JPS5861605A - Insulated coil - Google Patents
Insulated coilInfo
- Publication number
- JPS5861605A JPS5861605A JP56161508A JP16150881A JPS5861605A JP S5861605 A JPS5861605 A JP S5861605A JP 56161508 A JP56161508 A JP 56161508A JP 16150881 A JP16150881 A JP 16150881A JP S5861605 A JPS5861605 A JP S5861605A
- Authority
- JP
- Japan
- Prior art keywords
- mica
- weight
- parts
- weight part
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/04—Silica-rich materials; Silicates
- C04B14/20—Mica; Vermiculite
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/241—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
- C08J5/244—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B26/00—Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
- C04B26/02—Macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/34—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B30/00—Compositions for artificial stone, not containing binders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/02—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
- H01B3/04—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances mica
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Manufacturing & Machinery (AREA)
- Civil Engineering (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は絶縁線輪に関する。[Detailed description of the invention] The present invention relates to an insulated coil.
従来、絶縁線輪は、はがしマイカテープ等を導体に巻回
し、これにエポキシ樹脂組成物。Conventionally, insulated wire rings are made by wrapping a peelable mica tape around a conductor, and then wrapping it with an epoxy resin composition.
不飽和ポリエステル樹脂組成物などの熱硬化性樹脂組成
物を真空含浸せしめ九〇ち硬化させる方法や焼成マイカ
プリプレグテープ等を導体に巻回した後、加熱、加圧成
形するいわゆるプリプレグ方式によって製造されている
。初期の電気特性はプリプレグ方式が初期の機械特性や
長期原電劣化後の電気特性は、はがしマイカテープを使
用した真空含浸方式がすぐれていた。It is manufactured by the so-called prepreg method, in which a thermosetting resin composition such as an unsaturated polyester resin composition is vacuum impregnated and cured for 90 minutes, or a so-called prepreg method in which baked mica prepreg tape is wound around a conductor and then heated and pressure molded. ing. The prepreg method was superior to the initial electrical properties, and the vacuum impregnation method using removable mica tape was superior to the electrical properties after long-term deterioration of the source material.
集成マイカを使用したもので、Fiがしマイカを使用し
九ものと同等以上の特性を有する絶縁線輪はなく、電気
特性が、はがしマイカを使用し喪ものに匹敵するものは
特公昭50−20264、号公報に示される。この方法
は原料マイカプルツクに弗化水素酸や塩化水素の水溶液
を浸潤させるなど複雑な製造工程、廃水処理等が必要で
あるなどの欠点があり、また焼成マイカを使用するため
得られる絶縁線輪の機械特性も十分とはいえなかった。There is no insulated wire ring made of laminated mica that has properties equal to or better than those made of fi-removable mica; No. 20264. This method has disadvantages, such as the need for a complicated manufacturing process such as infiltrating the raw material mica with an aqueous solution of hydrofluoric acid or hydrogen chloride, and the need for wastewater treatment.Also, since it uses calcined mica, the resulting insulated wire Mechanical properties were also not sufficient.
本発明はこのような欠点を解決し、電気特性及び機械特
性にすぐれた絶縁線輪を提供するものである。The present invention solves these drawbacks and provides an insulated wire ring with excellent electrical and mechanical properties.
本発明は、無焼成マイカを粉砕して得られた粒径1.7
tl1以上で、かつアスペクト比が15゜以上のマイカ
シん片を2〜25重量部1粒径1.0■以上1.7■未
満で、かつアスペクト比が150以上のマイカシん片を
20〜60重量部。The present invention is based on particle size 1.7 obtained by pulverizing uncalcined mica.
2 to 25 parts by weight of mica flakes with a tl of 1 or more and an aspect ratio of 15 degrees or more 1 20 to 60 parts of mica flakes with a particle size of 1.0 to 1.7 cm and an aspect ratio of 150 or more Weight part.
