JPS5861228A - Production of original black plate for ultra thin galvanized steel plate having excellent shape - Google Patents
Production of original black plate for ultra thin galvanized steel plate having excellent shapeInfo
- Publication number
- JPS5861228A JPS5861228A JP15820881A JP15820881A JPS5861228A JP S5861228 A JPS5861228 A JP S5861228A JP 15820881 A JP15820881 A JP 15820881A JP 15820881 A JP15820881 A JP 15820881A JP S5861228 A JPS5861228 A JP S5861228A
- Authority
- JP
- Japan
- Prior art keywords
- hot
- rolling
- steel
- rolled
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、形状に優れた極薄亜鉛めっき鋼板用原板の製
造方法、特こ、平たん度として耳伸び、腹伸びが少ない
極薄亜鉛めっき鋼板用原板を、その製造のために消費さ
れるエネルギーを少なくして製造する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for manufacturing an original sheet for an ultra-thin galvanized steel sheet with an excellent shape, and in particular, an original sheet for an ultra-thin galvanized steel sheet with little flatness such as edge elongation and belly elongation. This invention relates to a manufacturing method that reduces the amount of energy consumed for manufacturing.
現在O,コs −o、to−のいわゆる極薄亜鉛めっき
鋼板用原板は、亜鉛めっき後、波板等の製品に加工され
ているdこれらは形状(平たん度)が悪いと、例えば波
板では波板成形後の重ね合わせですき間ができたり、成
形後所定の寸法精度が出ない゛などの問題が生じるため
、この極薄亜鉛めっき鋼板用原板に対する耳伸び、腹伸
びによる平たん変度上の品質要求は、非常に厳しくなっ
ている◇第1図は、従来の極薄亜鉛めっき鋼板用原板の
製造方法の工程を示すものであって、O! 0.041
〜O,10%程度のオープントップリムド鋼を用いてム
r3点以′上の高温熱間仕上圧延を行なった俵、通常の
巻取温度(以下OTという。)で巻取って板厚コ、亭謔
以上の熱延鋼板となし、酸洗後冷間圧延を、特に約0’
、AO−以下の薄物ではJl1行なうという工程で上記
原板は製造され、その後めっき工程に供給されていた。At present, the so-called ultra-thin galvanized steel sheets of O, CO, TO- are processed into products such as corrugated sheets after galvanizing. With sheets, there are problems such as gaps being formed when stacked after forming corrugated sheets, and the specified dimensional accuracy not being achieved after forming, so flattening due to edge elongation and belly elongation of the original sheet for ultra-thin galvanized steel sheets is a problem. High quality requirements have become extremely strict. ◇Figure 1 shows the process of the conventional manufacturing method for ultra-thin galvanized steel sheets, and O! 0.041
A bale that has been hot finish rolled at a high temperature of 3 points or more using open-top rimmed steel with ~O, 10%, rolled at the normal winding temperature (hereinafter referred to as OT), Hot-rolled steel sheets with a temperature of more than 100%, and cold-rolled after pickling, especially about 0'
For thin materials of , AO- or less, the above-mentioned original plate was manufactured in a process of performing Jl1, and then supplied to the plating process.
従来方法で上記のとおりの工程を採用していた理由につ
いて述べると、
先づ、オープンシップリムド鋼を使用するのは、極薄切
の亜鉛めっき鋼板用の原板は一熱地鋼帯が硬質化すると
冷間圧延性が劣化するため、比較的軟質であるオープン
トラプリ・ムド鋼の使用が好ましいからである。Explaining the reasons why the above process was adopted in the conventional method, firstly, open ship rimmed steel is used because the base plate for ultra-thinly cut galvanized steel sheets is hardened in the first heat. This is because cold rolling properties deteriorate, so it is preferable to use open-trap mud steel, which is relatively soft.
次に熱間仕上圧延温度(以下FDTという。)゛をAr
3点以上の高温に限定しているのは、これと逆にFDT
がAr3点以下の温度になると、熱延鋼板に結晶粒の粗
大化が起って、これを素材とする亜鉛めっき鋼板の材質
が非常に悪くなるということが当該圧延技術分野の常識
であったため〜による。Next, the hot finish rolling temperature (hereinafter referred to as FDT) is set to Ar
On the contrary, FDT is limited to high temperatures of 3 points or higher.
It was common knowledge in the field of rolling technology that if the temperature of the hot rolled steel sheet falls below the Ar3 point, the crystal grains in the hot rolled steel sheet will become coarser and the quality of the galvanized steel sheet made from this material will become extremely poor. ~by.
ざらに鋼塊のリム層は、鋼塊中央部よりリミングアクシ
ョンによってC含有量が低い。このリム層は圧延により
鋼板板幅方向端部となり、この端部の0含有量は板中央
部のそれに較べて着しく低いことによって、板幅方向で
0含有量に差を生じ、したがってAr 3点も異なって
(Ar3点は成分によって興なるため)、端部のAr8
点が中央部より高くなる。Roughly, the rim layer of the steel ingot has a lower C content than the central part of the steel ingot due to the rimming action. This rim layer becomes the end portion of the steel sheet in the width direction by rolling, and the 0 content at this end is significantly lower than that at the center of the sheet, resulting in a difference in the 0 content in the sheet width direction, and therefore Ar 3 The points are also different (because the Ar3 point arises depending on the component), and the Ar8 point at the end
The point is higher than the center.
そこで中央部のAr3点を基準にして鋼板をその温度に
加熱すると、端部の温度がAr5点以下となる恐れがあ
り、その場合には端部で結晶粒の成長が起こり易くなる
。なお、この傾向は、熱延時の板温が端部で中央部より
約50℃前後、低いことによりさらに助長される。端部
に結晶粒の成長が起ると、冷間圧延後に端部の耳伸びが
大きくなる恐°れがある。以上の問題点があるために熱
間圧延は、Ar3点以上で比較的高温のFDTで行なっ
ている。Therefore, if the steel plate is heated to a temperature based on the Ar3 point in the center, there is a risk that the temperature at the end portions will fall below the Ar5 point, and in that case, crystal grain growth is likely to occur at the end portions. This tendency is further promoted by the fact that the sheet temperature during hot rolling is approximately 50° C. lower at the ends than at the center. If grain growth occurs at the edges, there is a risk that the edge elongation at the edges will increase after cold rolling. Because of the above problems, hot rolling is performed using FDT at a relatively high temperature of 3 or more Ar points.
