into A/
This is a switch that relays supply to the D converter 17. The counter 1 measures the generation cycle of output pulses from the crank angle sensor 6-8 supplied via the waveform shaping circuit 24.

冷却水温センサ7は、電源十Vccから給電されるサー
ミスタ7aからなり、エンジン3が運転される低温域で
温度信号が飽和する特性を持つように抵抗R1と直列に
電源+V ccと接地間に接続され、サーミスタ7aと
抵抗R1との接続点から温度信号を出ノjする。吸気温
センサ9も、同様に、電源十Vccと接地間に直列接続
されたサーミスタ9a及び抵抗R2からなっている。サ
ーミスタ7a、9aは、正の温度係数を持っ1=抵抗素
子(PTC:ポジスタ)であるが、抵抗との接続を逆に
すれば負の温度係数を持つものでも良い。
The cooling water temperature sensor 7 consists of a thermistor 7a that is supplied with power from the power supply +Vcc, and is connected in series with the resistor R1 between the power supply +Vcc and ground so that the temperature signal is saturated in the low temperature range in which the engine 3 is operated. A temperature signal is output from the connection point between the thermistor 7a and the resistor R1. Similarly, the intake temperature sensor 9 includes a thermistor 9a and a resistor R2 connected in series between the power supply Vcc and ground. The thermistors 7a and 9a are resistive elements (PTC: POSISTOR) having positive temperature coefficients, but may have negative temperature coefficients if the connection with the resistors is reversed.

次に、本発明による渇疫センサの異常判別方法の手順を
、例えば吸気温セン勺9の場合について、第3図のフロ
ーヂャートに従って説明する。
Next, the procedure of the method for determining an abnormality in a drought sensor according to the present invention will be explained, for example, in the case of the intake air temperature sensor 9, according to the flowchart of FIG.

まず、制御回路14のイニシャライズ(ステップ1)に
て吸気管2内の吸入空気のWa If T Aとして所
定温度TAOが設定され、しかる後エンジン3の始動か
ら第1の所定時間t1を過したか否かが判別される(ス
テップ2)。所定時間11経過後であれば、吸気温セン
サ9の出力値VTAを読み込み(ステップ3)、吸気温
センサ9の出力値VTAど所定判別値VTAI−1との
大小判別が行われる(ステップ4)。ここで、第1の所
定時間tIは吸気温センv9の出力値VTAが判別値V
TA I−1を下まわるに」−分なエンジン3の暖機時
間、例えば10分程度に設定される。
First, in the initialization (step 1) of the control circuit 14, a predetermined temperature TAO is set as the Wa If T A of the intake air in the intake pipe 2, and after that, when the first predetermined time t1 has elapsed since the engine 3 was started, It is determined whether or not (step 2). If the predetermined time 11 has elapsed, the output value VTA of the intake air temperature sensor 9 is read (step 3), and the output value VTA of the intake air temperature sensor 9 is determined to be larger than the predetermined judgment value VTAI-1 (step 4). . Here, during the first predetermined time tI, the output value VTA of the intake temperature sensor v9 is the discrimination value V
The warm-up time for the engine 3 is set to 10 minutes, for example, less than TA I-1.

吸気温センサ9の出力値VTAが判別値VTAHより大
なる場合、VTA>TT八へなる状態が第2の所定時間
t2を越えて継続しているか否かが判別され(ステップ
5)、時間12を越えて継続したとぎ異常と判別して警
報すると共に記憶しくステップ6)、しかるIIF/S
(フェイル・セイフ)アクションがとられる(ステップ
7)。一方、VTA>TTAI−1なる状態の継続時間
が該第2の所定時間t2以内の場合は、吸気温センサ9
の出力値VTAとして前回読み込んだ値が設定さ″′5
(′″′″−y7’8)・ 1 ステツプ4において吸気温センサ9の出力値VTAが判
別値VTAI−1以下と判別された後、又はステップ8
の終了後は他のセンサの異常判別等の伯の全ての仕事を
行うステップ9を経てステップ3に戻り、以上の一連の
動作がTDC信号に同期して繰り返される。
When the output value VTA of the intake air temperature sensor 9 is larger than the determination value VTAH, it is determined whether the state of VTA>TT8 continues beyond the second predetermined time t2 (step 5), and the time 12 is determined. The IIF/S determines that the abnormality has continued beyond the above period, issues an alarm, and memorizes it in step 6).
(Fail Safe) Action is taken (Step 7). On the other hand, if the duration of the state of VTA>TTAI-1 is within the second predetermined time t2, the intake temperature sensor 9
The value read last time is set as the output value VTA.
(''''''-y7'8)・1 After the output value VTA of the intake air temperature sensor 9 is determined to be less than or equal to the determination value VTAI-1 in step 4, or in step 8
After completion of step 9, the process returns to step 3 through step 9 in which all other tasks such as abnormality determination of other sensors are performed, and the above series of operations is repeated in synchronization with the TDC signal.