粒径0.25m以上1.0−未満で、かつアスペクト比
が100以上のマイカりん片を20〜40重量部及び粒
径0.25■未満で、かつアスペクト比が100以上の
マイカシん片を10〜30重量部含むスラリーを抄造し
て得られる集成マイカ材料を60〜85重量部、熱硬化
性樹脂組成物を15〜30重量部ならびに裏打材を15
重量部以下含有する絶縁層を有する絶縁線輪に関する。20 to 40 parts by weight of mica flakes with a particle size of 0.25 m or more and less than 1.0 and an aspect ratio of 100 or more; and mica flakes with a particle size of less than 0.25 m and an aspect ratio of 100 or more. 60 to 85 parts by weight of a laminated mica material obtained by paper-making a slurry containing 10 to 30 parts by weight, 15 to 30 parts by weight of a thermosetting resin composition, and 15 parts by weight of a backing material.
The present invention relates to an insulated coil having an insulating layer containing not more than part by weight.
無焼成マイカの代りに焼成マイカを使用した場合KFi
、絶縁線輪の機械特性、なかでも曲げ強さ1曲げ弾性率
が大きく低下する。KFi when calcined mica is used instead of uncalcined mica
, the mechanical properties of the insulated coil, especially the bending strength and bending modulus, are significantly reduced.
本発明におけるアスペクト比とは。What is the aspect ratio in the present invention?
粒度分布は、標準分析ふるいを使用し湿式で分級したの
ち乾燥後重量を測定して算出した。無焼成マイカを本発
明の粒度分布及びアスペクト比に粉砕する方法はなかつ
九が、特公昭54−8899号公報、%N昭53−39
984号公報などに示される方法によシ、はじめて可能
となつ九。これらの方法によって、アスペクト比が大き
く、かつ望みの粒度分布を有するマイカシん片が容易に
得られる。The particle size distribution was calculated by wet classification using a standard analytical sieve and then measuring the weight after drying. A method for pulverizing uncalcined mica to the particle size distribution and aspect ratio of the present invention is described in Japanese Patent Publication No. 54-8899, %N 1982-39.
Natsu9 was made possible for the first time by the method shown in Publication No. 984. By these methods, mica flakes having a large aspect ratio and a desired particle size distribution can be easily obtained.
粒径1.7mm以上で、かつアスペクト比が150以上
のマイカりん片が2重量部未満ではマイカりん片の補強
効果が小さいため機械的及び電気的性質が低下する。ま
た25重量部を越えるとマイカシん片間の空隙が多くな
るため空隙を埋める熱硬化性樹脂組成物が多くなシ9機
械的及び電気的性質が低下する。粒径1.0−以上1.
7簡未満で、かつアスペクト比が150以上のマイカシ
ん片が20重量部未満ではマイカシん片の補強効果が小
さいため機械的及び電気的性質が低下する。また60重
量部を越えるとマイカシん片の空隙が多くなるため、空
隙を埋める熱硬化性樹脂組成物が多くなル機械的及び電
気的性質が低下する。粒径0,25■以上1゜0sII
未満で、かつアスペクト比が100以上のマイカシん片
が20重量部未満の場合には、大急なマイカりん片の空
隙をマイカシん片で有効に埋めることが出来ず機械的及
び電気的性質が低下する。If the mica scale pieces having a particle size of 1.7 mm or more and an aspect ratio of 150 or more are less than 2 parts by weight, the reinforcing effect of the mica scale pieces is small, resulting in a decrease in mechanical and electrical properties. Moreover, if it exceeds 25 parts by weight, the number of voids between the mica pieces increases, so that a large amount of the thermosetting resin composition is required to fill the voids, and the mechanical and electrical properties deteriorate. Particle size 1.0- or more1.
If the amount of mica flakes less than 7 parts and having an aspect ratio of 150 or more is less than 20 parts by weight, the reinforcing effect of the mica flakes is small, resulting in poor mechanical and electrical properties. If the amount exceeds 60 parts by weight, the mica flakes will have more voids, which will require more thermosetting resin composition to fill the voids, resulting in lower mechanical and electrical properties. Particle size 0.25■ or more 1゜0sII
If the amount of mica flakes with an aspect ratio of 100 or more is less than 20 parts by weight, the mica flakes will not be able to effectively fill the voids in the mica flakes, resulting in poor mechanical and electrical properties. descend.
また、これが40重量部を越えて含まれる場合には、小
さなマイカシん片の割合が多くなる丸め機械的性質が低
下する。Moreover, if it is contained in an amount exceeding 40 parts by weight, the proportion of small mica flakes increases and the mechanical properties are deteriorated.