また巻取温度については、通常sjo℃前後の低温で行
なっているが、高温の方が軟質化するため、特に薄いめ
っき鋼板用原板に対しては高温で巻取ることがある。As for the winding temperature, the winding is usually carried out at a low temperature around sjo°C, but since the material becomes softer at a higher temperature, a particularly thin plated steel sheet may be wound at a high temperature.
このような圧延方法では、所定の圧延温度を保持するた
めには、熱延素材板厚の可能な下限はコ、ダーであって
、これ以上に薄くすることはできない。In such a rolling method, in order to maintain a predetermined rolling temperature, the lower limit of the possible thickness of the hot-rolled material sheet is about 100 mm, and it cannot be made thinner than this.
このように熱延板は比較的硬質でまた比較的板厚が厚い
ため冷間圧延においては、非常に作業能率が悪く、特に
約O,コ0腸以下の薄物製品に対しては、冷間圧延を2
回行なって所定の板厚に仕上げている。As described above, hot-rolled sheets are relatively hard and relatively thick, so the work efficiency is very low in cold rolling. rolling 2
The plate is finished to the specified thickness by repeated rotations.
さらにこのような従来方法では、製品原板の平たん度が
悪く、平たん度指標の耳伸び指数(ム)として/Q w
m / ym≦ム≦X)m/m、腹伸び指数(B)で4
IIllII/m≦B≦10 wm / w*程度しか
出せない状態であった。なお、耳伸び指数(ム)及び腹
伸び指数の)゛とは、1sコ図において耳伸びの山の高
さをR1(鴎)とし、腹伸びの山の高さをHt (M)
としたとき(サフィックス1は、耳伸び、腹伸びした冬
山を示すものである。)、
鋼板ストリップL方向1メートル(M)当りの耳伸び山
の高さの合計をムとじ、同じく腹伸び山の高さの合計を
Bとし、
ム= X R1/M 、 B = ムi/M1=l
l=1で表わしたも
のである。Furthermore, in such conventional methods, the flatness of the product original plate is poor, and the edge elongation index (mu) of the flatness index is /Q w
m/ym≦mu≦X) m/m, abdominal stretch index (B) is 4
The condition was such that only about IIllII/m≦B≦10 wm/w* could be produced. In addition, the ear elongation index (M) and belly elongation index) are defined as the height of the peak of ear elongation in the 1s diagram is R1 (seagull), and the height of the peak of belly elongation is Ht (M).
(The suffix 1 indicates a winter mountain with an elongated edge and an elongated belly.) Then, the sum of the heights of the elongated peaks per meter (M) in the L direction of the steel plate strip is calculated. Let B be the total height of
It is expressed as l=1.
これに対し、近年の極薄亜鉛めっき鋼板用原板の平たん
度としての形状品質の要求は、厳しく、ム≦IOam
/ m 、 B≦3■/mの非常に厳しい要求が出され
るようになっている。On the other hand, in recent years, the requirements for shape quality in terms of flatness of base sheets for ultra-thin galvanized steel sheets have been strict, and M≦IOam
/m, B≦3■/m, very strict requirements are now being issued.
以上の問題への対策として次のようなものが考えられる
。The following measures can be considered as countermeasures to the above problems.
(1) 平たん度を得るため成分均一な連鋳材または
キャップド鋼材を使用することが考えられるが・これら
は、オープントップリムド鋼材に比べて硬質なために、
冷間圧延において圧延負荷が大きくなり、冷延時輻方向
の圧延圧力分布がロールベンディングにより板幅端部に
集中し一原板は耳伸び傾向になって平たん度の優れたも
のを得ることが非常に難しくなる。さらにHIT(Ho
rs@Pow@r Hours−p@r Ton )
(/ )ン当りの消費冷間圧延エネルギー)が増加し冷
間圧延においてロール摩耗が起り、スリップ現象が発生
r′る。このためロール替頻度が増大し、ひいては生産
能率が低下するという間−がある。(1) In order to obtain flatness, it is possible to use continuous casting material with uniform composition or capped steel material, but since these are harder than open top rimmed steel material,
During cold rolling, the rolling load increases, and the rolling pressure distribution in the radial direction during cold rolling is concentrated at the edges of the sheet width due to roll bending, and the original sheet tends to stretch at the edges, making it extremely difficult to obtain a sheet with excellent flatness. becomes difficult. Furthermore, HIT (Ho
rs@Pow@r Hours-p@r Ton)
The consumption of cold rolling energy per roll increases, wear of the rolls occurs during cold rolling, and a slip phenomenon occurs. For this reason, the frequency of changing rolls increases, and as a result, production efficiency decreases.
(II) (1)の問題に対しては、熱延鋼板の板厚
を、例えば1.0−7.4−程度に減少して、冷間圧延
工程で圧下率を低くすることが考えられるが、熱延板の
板厚を薄くするためには、板幅方向の全幅にわたってF
DTをムr3点以上の温度にするためスラブの加熱温度
を上げ、かつスラブ単重を小さくする必要がある。その
ようにしても、板端部の温度はムr5点以下になり結晶
粒成長が起こり、耳伸びが大きくなって平たん度不良に
なることが多かった。さらに加熱温度を上げ、スラブ単
重を小さくすることによって、ある程度平たん度が改善
されたものが得られたとしても喰い込んで圧延されて、
外観不良となる問題がある。(II) To solve the problem in (1), it is possible to reduce the thickness of the hot-rolled steel plate to, for example, about 1.0-7.4 to lower the reduction rate in the cold rolling process. However, in order to reduce the thickness of a hot-rolled sheet, it is necessary to increase F over the entire width in the sheet width direction.
In order to bring the DT to a temperature of 3 points or higher, it is necessary to increase the heating temperature of the slab and reduce the unit weight of the slab. Even if this was done, the temperature at the edge of the plate would drop below the Mr5 point, grain growth would occur, and the edge elongation would increase, often resulting in poor flatness. Furthermore, by increasing the heating temperature and reducing the unit weight of the slab, even if a product with improved flatness to some extent is obtained, it will be rolled due to biting.
There is a problem of poor appearance.
(3) また軟質化させて平たん度を良くする方法と
して、OTを高くすることも考えられるが、酸洗能率の
極端な低下を来す問題が生ずる〇本発明の目的は、以上
の種々の問題点を解決して、平たん度の優れた極薄亜鉛
めっき鋼板用原板を、その製造消費エネルギーを大幅に
削減して製造することができる、該原板の製造方法を提
供することにある。(3) Increasing the OT may also be considered as a method of softening and improving flatness, but this poses the problem of an extreme drop in pickling efficiency.The purpose of the present invention is to solve the above problems. An object of the present invention is to provide a method for manufacturing an ultra-thin galvanized steel sheet with excellent flatness, which can solve the problems and produce the original sheet with significantly reduced energy consumption. .