なお、上記実施例においては、吸気温センサ9の異常判
別について説明したが、冷却水温センサ7の異常判別に
ついても全く同様に行われる。また、温度センサとして
は、冷却水温センサ7及び吸気温センサ9に限定される
ことなく、エンジン3に関連した温度を検出するもので
あれば良い。
In the above embodiment, the abnormality determination of the intake air temperature sensor 9 has been described, but the abnormality determination of the cooling water temperature sensor 7 is also performed in exactly the same manner. Further, the temperature sensor is not limited to the cooling water temperature sensor 7 and the intake temperature sensor 9, but any sensor that detects the temperature related to the engine 3 may be used.

以上説明したように、本発明によれば、エンジンの始動
からエンジンが十分暖機し得る所定時間経過後、温度セ
ンサの出力値と所定判別値との大小判別を行い、その判
別結果に基づいて異常の判別を行うようにしたので、エ
ンジンの始動初期の誤認がなくなり、常に正確に異常を
判別できることになる。
As explained above, according to the present invention, after a predetermined period of time has elapsed since the start of the engine to allow the engine to warm up sufficiently, the output value of the temperature sensor and the predetermined judgment value are judged in magnitude, and based on the judgment result, Since abnormalities are determined, there is no misidentification at the initial stage of engine startup, and abnormalities can always be accurately determined.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による温度センサの異常判別方法が適用
される電子制御式燃料供給装置を示す概9− 略構成図、第2図は第1図におりる制御回路の具体的構
成を示すブロック図、第3図は本発明による温度センサ
の異常判別方法の手順を示すフローチャート図である。 主要部分の符号の説明 2・・・・・・吸気管 3・・・・・・エンジン 5・・・・・・スロットル開度センサ 6・・・・・・吸気絶対圧センサ 7・・・・・・冷却水温センサ 8・・・・・・クランク角センサ 9・・・・・・吸気温センサ 出願人 本田技研工業株式会社 代理人 弁理士 蒔村元彦 10−
FIG. 1 is a schematic configuration diagram showing an electronically controlled fuel supply system to which the temperature sensor abnormality determination method according to the present invention is applied, and FIG. 2 shows a specific configuration of the control circuit shown in FIG. 1. The block diagram and FIG. 3 are flowcharts showing the steps of the method for determining abnormality in a temperature sensor according to the present invention. Explanation of symbols of main parts 2...Intake pipe 3...Engine 5...Throttle opening sensor 6...Intake absolute pressure sensor 7... ... Cooling water temperature sensor 8 ... Crank angle sensor 9 ... Intake temperature sensor Applicant Honda Motor Co., Ltd. Agent Patent attorney Motohiko Makimura 10-

Claims (1)

【特許請求の範囲】 (1) 内燃エンジンの制御に用いられる温度センサの
異常判別方法であって、前記内燃エンジンの始動から第
1の所定時間経過後前記温度センサの出力値と所定判別
値との大小判別を行い、その判別結果に基づいて異常の
判別を行うことを特徴とする温度センサの異常判別方法
。 (2) 前記温度センサの出力値が該所定判別値に対し
一方の側に継続して存在する時間が第2の所定時間を越
えるとき異常と判別することを特徴とする特許請求の範
囲第1項記載の温度センサの異常判別方法。 (3〉 前記温度センサは前記内燃エンジンが運転され
る低温域で出力が飽和する特性を有することを特徴とす
る特許請求の範囲第1項又は第2項記載の温度センサの
異常判別方法。 (4) 前記内燃エンジンの始動から該第1の所定時間
内においては温度信号の値を所定値とすることを特徴と
する特許請求の範囲第1項、第2項又は第3項記載の温
度センサーの異常判別方法。 (5) 前記温度センサの出力値が該所定判別値に対し
一方の側に継続して存在する時間が該第2の所定時間内
のときは温度信号の値を前回読み込んだ前記温度センサ
の出力値とすることを特徴とする特許請求の範囲第2項
、第3項又は第4項記載の温度センサの異常判別方法。
[Scope of Claims] (1) A method for determining an abnormality in a temperature sensor used to control an internal combustion engine, which comprises determining an output value of the temperature sensor and a predetermined determination value after a first predetermined time has elapsed since the start of the internal combustion engine. A method for determining an abnormality in a temperature sensor, the method comprising: determining the size of a temperature sensor, and determining an abnormality based on the determination result. (2) Claim 1, characterized in that when the time during which the output value of the temperature sensor continues to be on one side with respect to the predetermined determination value exceeds a second predetermined time, it is determined to be abnormal. Method for determining abnormality of temperature sensor described in section. (3) The temperature sensor abnormality determination method according to claim 1 or 2, characterized in that the temperature sensor has a characteristic that its output is saturated in a low temperature range in which the internal combustion engine is operated. 4) The temperature sensor according to claim 1, 2, or 3, characterized in that the value of the temperature signal is a predetermined value within the first predetermined time from the start of the internal combustion engine. (5) If the time during which the output value of the temperature sensor continues to be on one side with respect to the predetermined judgment value is within the second predetermined time, the value of the temperature signal is read in the previous time. 5. The method for determining an abnormality in a temperature sensor according to claim 2, 3, or 4, wherein the output value of the temperature sensor is used as an output value.
JP58110679A 1983-06-20 1983-06-20 Abnormality discriminating method of temperature sensor Granted JPS603532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58110679A JPS603532A (en) 1983-06-20 1983-06-20 Abnormality discriminating method of temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58110679A JPS603532A (en) 1983-06-20 1983-06-20 Abnormality discriminating method of temperature sensor