粒径0.25m未満で、かつアスペクト比が100以上
のマイカシん片を10重量部未満し 。Less than 10 parts by weight of mica flakes having a particle size of less than 0.25 m and an aspect ratio of 100 or more.
か含まない場合には大きなマイカシん片の空隙を有効に
堀めることか出来ず機械的及び電気的性質が低下する。If it is not included, the voids in the large mica flakes cannot be effectively filled and the mechanical and electrical properties deteriorate.
ま九、これを30重量部以上含む場合には、小さなマイ
カりん片の割合が多くなるため機械的性質及び電機的性
質が低下する。粒径1.7園以上のマイカシん片及び粒
径1、0111以上1.7111未満でのマイカシん片
のアスペクト比が150未満か1粒径0.25−以上1
.0−未満のマイカシん片及び粒径0.25■未満のマ
イカりん片のアスペクト比が100゛未滴の場合には、
得られる絶縁線輪の機械的性質及び電気的性質が低下す
る。(9) If it is contained in an amount of 30 parts by weight or more, the proportion of small mica flakes increases, resulting in a decrease in mechanical and electrical properties. Mica flakes with a grain size of 1.7 or more and mica flakes with a particle size of 1,0111 or more and less than 1.7111 with an aspect ratio of less than 150 or a grain size of 0.25 or more and 1
.. If the aspect ratio of mica flakes less than 0- or less than 0.25 cm has an aspect ratio of less than 100゛,
The mechanical and electrical properties of the resulting insulated coil are degraded.
イカシん片を含むスラリーとし九のち、こ、れを長網式
、丸網式などの抄紙機を使用して抄造される。A slurry containing squid pieces is made into a slurry nine times later, and this is made into paper using a fourdrinier paper machine, a circular wire paper machine, or the like.
絶縁層の形成方法は、真空含浸方式、ブリグレグ方式の
いずれの方式てらって吃差しつかえなく、tた形成する
条件にも制限はない。必要によシ裏打材を有する集成マ
イカ材料を導体に巻回し、これを減圧の雰囲気に置き熱
硬化性樹脂組成物を含浸又は加圧含浸後、熱硬化性樹脂
組成物を硬化させて絶縁線輪とされるか、この集成マイ
カ材料に熱硬化性樹脂組成物を含浸させて、半硬化させ
て集成マイカグリプレグ材料とし、これを導体に巻回し
て含浸された熱硬化性樹脂組成物を硬化させて絶縁線輪
とされる。The method for forming the insulating layer may be either the vacuum impregnation method or the BRIGREG method, and there are no restrictions on the conditions under which it is formed. A laminated mica material with a necessary backing material is wound around a conductor, placed in a reduced pressure atmosphere, impregnated with a thermosetting resin composition or impregnated with pressure, and then cured with the thermosetting resin composition to form an insulated wire. This mica laminated material is impregnated with a thermosetting resin composition and semi-cured to form a laminated mica grip preg material, which is then wound around a conductor and the impregnated thermosetting resin composition is cured. It is used as an insulated wire ring.
本発明における熱硬化性樹脂組成物としては。As the thermosetting resin composition in the present invention.
硬化剤、界面活性剤、溶剤9反応性溶剤などを含むエポ
キシ樹脂組成物、不飽和ポリエステル樹脂組成物などが
使用され特に制限はない。Epoxy resin compositions, unsaturated polyester resin compositions, etc. containing a curing agent, a surfactant, a reactive solvent, etc. can be used without any particular limitation.
本発明における裏打材としては1%に制限はなく9例え
ばポリエステル、ポリアミド、ガラス等の有機、無機の
織布、不織布、フィルム等が単独で、必要ならば組み合
わせて使用され。The backing material in the present invention is not limited to 1%, and for example, organic or inorganic woven fabrics, nonwoven fabrics, films, etc. such as polyester, polyamide, glass, etc. can be used alone or in combination if necessary.
さらに、これらとガラスヤーン、ポリエステル繊維ヤー
ン等を組み合わせて使用しても差しつかえない。Furthermore, these may be used in combination with glass yarn, polyester fiber yarn, etc.