しかして本発明の要旨は次のとおりである。The gist of the present invention is as follows.
(1)C:≦o、os%、S1:≦0.0.3−%’
、 Mu + 0./コ〜O’、JO%、P:≦o、o
、io%%3+≦a030%。(1) C:≦o, os%, S1:≦0.0.3-%'
, Mu + 0. /Co~O', JO%, P:≦o,o
, io%%3+≦a030%.
ム71≦o、ob%、残部F・および不可避的不純物で
あり、かつMu/S :≧10とした鋼を連続鋳造によ
って鋳片となし、これを熱間圧延するに当り% A1”
3点以下N700℃以上の温度で仕上圧延を終了し、次
いで600℃〜亭30℃の温度で巻取って、1.6−〜
コ、3−厚の熱延鋼帯となし、引き続き酸洗等の脱スク
ール処理をし1だ後、冷間圧延することを特徴とする、
形状に優れた極薄亜鉛めっき鋼板用原板の製造方法。Steel with Mu71≦o, ob%, balance F and unavoidable impurities, and Mu/S: ≧10 is made into a slab by continuous casting, and when this is hot rolled, %A1”
Finish rolling is completed at a temperature of 3 points or less, 700°C or higher, and then coiled at a temperature of 600°C to 30°C.
J. A 3-thick hot-rolled steel strip, which is then subjected to de-schooling treatment such as pickling, and then cold-rolled.
A method for manufacturing ultra-thin galvanized steel sheets with excellent shapes.
(り Os o、oダ 〜 0.0デ % 、
)in ! 0.コ0 〜 OJO%。(Ri Os o, o da ~ 0.0 de%,
)in! 0. Ko0 ~ OJO%.
P:≦o、o4Io−,S !≦o、oqo s 、残
部r・及び不可避的不純物でありシかつMxv’8 :
≧”とした鋼をキャップド鋼塊に111鶴造塊し、これ
を分塊圧延によって鋼片となし、この鋼片を熱間圧延す
るに当り、ムr3点以下″@、100°C以上の温度で
仕上圧延を終了し、次いで400”C〜村O℃の温度で
巻取って、7.4sIB−コ、3−厚の熱延鋼帯となし
、引き続き酸洗等の脱スナール処理をした後、冷間圧延
することを特徴とする、−′形状に優れた極薄亜鉛めっ
き鋼板用原板の製造方法。P:≦o, o4Io−, S! ≦o, oqos, remainder r and unavoidable impurities, and Mxv'8:
≧'' is made into a capped steel ingot, which is made into a steel billet by blooming rolling, and when hot rolling this steel billet, the unevenness is 3 points or less, @100°C or more. Finish rolling was completed at a temperature of 400"C to 0.5"C, followed by coiling at a temperature of 400"C to 30C to form a hot rolled steel strip of 7.4s IB-1 and 3-thickness, followed by de-snarling treatment such as pickling. A method for producing an original sheet for an ultra-thin galvanized steel sheet having an excellent shape.
本発明は、上記成分範囲からなる組成の連続鋳造並びに
キャップド鋼塊の分塊圧延による鋼材を使用し、1i’
DTをムr3点〜700℃間の温度とする熱間圧延を行
なうことにより、通常のOTで巻取っても、結晶粒の粗
大化が計れるため、熱延板の軟質化が可能となり、また
これにより熱延板の板厚を従来よりも薄くすることがで
きるのも、冷間圧延を1回行なうことでも平たん度の優
れた極薄亜鉛めっき鋼板用原板が製造できるものである
。The present invention uses a steel material obtained by continuous casting and blooming rolling of a capped steel ingot having a composition in the above-mentioned range, and
By hot rolling the DT at a temperature between 3 points and 700°C, it is possible to coarsen the grains even if the sheet is wound using normal OT, making it possible to soften the hot-rolled sheet. This makes it possible to make the thickness of the hot-rolled sheet thinner than before, and it is also possible to produce an ultra-thin original sheet for galvanized steel sheets with excellent flatness even by performing cold rolling once.
以下、本発明について詳細に説明するO先づ′原板の素
材としては、その成分が均一であ漬ことが平たん度を良
好にする条件である。そこで先づ連鋳材における化学成
分範囲の限定の意義について述べる。The material of the original plate, which will be described below in detail regarding the present invention, must have uniform components and must be soaked to ensure good flatness. First, we will discuss the significance of limiting the range of chemical components in continuously cast materials.
〇:≦o、b1%〜〜〜N
Cが0.01%を超えて多くすると、°ムr3点が低く
なり、それに伴ない結晶粒成長をはかるうえで熱間圧延
温度を下げる必要が生ずる。しかし熱間圧延温度を下げ
た楊合、スラブの熱地変形抵抗が太き(なって所要熱間
圧延馬力が上昇し、所要の板厚の熱延フィルが得られ難
くなる。一方熱間圧延温度が十分ムr3点以下にならな
いと、熱延コイルの幅方向の硬度分布が中央部でより高
くなり、冷延コイルで耳伸びが生じるようになる。〇:≦o, b1%~~~N When C increases beyond 0.01%, the °Mr3 point becomes low, and accordingly, it becomes necessary to lower the hot rolling temperature in order to achieve grain growth. . However, when the hot rolling temperature is lowered, the hot rolling resistance of the slab increases (as a result, the required hot rolling horsepower increases, making it difficult to obtain a hot rolled fill of the required thickness. If the temperature is not sufficiently lowered to 3 points or less, the hardness distribution in the width direction of the hot-rolled coil will be higher at the center, and edge elongation will occur in the cold-rolled coil.
さらに、’ ffDTに関して後記で説明するように、
115点以下の温度で熱間圧延を行な゛つた場合には、
0量が0.01 %以下に減するに従って、熱延板の降
伏強度が低くなって冷間圧延性が向上する。Furthermore, as explained later regarding 'ffDT,
If hot rolling is carried out at a temperature below 115 points,
As the 0 content decreases to 0.01% or less, the yield strength of the hot rolled sheet decreases and the cold rollability improves.
以上の点でO量の上限を0.01%とするものである。In view of the above, the upper limit of the amount of O is set at 0.01%.