Publications (2)

Publication Number Publication Date
JPS603532A true JPS603532A (en) 1985-01-09
JPH0356417B2 JPH0356417B2 (en) 1991-08-28

Family

ID=14541703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58110679A Granted JPS603532A (en) 1983-06-20 1983-06-20 Abnormality discriminating method of temperature sensor

Country Status (1)

Country Link
JP (1) JPS603532A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863579A (en) * 1986-12-27 1989-09-05 Shizuoka Seiki Co., Ltd. Power supply system for electrolytic processing apparatus
JPH01228724A (en) * 1988-03-03 1989-09-12 Shizuoka Seiki Co Ltd Method of charging capacitor in electrolytic finishing working machine
JPH0331731A (en) * 1989-06-29 1991-02-12 Komatsu Ltd Method and circuit for detecting disconnection of thermistor temperature sensor circuit
EP0831222A2 (en) * 1996-08-23 1998-03-25 Toyota Jidosha Kabushiki Kaisha An abnormality detecting apparatus for an air temperature sensor
CN106568295A (en) * 2016-10-19 2017-04-19 杭州华日家电有限公司 Control method for identification of defrosting temperature-sensing probe false failure and safety operation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6287088B2 (en) * 2013-11-13 2018-03-07 日産自動車株式会社 Exhaust temperature sensor failure diagnosis device and failure diagnosis method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107227A (en) * 1982-12-10 1984-06-21 Japan Electronic Control Syst Co Ltd Detector for disconnection of engine temperature detecting thermistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107227A (en) * 1982-12-10 1984-06-21 Japan Electronic Control Syst Co Ltd Detector for disconnection of engine temperature detecting thermistor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863579A (en) * 1986-12-27 1989-09-05 Shizuoka Seiki Co., Ltd. Power supply system for electrolytic processing apparatus
JPH01228724A (en) * 1988-03-03 1989-09-12 Shizuoka Seiki Co Ltd Method of charging capacitor in electrolytic finishing working machine
JPH0331731A (en) * 1989-06-29 1991-02-12 Komatsu Ltd Method and circuit for detecting disconnection of thermistor temperature sensor circuit
EP0831222A2 (en) * 1996-08-23 1998-03-25 Toyota Jidosha Kabushiki Kaisha An abnormality detecting apparatus for an air temperature sensor
EP0831222A3 (en) * 1996-08-23 1999-08-25 Toyota Jidosha Kabushiki Kaisha An abnormality detecting apparatus for an air temperature sensor
CN106568295A (en) * 2016-10-19 2017-04-19 杭州华日家电有限公司 Control method for identification of defrosting temperature-sensing probe false failure and safety operation

Also Published As

Publication number Publication date
JPH0356417B2 (en) 1991-08-28

Similar Documents

Publication Publication Date Title
JPS58172444A (en) Estimation method for engine cooling water temperature
US5884243A (en) Diagnostic system for a cooling water temperature sensor
JP3565800B2 (en) Temperature sensor failure judgment device
JP2693884B2 (en) Internal combustion engine control device
JP3265895B2 (en) Air-fuel ratio sensor heater control device
JPH10141122A (en) Device for diagnosing deterioration of oxygen sensor of engine
US6980904B2 (en) Failure diagnosis apparatus for temperature sensor
JPH07122627B2 (en) Heater controller for oxygen concentration sensor
JPS603532A (en) Abnormality discriminating method of temperature sensor
JP2704991B2 (en) Activation determination method for exhaust concentration sensor with heater
JPS5857617B2 (en) Electronically controlled fuel injection method
JPS5862342A (en) Method to estimate temperature of cooling water in engine
JPH04350358A (en) Fuel leak self-diagnostic device for electronically controlled fuel injection type internal combustion engine
JP3692847B2 (en) Oxygen concentration detector
JPS59119044A (en) Electronic control method for engine
JP6689723B2 (en) Internal combustion engine controller
JPS60156947A (en) Method of controlling injected quantity of fuel for internal-combustion engine
JPH0730927Y2 (en) Cooling water temperature detector for internal combustion engine
JPS61268847A (en) Control device of internal-combustion engine
JPH041180B2 (en)
JPH0658087B2 (en) Fuel supply control device for internal combustion engine
JPH01138359A (en) Anomaly detecting device in egr system
JPS6140442A (en) Start control device in fuel injection type engine
JPH0622133Y2 (en) Engine fuel injection control device
JPH0362894B2 (en)