集成マイカ材料は60〜85重量部、熱硬化性樹脂組成
物は15〜30重量部、14打材は15重量部以下の範
囲で、これらの総量が100重量部となる量で使用され
る。The aggregate mica material is used in an amount of 60 to 85 parts by weight, the thermosetting resin composition is used in an amount of 15 to 30 parts by weight, and the No. 14 batting material is used in an amount of 15 parts by weight or less, so that the total amount thereof is 100 parts by weight.
集成マイカ材料は、60〜85重量部の範囲で用いられ
るが、60重量部未満では、絶縁線輪の耐電圧などの電
気的特性が低下し、85重量部を越えるとマイカシん片
間の空隙が多くなシ、絶縁線輪の電気的特性1機械特性
が著しく低下する。The laminated mica material is used in a range of 60 to 85 parts by weight, but if it is less than 60 parts by weight, the electrical properties such as withstand voltage of the insulated wire will deteriorate, and if it exceeds 85 parts by weight, the voids between the mica pieces will deteriorate. If there are many cases, the electrical properties and mechanical properties of the insulated wire ring will be significantly reduced.
絶縁層の熱硬化性樹脂組成物が15重量部未満の場合に
は、絶縁層中に空隙を生じやすく。When the amount of the thermosetting resin composition in the insulating layer is less than 15 parts by weight, voids are likely to be formed in the insulating layer.
この空隙がコロナ放電の原因となシ、絶縁線輪の電気特
性を低下させるとともに曲げ、圧縮などの応力が−加え
られた際には、応力集中が起き機械的特性も低下させる
。These voids cause corona discharge and deteriorate the electrical properties of the insulated wire, and when stress such as bending or compression is applied, stress concentration occurs and the mechanical properties also deteriorate.
また絶縁層中の熱硬化性樹脂組成物が30重量部を越え
ると機械的性質が低下するのみならず長期劣化後の電気
特性をも低下させる。Furthermore, if the amount of the thermosetting resin composition in the insulating layer exceeds 30 parts by weight, not only the mechanical properties will deteriorate, but also the electrical properties after long-term deterioration.
裏打材は必l!に応じて集成マイカ材料と貼シ合わせて
使用され、必ずしも用いなくてもよいが、これが絶縁層
中で15重量部を超えると絶縁線輪の機械的又は電気的
特性を低下させる。Backing material is a must! Although it is not necessary to use it, if it exceeds 15 parts by weight in the insulating layer, it deteriorates the mechanical or electrical properties of the insulated wire.
例えば、ガラス繊維の織布もしくは不織布を裏打材とし
て15重量部を超えて使用すると機械的特性は低下しな
いが、電気的特性を低下させ。For example, if more than 15 parts by weight of glass fiber woven or nonwoven fabric is used as a backing material, the mechanical properties will not deteriorate, but the electrical properties will deteriorate.
またポリエステルやポリアミドなどのフィルムや織布、
不織布を裏打材として15重量部を超えて使用すると機
械的特性が低下し、また長期劣化後の電気特性にも低下
が見られる。In addition, films and woven fabrics such as polyester and polyamide,
If more than 15 parts by weight of nonwoven fabric is used as a backing material, the mechanical properties will deteriorate, and the electrical properties will also deteriorate after long-term deterioration.
前述のフィルムとガラス、ポリエステル等の繊維ヤーン
を組み合わせ九場合も同様の結果でおる。Similar results are obtained when the above-mentioned film is combined with fiber yarns such as glass and polyester.
以下、実施例によυ本発明を説明する。The present invention will be explained below with reference to Examples.
実施例1
表1記−のシート(集成マイカ材料)1に表2記載のエ
ポキシ樹脂組成物を60℃に加熱して100117m”
で塗工し、かつガラスクロス(35t/m” )を裏打
材として貼り合わせ80℃で1時間加熱半硬化させて集
成マイカプリプレグ材料とした。これを301111幅
のテープに切断したのち。Example 1 The epoxy resin composition shown in Table 2 was heated to 60°C on the sheet (laminated mica material) 1 shown in Table 1 to form a sheet of 100117 m''.
This was coated with glass cloth (35 t/m") as a backing material and semi-cured by heating at 80°C for 1 hour to obtain a laminated mica pre-preg material. This was cut into tapes with a width of 3011111.