Mn 富0./コ〜0.JO%
Mu / 8 :≧10
Inは、Sによる熱間脆性の防止のために少なくとも0
./コ一は必要であるが、O,SO%より多い添加は必
要でなく、かえって製品原価を上げることになる。Mn Wealth 0. /ko~0. JO% Mu/8: ≧10 In is at least 0 to prevent hot embrittlement due to S.
.. /Co1 is necessary, but adding more than O,SO% is not necessary and will actually increase the product cost.
またMn / 8が10より小さくなると、熱間圧延時
に熱関亀\≦執蔦−4脆性を生じ、熱延鋼帯の板幅端部
が割れやすくなるので、Mu/8は10以上とする。Furthermore, if Mn/8 is less than 10, hot rolling will cause hot rolling embrittlement and the width edges of the hot rolled steel strip will be prone to cracking, so Mu/8 should be 10 or more. .
”P”+:O’、混’0’ lよ、多、6.熱ゆ板。ゆ
度、高くなって冷間圧延性を劣化させるので0.030
%以゛下とする。"P" +: O', mixed '0' lyo, many, 6. Hot soup board. 0.030 because it increases the yield and deteriorates cold rolling properties.
% or less.
S:≦0.030%
Sは、0.030%より多くなると製品に熱間脆性に起
因する表面疵を発生するので、0.030%以下とする
。S: ≦0.030% If S exceeds 0.030%, surface flaws due to hot embrittlement will occur in the product, so it should be kept at 0.030% or less.
Sl:≦0.03%
Slは、原板に良好な亜鉛めっき性を与えるため、0.
03%以下に抑える必要がある。Sl: ≦0.03% Sl is 0.03% in order to provide good galvanizing properties to the original plate.
It is necessary to keep it below 0.3%.
ム!:≦0.01.%
従来の連続鋳造技術では、製品スラブのブローホールを
防止するために、ある程度のムlが必要であった。しか
し、連続鋳造技術の向上によって、製品スラブの凝固ま
ではムeは必要であるが、凝固したスラブでは、不要と
なった。それは、鋳込過程で溶鋼が空気又は耐火物など
により酸化する場合には1五!は必要であるが、空気酸
化防止技術また耐火物材質の改善によって、ムl含有量
が少なくても、品質の優れたスラブが得られるようにな
った。したがって、ムlは0.06%を超える量の添加
は必要がない。Mu! :≦0.01. % Conventional continuous casting technology requires a certain amount of sludge to prevent blowholes in the product slab. However, with the improvement of continuous casting technology, although mue is necessary until solidification of the product slab, it is no longer necessary for the solidified slab. If molten steel is oxidized by air or refractories during the casting process, the number is 15! However, improvements in air oxidation prevention technology and refractory materials have made it possible to obtain slabs of excellent quality even with low mulch content. Therefore, it is not necessary to add mulch in an amount exceeding 0.06%.
次に本発明コで使用するキャップド鋼材で成分範囲を限
定した意義について述べる。Next, we will discuss the significance of limiting the range of ingredients in the capped steel used in the present invention.
0 : 0.0*〜0.01%
キャップド鋼には、ム!Nは存在しないので、連続鋳造
材に比較して軟質である。しかし、0量が0.09弧を
超えて多くなると、熱延板の硬度が高くなって冷間圧延
性を劣化させることになる。また0、041 %よりも
少ないと良好なりミングアクシ曹ンが得られず、したが
ってプ田−ホル、介在物等に起因する表面欠陥あるいは
ピンホールを生ずる恐れがある。よってo : o、o
p〜0.0デ憾とする。0: 0.0*~0.01% Capped steel has mu! Since N is not present, it is softer than continuous cast material. However, if the zero amount increases beyond 0.09 arc, the hardness of the hot rolled sheet increases and the cold rollability deteriorates. On the other hand, if it is less than 0.041%, a good min-axis carbon cannot be obtained, and therefore surface defects or pinholes due to puta-holes, inclusions, etc. may occur. Therefore o: o, o
We regret that p~0.0.
81 : trao・
Slは通常のキャップド鋼におけるようにtraoe量
である。81: trao・Sl is the amount of traoe as in normal capped steel.
)In : 0.−〇〜0.!rO%
1(n/S:≧IO
Mnは、Sによる熱間脆性の防止のため、更に正常なり
ミングアクシ冒°ンを行なわさせるために少なくともO
o−〇憾は必要である。しかしo、zosより多くして
も、それらの効果はより高められず、かえって製品原価
を上げることになるので上限は0、IO−とする。)In: 0. -〇~0. ! rO% 1 (n/S: ≧IO Mn is at least O in order to prevent hot embrittlement caused by S and to further normalize the forming axis.
o-〇Sorry is necessary. However, even if the amount is greater than o or zos, these effects cannot be further enhanced and the cost of the product will increase, so the upper limit is set to 0 or IO-.
また)[n/8が10より小さくなると、熱間圧延時に
熱間脆性を生じ、熱延鋼帯の板幅端部が割れやすくなる
のでMn/Sを70以上とする。Furthermore, if n/8 is smaller than 10, hot embrittlement occurs during hot rolling, and the width edges of the hot rolled steel strip tend to crack, so Mn/S is set to 70 or more.
P冨≦0.0410%
Pは、熱延板の硬度を高くする作用があって、それによ
り熱延板の冷間圧延性を劣化させるので10、o4to
襲以下とする。P richness≦0.0410% P has the effect of increasing the hardness of the hot rolled sheet, thereby degrading the cold rolling properties of the hot rolled sheet, so 10, o4to
The attack shall be below.
S:≦0.0亭θ%
Sはリミングアクションを阻害して製品の表面性状を不
良にするので、o、oqo%以下に抑える必要がある。S: ≦0.0 θ% Since S inhibits the rimming action and makes the surface quality of the product poor, it is necessary to suppress it to 0% or less.
次に本発明の熱延条件について説明する。Next, the hot rolling conditions of the present invention will be explained.
本発明による極薄亜鉛めっき鋼板用原板の製造工程は、
第1図に示されるとおり、連続鋳造鋳片又はキャップド
鋼塊を分塊圧延して得られた鋼片を、FD’l’をムr
3点以下の温度で行なう1間圧延によって板厚コ、Jm
−7,4−の熱延板となし、通常曝
のOTで巻き取った後、醗洗等の脱スケール処理を・行
い、4ユ1で冷間圧延を行なって上記めっき原板とする
ものである。The manufacturing process of the original sheet for ultra-thin galvanized steel sheet according to the present invention is as follows:
As shown in FIG.