横9.5 wx Xたて3a51EII×長さ1000
.1111の導体(銅製)に半分重ね合わせながら8回
巻きつけたのち、100℃に加熱して押しつけ、マイカ
ブリグレグ材料中の上記エポキシ樹脂組成物を流しなが
ら170℃に昇温して硬化させ(3時間)厚さ約3mの
絶縁層を持つ九コイルを製作した。コイルは4本製作し
、常態で2本、熱劣化試験(130℃でio”時間)後
2本試験した。試験は2KV/秒の昇圧速度で絶縁破壊
電圧を測定し7次いで4点法曲げ試験(外スパン550
wx、内スパン25〇−1試験速度5w17分)を行な
つ九。接着剤量(エポキシ樹脂組成物)は、絶縁層を6
00℃で2時間加熱して求めた。Width 9.5 wx x Height 3a51EII x Length 1000
.. After wrapping it around a 1111 conductor (made of copper) 8 times while overlapping half of it, it was heated to 100°C and pressed, and the above-mentioned epoxy resin composition in the Mikaburi Greg material was heated to 170°C and cured while flowing ( (3 hours) Nine coils with an insulating layer approximately 3 m thick were manufactured. Four coils were manufactured, two were tested under normal conditions, and two were tested after a thermal deterioration test (130°C for IO hours).The test was conducted by measuring the dielectric breakdown voltage at a boost rate of 2KV/sec, and then by four-point bending. Test (outer span 550
wx, inner span 250-1 test speed 5w17 minutes).9. The amount of adhesive (epoxy resin composition) is 6
It was determined by heating at 00°C for 2 hours.
結果を平均値で表3に示した。The results are shown in Table 3 as average values.
実施例2
表1紀載のシート2に表3記載のエポキシ樹脂組成物を
60℃に加熱して10077m”塗工し、かつガラスク
ロス(3517m” )を裏打材として貼9合わせ、8
0℃で1時間加熱半硬化させて集成マイカブリグレグ材
料とした。これを30−幅のテープに切断したのち、実
施例1で使用し九導体に半分重ね合わせながら8回巻き
つけたのち、寮施例1と同条件でコイルを4本製作した
。実施例1と同条件で試験し、結果を平均値で表3に示
し九。Example 2 The epoxy resin composition shown in Table 3 was heated to 60°C and coated on Sheet 2 listed in Table 1 to 10,077 m", and glass cloth (3,517 m") was laminated as a backing material.
The mixture was semi-cured by heating at 0° C. for 1 hour to obtain a composite mica brig material. After cutting this into a 30-width tape, it was used in Example 1 and wound around the nine conductors 8 times with half overlap, and then four coils were manufactured under the same conditions as Dormitory Example 1. The test was conducted under the same conditions as in Example 1, and the results are shown in Table 3 as average values.
実施例3
表1記載のシート3に表2記載のエポキシ樹脂組成物を
60℃に加熱して10077m”塗工し。Example 3 The epoxy resin composition shown in Table 2 was heated to 60°C and applied to Sheet 3 shown in Table 1 for 10,077 m''.
かつガラスクロス(35fir/f@”)を裏打材とし
て貼シ合わせ、80℃で1時間加熱半硬化させて集成マ
イカフリグレグ材料とした。これを305m+幅のテー
プに切断したのち、実施例1で使用した導体に半分重ね
合わせながら8回巻きつけたのち、実施例1と同条件で
コイルを4本製、作した。実施例1と同条件で試験し結
果を平均値で表3に示した。Glass cloth (35 fir/f@") was laminated as a backing material and semi-cured by heating at 80°C for 1 hour to obtain a laminated mica frig material. After cutting this into a tape of 305 m + width, Example 1 was prepared. After wrapping the conductor used in 8 times with half overlap, four coils were manufactured under the same conditions as in Example 1. Tests were conducted under the same conditions as in Example 1, and the results are shown in Table 3 as average values. Ta.
比較例1
表1記載のシート4に表2記載のエポキシ樹脂組成物を
60℃に加熱して10077m” )@工し。Comparative Example 1 Sheet 4 shown in Table 1 was heated to 60°C with the epoxy resin composition shown in Table 2 to form a sheet of 10077 m'').
かつガラスクロス(3597m”)を裏打材として貼シ
合わせ、80℃で1時間加熱半硬化させて集成マイカプ
リプレグ材料とした。これを30−幅のテープに切断し
たのち、実施例1で使用し良導体に半分重ね合わせなが
ら8回巻きつけたのち、実施例1と同条件でコイルを4
本製作した。実施例1と同条件で試験し結果を平均値で
表4に示した。Glass cloth (3597 m") was laminated as a backing material and semi-cured by heating at 80°C for 1 hour to obtain a laminated mica prepreg material. After cutting this into a 30-width tape, it was used in Example 1. After wrapping the coil 8 times around a good conductor with half overlap, the coil was wrapped 4 times under the same conditions as in Example 1.
I made this book. Tests were conducted under the same conditions as in Example 1, and the results are shown in Table 4 as average values.
比較例2
表1記載のシート5に表2記載のエポキシ樹脂組成物を
60℃に加熱して10077m”塗工し。Comparative Example 2 The epoxy resin composition shown in Table 2 was heated to 60° C. and coated for 10,077 m'' on Sheet 5 shown in Table 1.
かつガラスクロス<351/m”)を裏打材として貼シ
合わせ80℃で1時間加熱半硬化させてマイカフリグレ
グ材料とした。これを30−幅のテープに切断し九のち
、実施例1で使用し良導体に半分、重ね合わせながら8
回巻きつけ九のち、実施例1と同条件でコイルを4本製
作した。実施例1と同条件で試験し結果を平均値で表4
に示した。A glass cloth <351/m") was laminated as a backing material and semi-cured by heating at 80°C for 1 hour to obtain a mica frig material. This was cut into a 30-width tape, and after 9 days, the material was prepared in Example 1. Use half of it on a good conductor, overlap it with 8
After nine turns, four coils were manufactured under the same conditions as in Example 1. Tested under the same conditions as Example 1 and the results are shown in Table 4 as an average value.
It was shown to.
実施例4
表1記載のシート2にガラスクロス(35に舎内を補強
材として重ね、この上から表2記載のエボ揮発分換算1
5 t/m”))11工し、 ”100℃で30分間乾
燥し、30m幅のテープに切断したのち、実施例1で使
用した導体に半分重ね合わせながら8回巻きつけたのち
100 ’C”t” 0.1 mmHg 2 時M 乾
燥し、引き続き、その圧力下で80℃に加熱し九表21
載のエポキシ樹脂組成物を含浸させ九。コイルをエポキ
シ樹脂組成物に浸積した状態で圧力を常圧に戻し、1時
間後コイルをとシ出しエポキシ樹脂組成物が走れ落ちな
いようにiミルのマイラーフィルム(■東し製)で包み
、110”Cで4時間、さらに170℃で3時間硬化さ
せ3■厚さの絶縁層を形成させ九。実施例1と同条件で
試験し結果を平均値で表3に示した。Example 4 Glass cloth (35) was layered on sheet 2 listed in Table 1 as a reinforcing material, and on top of this, Evo volatile content equivalent 1 listed in Table 2 was added.
After drying at 100°C for 30 minutes and cutting into 30m wide tapes, they were wrapped 8 times around the conductor used in Example 1 with half overlap, and then heated at 100°C. "t" 0.1 mmHg 2 hours M Dry and subsequently heated to 80°C under that pressure.
9. Impregnated with the epoxy resin composition described above. With the coil immersed in the epoxy resin composition, the pressure was returned to normal pressure, and after 1 hour, the coil was taken out and wrapped in i-mil Mylar film (made by Toshi) to prevent the epoxy resin composition from running off. The insulating layer was cured at 110"C for 4 hours and then at 170"C for 3 hours to form an insulating layer with a thickness of 3cm.The test was conducted under the same conditions as in Example 1, and the results are shown in Table 3 as average values.
比較例3
表1記載のシート5を用いて実施例4と同条件でテープ
とし、これを用いて実施例4と同条件でコイルとした。Comparative Example 3 Sheet 5 listed in Table 1 was used to make a tape under the same conditions as Example 4, and this was used to make a coil under the same conditions as Example 4.