By rolling for 1 hour at a temperature of 3 points or less, the plate thickness is reduced to Jm.
-7,4- is made into a hot-rolled sheet, and after being rolled up with OT under normal exposure, it is subjected to descaling treatment such as washing, and then cold-rolled with 4 units of 1 to form the above-mentioned plated original plate. be.
そこで本発明において熱延条件を特定したこと0の意義
を以下に説明する。Therefore, the significance of specifying the hot rolling conditions in the present invention will be explained below.
FM s 115点〜 り00 ℃先づ本発明(1
)の出発素材とする連鋳材は、ムIMの存在により、リ
ムド鯛又はキャップド鋼に比し比較的硬質なので軟質化
しなければならない。この方法として、O量の上限を規
定し、さらにFDTをムr3点〜り00”CとするFD
Tの上限を規定する根拠について述べれば、115点以
下の@ I(vJ析フェライト)+r(オーステナイト
)1領1舗で熱延が完了したものは、最終スタンド出側
直後では熱延加工組織であるが、その直後rが再結晶し
、さらに冷延が進んでrからαの変態が起こる。これを
巻き取ると自己焼鈍で結晶粒成長が起こり、微細で均一
な結晶粒になる。會たaは、単に歪−焼なましく 5t
rain −AnnI&ling )を受ける。すなわ
ち−最終スタンドの軽圧下(約3〜71%)の熱間加工
をうけて、巻き取ると焼なましが進み、結晶粒径は極粗
大化する。したがって、熱延板はrがαに変態した微細
粒と、αが歪−焼なましで極粗大化した粒との混粒にな
るが全体として粗大組織となる。FMs 115 points ~ 00℃ First the present invention (1
) is relatively hard compared to rimmed sea bream or capped steel due to the presence of IM, so it must be made soft. As this method, the upper limit of the amount of O is specified, and the FDT is set to 3 points to 00''C.
Regarding the basis for specifying the upper limit of T, if hot rolling is completed with 115 points or less @ I (vJ ferrite) + r (austenite) 1 region, the hot rolled structure will be present immediately after exiting the final stand. However, immediately after that, r recrystallizes, and cold rolling further progresses, causing r to α transformation. When this is rolled up, crystal grain growth occurs due to self-annealing, resulting in fine and uniform crystal grains. A is simply strain-annealed 5t
rain -AnnI&ling). That is, after being subjected to hot working under light reduction (approximately 3 to 71%) at the final stand, annealing progresses when it is wound up, and the crystal grain size becomes extremely coarse. Therefore, the hot-rolled sheet becomes a mixture of fine grains in which r has been transformed to α and grains in which α has become extremely coarse due to strain-annealing, but it has a coarse structure as a whole.
この過程において、本発明者らは、新規に以下の事実を
見い出した。In this process, the present inventors newly discovered the following fact.
すなわち、第3図にC量と熱延板降伏強度との関係を、
FDTが113点以下のもの(ククO℃)と、ムr3点
以上(tbθ°C)のものについて示す。第3図に示さ
れるように113点以下で熱延を行った熱延板の降伏強
度は、鋼板C菫と強い相関があり、C量が少なくなるに
従って、熱延板の降伏強度は低くなり、冷間圧延性が向
上すること。しかし、A r3点以上で熱延を行った場
合、降伏強度はC量と格別、相関が見られず、CfIk
を減じても軟質化の程度が非常に小さいということが知
見された。That is, Fig. 3 shows the relationship between C content and yield strength of hot rolled sheet.
The results are shown for those with FDT of 113 points or less (kukuO°C) and those with Mr of 3 points or more (tbθ°C). As shown in Figure 3, the yield strength of a hot-rolled sheet hot-rolled at 113 points or less has a strong correlation with the C violet of the steel sheet, and as the amount of C decreases, the yield strength of the hot-rolled sheet decreases. , improved cold rolling properties. However, when hot rolling is carried out at the A point of 3 or higher, there is no significant correlation between the yield strength and the C content, and CfIk
It was found that the degree of softening is very small even if the amount is reduced.
また、FDTを113点以下の温度として熱間圧延を行
なうと、ashに示されるように、熱延板の幅方向の硬
度分布が端部でやや硬く、中央部で軟いという状態とな
る。これは、Arcs点以上の通常のFDTによる熱間
圧延を行なう場合に比較して平たん度、特に耳伸びの点
で優れている冷延板が得られることを意味する。さらに
、極薄冷延板の製造に適した薄い熱延板を製造する場合
、従来方法のようにFDTを熱延鋼帯の全幅にわたって
ムr8点以上に保持するにはスラブの加熱温度を上げる
とともに、スラブを通常のものより小さくなければなら
ず、これはエネルギー原単位、作業能率の面で非常に不
利となる。Further, when hot rolling is performed at a temperature of FDT 113 or lower, the hardness distribution in the width direction of the hot rolled sheet is slightly hard at the ends and soft at the center, as shown by ash. This means that a cold-rolled sheet that is superior in flatness, especially edge elongation, can be obtained compared to the case where hot rolling is carried out by normal FDT at a temperature higher than the Arcs point. Furthermore, when manufacturing thin hot-rolled sheets suitable for manufacturing ultra-thin cold-rolled sheets, the heating temperature of the slab is increased to maintain the FDT at the unevenness point of 8 or higher over the entire width of the hot-rolled steel strip as in the conventional method. At the same time, the slab must be smaller than usual, which is very disadvantageous in terms of energy consumption and work efficiency.
これに対して、低いFDTで行なう熱間圧延によれば、
スラブのFDTを容易にかつ経済的に全幅にわたって1
13点以下の温度で調整することができる。ざらに11
3点以下の温度で熱間仕上圧延を行なう場合では、スラ
ブの加熱温度を従来の高いFDTの場合のt、sso℃
〜/、300℃に対して/100℃〜lコzo’cで十
分となり、加熱温度をtoo ’CIiA低下させるこ
とができるので、加熱量原単位を削減することができる
Oさらにこのような低いFDTで熱延する場合は、スラ
ブの幅方向にわたって均一に115点以下の温度にする
ことができて、熱延板はその結晶粒が均一化され、かつ
軟質化しているため熱延板の板厚を従来方法でのものよ
りも薄くすることが可能となるので、冷間圧延性が良好
となり、冷間へへ梵λ圧延を/[lli行なうことで、
ム≦10m / !II 、 B≦j; # / mと
いう平たん度の優れた亜鉛めっき鋼板原板を製造するこ
とができるのである。On the other hand, according to hot rolling performed at low FDT,
Easy and economical FDT of slabs across the entire width.