実施例1と同条件で試験し結果を平均値で表3に示し九
。The test was conducted under the same conditions as in Example 1, and the results are shown in Table 3 as average values.
表3においてエポキシ樹脂組成物量は絶縁層を600℃
で2時間加熱し、その重量減少量から求めた。曲げ強さ
は4点法で外スパン550■、内スパン250■、試験
速度5 m 7分で行なった。In Table 3, the amount of epoxy resin composition was determined when the insulating layer was heated to 600°C.
It was determined from the amount of weight loss after heating for 2 hours. The bending strength was measured using a 4-point method using an outer span of 550 cm, an inner span of 250 cm, and a test speed of 5 m for 7 minutes.
絶縁破壊電圧は2KV/秒の昇圧速度で絶縁破壊電圧を
求めた。劣化後の絶縁破壊電圧は熱劣化を熱風循環式電
熱乾燥機中で130℃で10”時間性ない絶縁破壊電圧
を求めた。The dielectric breakdown voltage was determined at a voltage increase rate of 2 KV/sec. The dielectric breakdown voltage after deterioration was determined by determining the dielectric breakdown voltage that did not undergo thermal deterioration at 130° C. for 10 hours in a hot air circulation type electric heat dryer.
本発明になる絶縁線輪は、マイカりん片が大きく、かつ
そのアスペクト比が高い集成マイカ材料を用いるため絶
縁層の機械的性質が高められ、さらに大きいマイカりん
片の隙間を小さいマイカシん片で埋めることができ、そ
の絶縁層の電気的特性も高められる。The insulated wire ring according to the present invention has large mica flakes and uses a composite mica material with a high aspect ratio, so the mechanical properties of the insulating layer are improved, and the gaps between the large mica flakes are filled with small mica flakes. The electrical properties of the insulating layer are also enhanced.
また、大きいマイカりん片の隙間を小さいマイカりん片
で埋めた集成マイカ材料を用いることにより、絶縁層の
接着剤量を減少させても絶縁線輪の初期特性(電気的特
性及び機械的特性)が低下しないばかりか、長時間劣化
後の特性(例えば。In addition, by using a composite mica material in which the gaps between large mica flakes are filled with small mica flakes, the initial properties (electrical properties and mechanical properties) of the insulated wire ring can be improved even if the amount of adhesive in the insulating layer is reduced. Not only does it not deteriorate, but the characteristics after long-term deterioration (e.g.
長期課電劣化特性)においてもすぐれ、はがしマイカ製
品を用いた絶縁線輪に匹敵するン、これらを上回るもの
も得ることができる。It also has excellent long-term electrical deterioration characteristics, comparable to, or even superior to, insulated wire rings using peelable mica products.
Claims (1)
で、かつアスペクト比が150以上のマイカシん片を2
〜25重量部9粒径1,0■以上1.7■未満で、かつ
アスペクト比が150以上のマイカシん片を20〜60
重量部1粒径0.251111以上1.0■未満で、か
つアスペクト比が100以上のマイカシん片を20〜4
0重量部及び粒径0,25w未満で、かつアスペクト比
が100以上のマイカシん片を10〜30重量部含むス
ラリーを抄造して得られる集成マイカ材料を60〜85
重量部、熱硬化性樹脂組成物を15〜30重量部ならび
に裏打材を15重量部以下(集成マイカ材料、熱硬化性
樹脂組成物及び裏打材は、上記の範囲内で総量が100
重量部となる量とされる)含有する絶縁層を有する絶縁
線輪。1. Mica pieces obtained by crushing unfired mica and having a particle size of 1.7 or more and an aspect ratio of 150 or more are
~25 parts by weight9 20 to 60 pieces of mica with a particle size of 1.0 to less than 1.7 and an aspect ratio of 150 or more
Part by weight: 20 to 4 pieces of mica with a grain size of 0.251111 or more and less than 1.0cm and an aspect ratio of 100 or more.
A laminated mica material obtained by paper-making a slurry containing 10 to 30 parts by weight of mica flakes having a particle size of less than 0.25 w and an aspect ratio of 100 or more.
parts by weight, 15 to 30 parts by weight of the thermosetting resin composition and 15 parts by weight or less of the backing material (the aggregate mica material, the thermosetting resin composition, and the backing material have a total amount of 100 parts by weight within the above range).
an insulated coil having an insulating layer containing (in amounts expressed as parts by weight).
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56161508A JPS5861605A (en) | 1981-10-08 | 1981-10-08 | Insulated coil |
DE3144006A DE3144006C2 (en) | 1980-11-08 | 1981-11-05 | Electrically insulating mica tape and its use |
FR8120888A FR2493828A1 (en) | 1980-11-08 | 1981-11-06 | MATERIALS IN MICA RECONSTITUTED, MATERIALS PRE-IMPREGNATED IN MICA RECONSTITUTED, PRODUCTS IN MICA RECONSTITUTED AND ISOLATED WINDINGS |
CH7166/81A CH652999A5 (en) | 1980-11-08 | 1981-11-09 | METHOD FOR PRODUCING RECONSTRUCTED MICA MATERIALS, RECONSTITUTED Mica PREPREG MATERIALS AND RECONSTITUTED Mica Products and Use of the Mica Material. |
US06/621,461 US4576856A (en) | 1980-11-19 | 1984-06-18 | Reconstituted mica materials, reconstituted mica prepreg materials, reconstituted mica products and insulated coils |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56161508A JPS5861605A (en) | 1981-10-08 | 1981-10-08 | Insulated coil |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5861605A true JPS5861605A (en) | 1983-04-12 |
JPS6233726B2 JPS6233726B2 (en) | 1987-07-22 |
Family
ID=15736387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56161508A Granted JPS5861605A (en) | 1980-11-08 | 1981-10-08 | Insulated coil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5861605A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017095733A (en) * | 2013-10-09 | 2017-06-01 | 日立化成株式会社 | Prepreg mica tape and coil prepared therewith |
JPWO2017175875A1 (en) * | 2016-04-08 | 2018-11-29 | 日立化成株式会社 | Coil for rotating electrical machine, method for manufacturing coil for rotating electrical machine, mica tape, cured product and insulator of mica tape |
-
1981
- 1981-10-08 JP JP56161508A patent/JPS5861605A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017095733A (en) * | 2013-10-09 | 2017-06-01 | 日立化成株式会社 | Prepreg mica tape and coil prepared therewith |
JPWO2017175875A1 (en) * | 2016-04-08 | 2018-11-29 | 日立化成株式会社 | Coil for rotating electrical machine, method for manufacturing coil for rotating electrical machine, mica tape, cured product and insulator of mica tape |
Also Published As
Publication number | Publication date |
---|---|
JPS6233726B2 (en) | 1987-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4491618A (en) | Reconstituted mica materials, reconstituted mica prepreg materials, reconstituted mica products and insulated coils | |
US4418241A (en) | Insulated coil | |
RU2332736C1 (en) | Mica-loaded tape with maximum mica content | |
CN1131529C (en) | High voltage electric appliance | |
US4661397A (en) | Polybutadiene bonded extremely flexible porous mica tape | |
US4576856A (en) | Reconstituted mica materials, reconstituted mica prepreg materials, reconstituted mica products and insulated coils | |
JPS5861605A (en) | Insulated coil | |
RU2366060C1 (en) | Method of making insulation for windings of electrical machines | |
JPS5860507A (en) | Insulating coil | |
JPS6136329B2 (en) | ||
CN106531374A (en) | Flame-retardant insulated composite material and preparation technology thereof | |
JPS6245687B2 (en) | ||
US2575733A (en) | Flexible mica compositions | |
JPS6022445B2 (en) | Laminated mica material and laminated mica prepreg material | |
JP3402838B2 (en) | Mica tape and insulated coil using the same | |
JPS5925327B2 (en) | mica prepreg material | |
CN1918669A (en) | Semiconducting winding strip and use thereof | |
JPH11345733A (en) | Manufacture for electrically insulated coil | |
JP2956218B2 (en) | Insulation structure of rotating electric machine | |
JPS6043607B2 (en) | insulated wire | |
JPS581927A (en) | Method of producing mica sheet or mica tape | |
JPH0196228A (en) | Prepreg mica tape | |
JPH0317134A (en) | Prepreg sheet and production thereof | |
JPS60170449A (en) | Forming method of refractory high voltage insulated coil | |
JPS6144367B2 (en) |