The temperature can be adjusted at 13 points or less. Zarani 11
When performing hot finish rolling at a temperature of 3 points or less, the heating temperature of the slab can be changed to t, sso℃ in the case of conventional high FDT.
For ~/, 300℃, /100℃~l is sufficient, and the heating temperature can be lowered too much, so the heating amount basic unit can be reduced. When hot rolling with FDT, the temperature can be uniformly maintained at a temperature of 115 points or less across the width of the slab, and the hot rolled sheet has uniform crystal grains and is softened. Since it is possible to make the thickness thinner than that in the conventional method, cold rolling properties are improved, and by performing cold rolling,
Mu≦10m/! It is possible to produce a galvanized steel sheet material with an excellent flatness of II, B≦j; #/m.
以上の点でFDTの上限をA r3点とするのである。Based on the above points, the upper limit of FDT is set to A r3 point.
次にFDTの下限の根拠については、FDTが必要以上
に低もずざると、熱間圧延の負荷が増して所定の熱延板
板厚が得られなくなり、かつ必然的にOTが低温となっ
て、ホットコイルの自己焼鈍による結晶粒の成長が起ら
なくなるからである。Next, regarding the basis for the lower limit of FDT, if FDT is lower than necessary, the load of hot rolling will increase, making it impossible to obtain the specified hot-rolled plate thickness, and the OT will inevitably become low temperature. This is because crystal grain growth due to self-annealing of the hot coil does not occur.
OT i 600℃〜ダkO℃
OTは1高温で巻き取るに従って銅帯は自己焼鈍が進む
ことによって結晶粒径は大きくなって軟質になるが、そ
の程度は、OTによって銅帯内部と端部で異なったもの
になることがわかった。OT i 600℃~Da kO℃ OT is 1. As the copper strip is wound at a high temperature, the crystal grain size increases and becomes soft due to self-annealing, but the extent of this change is due to the OT inside the copper strip and at the ends. I knew it would be different.
この点について、第ダ図に示した(3Tと銅帯幅方向の
降伏強度分布との関係から明らかなように、OTが高い
(6tO℃)と銅帯内部は軟質になるが、端部は空冷に
よって軟質程度は小さくなって、輪方向の硬度差が大き
くなる。一方、CTが低い(!rデθ℃、 z4Io℃
、ダj0℃)と鋼帯内の自己焼鈍が抑制されるため、若
干硬質となり、結果として幅方向の硬度差が小さくなる
。この結果、幅方向の降伏強度差の小さいものは冷延板
の形状が改善される、ことになる。ざらにOTが400
℃を超えると、熱延板の酸洗性が着しく悪くなって酸洗
能率が低下することになる。特に薄物の熱延コイルでは
酸洗能率の低下の影響は、作業性の低下及び製造原価の
上昇の面で大きい。Regarding this point, as shown in Fig. DA (as is clear from the relationship between 3T and the yield strength distribution in the width direction of the copper strip, when the OT is high (6 tO℃), the inside of the copper strip becomes soft, but the edge Air cooling reduces the degree of softness and increases the difference in hardness in the ring direction.On the other hand, CT is low (!rdeθ℃, z4Io℃
, 0° C.) and self-annealing within the steel strip is suppressed, making it slightly hard, and as a result, the difference in hardness in the width direction becomes smaller. As a result, the shape of the cold-rolled sheet is improved if the difference in yield strength in the width direction is small. Zara OT is 400
If the temperature exceeds .degree. C., the pickling properties of the hot-rolled sheet become poor and the pickling efficiency decreases. Particularly in the case of thin hot-rolled coils, a decrease in pickling efficiency has a large effect in terms of a decrease in workability and an increase in manufacturing costs.
しかしOTがりjθ℃より低くなると、熱延コイルの自
己焼鈍作用が弱まって結晶粒の成長が進行せず、熱延板
は硬質となる。したがってOTは400℃〜ajo℃と
規定する。However, when the OT temperature becomes lower than jθ°C, the self-annealing effect of the hot-rolled coil weakens, crystal grain growth does not proceed, and the hot-rolled sheet becomes hard. Therefore, OT is defined as 400°C to ajo°C.
熱延鋼帯の板厚!1.4〜コ、J+w
一般に極薄鋼板を冷間圧延で得る際の間騙点は、次のと
おりである。Thickness of hot rolled steel strip! 1.4 - J+w Generally, the rolling point when obtaining an ultra-thin steel plate by cold rolling is as follows.
すなわち、熱延板の材質が板一方向で均一であっても、
冷間圧延の圧下率が高くなるので圧延負荷が大きくなり
−1それに伴なって冷間圧延時の板幅方向の圧延圧力分
布は、ロールベンディングによって、板幅方向の端部に
集中して再伸び発生傾向になるので、平たん度の優れた
ものを得ることが非常に難しくなることである。In other words, even if the material of the hot-rolled sheet is uniform in one direction,
As the reduction ratio in cold rolling increases, the rolling load increases -1.As a result, the rolling pressure distribution in the width direction during cold rolling is concentrated at the edges in the width direction due to roll bending. This tends to cause elongation, making it extremely difficult to obtain a material with excellent flatness.
この点に関し第5図のグラフは、連続鋳造材において冷
間圧下率が冷延板の再伸び変形に及ばず影響を示すもの
である。圧下率が90・%を超えて大きくなると、再伸
びが大きくなっていくことがわかる。In this regard, the graph in FIG. 5 shows that the cold reduction rate has no effect on the re-stretching deformation of the cold-rolled sheet in continuous casting materials. It can be seen that as the rolling reduction increases beyond 90%, the re-stretching increases.
したがって、熱延板の板厚が2.3−より厚い場合には
、冷間圧延の圧延圧下率が増大するため、再伸びが大き
くなり、また冷間圧延の負荷が大きくなるため、所定の
板厚に圧延することができなくなるか、あるいはチャツ
タ−リングなどの発生によって圧延速度を十分に上げる
ことができないことなどの間−を起こす。他方、/jm
厚より薄い場合には、熱間圧延能率および酸性等の脱ス
ケール能率が著しく低下することになって、熱間圧延か
ら冷間圧延の工程を総合した製造原価を高める点で経済
上不利となる。Therefore, when the thickness of the hot-rolled plate is thicker than 2.3, the rolling reduction ratio in cold rolling increases, so re-stretching increases, and the load in cold rolling increases, so that the specified It may become impossible to roll the plate to a certain thickness, or the rolling speed may not be sufficiently increased due to chatter. On the other hand, /jm
If it is thinner than the thickness, hot rolling efficiency and descaling efficiency such as acidity will be significantly reduced, which will be economically disadvantageous in terms of increasing the total manufacturing cost of the process from hot rolling to cold rolling. .
したがって熱延板の板厚をへJ〜コ、6−に規定するの
である。Therefore, the thickness of the hot-rolled sheet is defined as 6-6.
以下に本発明の実施例について、これを比較例と対比し
て述べる。Examples of the present invention will be described below in comparison with comparative examples.
実施例り
酸素底吹転炉で精錬してなる溶鋼を連続鋳造によって各
種スラブ鋳片を製造した。スラブ鋳片の組成は、第1表
に示されるとおりであって、比較例では、本発明の成分
範囲を満たしているもの及び満たしていないものを使用
した。なお第1表には、従来から行なわれている、造塊
−分塊圧延法によるリムド鋼スラブからの製造例も比較
例中に挙げである。EXAMPLE Various slab slabs were manufactured by continuous casting of molten steel refined in an oxygen bottom blowing converter. The composition of the slab slab is as shown in Table 1, and in the comparative example, slabs that met the composition range of the present invention and slabs that did not meet the composition range of the present invention were used. Table 1 also includes comparative examples of manufacturing from rimmed steel slabs by the conventional ingot-blowing rolling method.
これらのスラブを第1表に示されている熱延条件でそれ
ぞれ熱間圧延した。比較例の熱間圧延では、FDTを本
発明の条件の115点〜700℃内のものとしたものお
よび従来から行なわれているムr。These slabs were hot rolled under the hot rolling conditions shown in Table 1. In the hot rolling of the comparative example, the FDT was set within the conditions of the present invention of 115 to 700°C, and the conventional mura was used.
点以上の温度として行なった。次いで冷間圧延を脱スケ
ール後、第1表に示す圧下率で行なった。The test was carried out at a temperature above the point. Then, after descaling, cold rolling was performed at the rolling reduction ratio shown in Table 1.
なお、冷間圧延では、q、3および6スタンドの連続冷
間圧延機工それぞれ1回行なった( l Roll)観
に、仕上板厚が極端に清い原板の製造に対しては1.4
1 、 j’及び6スタンドの連続冷間圧延機でそれぞ
れ1回行なった後、さらに3スタンド連続冷間圧延機で
1回行なった( 2 Roll )例も加えた。In addition, in cold rolling, q, 3, and 6 stand continuous cold rolling mills were each used once (l Roll), and for the production of original sheets with extremely fine finished sheet thickness, the rolling mill was 1.4
1, j' and 6-stand continuous cold rolling mills, and then an example in which the rolling was carried out once on a 3-stand continuous cold rolling mill (2 Roll) was also added.
引き続き冷延鋼帯を巻戻しラインに゛て巻戻しながら/
ton当り/箇所の割合で定盤上で鋼板の平たん度と
して再伸び及び腹伸びを測定した。再伸これらを第1表
に併せで示す。While continuing to unwind the cold rolled steel strip on the unwinding line/
Re-stretching and flattening were measured as the flatness of the steel plate on a surface plate at a rate per ton/location. Re-stretching These are also shown in Table 1.
A7θ〜/コは、本発明の成分範囲内にある組成の連続
鋳造鋳片を用いて従来の高温FDT圧延を行なった例で
あるが、/Roll、コRollのいづれの冷間圧延を
行なっても耳伸び、腹伸びともに大きい。A7θ~/ko is an example in which conventional high-temperature FDT rolling was performed using a continuously cast slab with a composition within the composition range of the present invention. Both the ears and abdomen are large.
A1.3は、鋳片のOfが本発明における上限を超えた
ものであり、Al4Iは、ムli1が同じ、くその上限
を超えたものであるため、これらスラブを本発明による
低FDTで熱間圧延したが、冷延板の耳伸びは10〜/
コであって若干は改善されているものの本発明の実施例
に比べて極端に悪くなっている。これはC量、ムを輩が
多くなって結晶粒が細かくなり、熱延板が、硬質となっ
たため形状が悪くなったものと考えられる。A1.3 is a slab whose Of exceeds the upper limit according to the present invention, and Al4I is a slab whose Mli1 is the same but exceeds the upper limit. Therefore, these slabs were heated with low FDT according to the present invention. The edge elongation of the cold-rolled sheet was 10~/
This is a slight improvement, but it is extremely worse than the example of the present invention. This is thought to be due to the fact that the amount of C and silica increased, resulting in finer grains and the hardness of the hot-rolled sheet, resulting in poor shape.
Alには、鋳片の成分範囲及び熱延温度は本発明の範囲
内にあるが、その熱延板の板厚が本発明で規定する板厚
範囲の上限コ、3−を超えている。これの冷延は一同行
なったが、冷延板の平たん度は悪くなっている。この理
由は、圧下率が高くなるために、冷間圧延ワークロール
のベンディングによって板幅方向端部が伸びて耳伸びが
大きくなつたものと考えられる。For Al, although the component range and hot rolling temperature of the slab are within the range of the present invention, the thickness of the hot rolled sheet exceeds the upper limit of the thickness range defined by the present invention. This was cold-rolled at the same time, but the flatness of the cold-rolled sheet was poor. The reason for this is thought to be that due to the higher rolling reduction, the edges in the width direction of the sheet were elongated due to bending of the cold rolling work rolls, resulting in increased edge elongation.
ム/轟、ム/りは、従来のオープントップリムド鋼片を
用いてそれぞれ低温FDTと高温FDTにょる熱延を行
なったものであるが、両鍔とも冷延製品の平たん度は不
電であり、低FDT圧延を行なった應/基でも耳伸びは
大きくなっている。この理由は、冷間圧下率が高いこと
及び板幅方向端部にリム層があって端部が軟質となって
いることによって伸びたものであり、この点で成分が均
一になった連続鋳造材に対抗できないといえよう。Mu/Todoroki and Mu/ri were hot-rolled by low-temperature FDT and high-temperature FDT, respectively, using conventional open-top rimmed steel billets, but the flatness of the cold-rolled products for both Tsuba was superior to that of non-electrode. Therefore, the edge elongation is large even in the case of O/G which was rolled with low FDT. The reason for this is that the elongation is due to the high cold reduction rate and the rim layer at the edges in the width direction, making the edges soft. It can be said that it cannot compete with wood.
実施例2
酸素底吹転炉で精錬してなる溶鋼をキャップド鋼塊に造
塊し分塊圧延してスラブの綱片に製造した。スラブの組
成は、とりべ分析値として第2表に示されるとおりであ
って、比較例には、不発明の成分範囲内にあるもの及び
oJlが成分範囲から外れるものを用いた。これらのス
ラブをii!2tMに示されている熱延条件でそれぞれ
熱間圧延した。Example 2 Molten steel refined in an oxygen bottom blowing converter was formed into a capped steel ingot and bloomed to produce a slab of steel. The composition of the slab is as shown in Table 2 as a ladle analysis value, and for the comparative example, one whose oJl was within the range of non-inventive components and one whose oJl was outside the range of components were used. ii these slabs! Each was hot-rolled under the hot-rolling conditions shown at 2tM.
比較例では、FDTを本発明の条件の113点〜700
℃内の濃度3よびムr3点より高い温度で行なった。In the comparative example, the FDT was set to 113 points to 700 points under the conditions of the present invention.
It was carried out at a temperature higher than the concentration 3 and the temperature 3 points in °C.
次いで酸洗した後、冷間圧延を第2表に示す圧下率で行
なった。なお冷間圧延では、実施例1と同様に1回また
はコ同行なった。After pickling, cold rolling was performed at the rolling reduction ratio shown in Table 2. Note that cold rolling was carried out once or twice as in Example 1.
A10〜/コは、その組成が本発明の成分範囲内にある
キャップド鋼を用いて、従来の高温FDT EE延を行
ったものであるが、冷間圧延を/ Roll、コRol
lのいずれの方法で行っても、耳伸び腹伸びともに大き
くなった。A10 ~ / Roll is a capped steel whose composition is within the composition range of the present invention and subjected to conventional high temperature FDT EE rolling, but cold rolling was performed using capped steel whose composition is within the composition range of the present invention.
No matter which method was used, both the ear extension and belly extension became larger.
A/、?は、C量が本発明の上限値より多いスラブを用
いた例であるが、熱延板が硬質になったために平たん度
は悪くなった。A/? is an example in which a slab with a C content greater than the upper limit of the present invention was used, but the flatness deteriorated because the hot rolled sheet became hard.
A/4’は、成分量および熱延温度が本発明範囲内であ
るが、その熱延板の板厚が本発明で規定した範囲を超え
た例であって、これにコ回冷間圧延を行ったが、得られ
た冷延板の平たん度は不良となった。A/4' is an example in which the component amount and hot rolling temperature are within the range of the present invention, but the thickness of the hot rolled sheet exceeds the range specified in the present invention, and this is However, the flatness of the obtained cold-rolled sheet was poor.
この理由は、前述の通りである。The reason for this is as described above.
次に、例えばo、iz−以下の極端に薄いめっき用鋼板
については、冷間圧延機の能力または作業性の点から1
回目のタンデム冷間圧延後、さらにタンデム圧延を行っ
ても平たん度の優れた鋼板が製造できた例をSに示す。Next, for extremely thin galvanized steel sheets of o, iz or less, for example, from the viewpoint of cold rolling mill capacity or workability,
S shows an example in which a steel plate with excellent flatness could be manufactured even if further tandem rolling was performed after the second tandem cold rolling.
また、加工の厳しい用途によっては、冷間圧延あるいは
クリーニングを省略して 焼鈍 →目鼻Σ類口を付加す
ることもできる。In addition, depending on the application where processing is severe, cold rolling or cleaning may be omitted and annealing may be added.
以上詳しく説明してきたとおり、本発明は、特定した組
成の−からなる連続鋳造材またはキャップド鋼材のスラ
ブを、ムr3点〜700℃のFDTで熱方法であり、こ
れにより従来の、オープントップリムド鋼材を用いる製
造法では得られなかった形状、すなわち耳伸び、腹伸び
による平たん度に優れた極薄亜鉛めっき鋼板用原板が、
製造に要するエネルギーを大幅に削減して製造できる。As explained in detail above, the present invention is a method of heating a slab of continuous cast material or capped steel material having a specified composition with FDT at a temperature of 3 points to 700°C. The original sheet for ultra-thin galvanized steel sheets has a shape that cannot be obtained using manufacturing methods using rimmed steel materials, that is, excellent flatness due to edge elongation and belly elongation.
It can be manufactured with a significant reduction in the energy required for manufacturing.
第1図は、本発明方法と従来方法による&薄亜鉛めっき
鋼板用原板の製造工程を説明した工程図、第一図は、上
記原板における耳伸び指数および腹仰り指数を説明する
ための原板の刺視図、第J!i!!Iは、熱延板の降伏
強度に及はすCkkとFDTの影響を示したグラフ、第
参図は、熱延板の幅方向に沿う降伏強度に及ぼすFDT
と0テと゛の影響を示讐グラフ、第3図は、冷延板の耳
伸びに及ぼす冷間圧延臣下率の影響を示すグラフである
。
特許出願人 川崎製鉄株式会社
代理人弁理士 村 1) 政 治第1図
跣来、1i5入
3ム口
本J#!、明方シ式
@ネ次C量 (wj(1ム)Fig. 1 is a process diagram illustrating the manufacturing process of a base plate for thin galvanized steel sheets by the method of the present invention and a conventional method. Sashimi diagram, No. J! i! ! I is a graph showing the influence of Ckk and FDT on the yield strength of a hot-rolled sheet, and the second figure is a graph showing the influence of FDT on the yield strength along the width direction of a hot-rolled sheet.
Figure 3 is a graph showing the influence of cold rolling ratio on edge elongation of cold rolled sheet. Patent Applicant Kawasaki Steel Co., Ltd. Representative Patent Attorney Mura 1) Politics 1. , clear direction C formula @ne order C quantity (wj (1 m)
Claims (1)
2R:0、/コル0.30 % 、P :≦0.030
% 、S :≦0.030%、ムl=≦o、ob%
、 残部はy・及び不可避的不純物であり、かつMu /
S z≧/θとした鋼を連続鋳造によって鋳片となし、
これを熱間圧延するに当り、ムr3点以下lり00℃以
上の温度で仕上圧延を終了し、次いで400℃〜事!0
℃の温度で巻取って/jm−コ、3−厚の熱延鋼帯とな
し、引き続き酸洗等の脱スケール処理をした後、冷間圧
延することを特徴とする、形状に優れた極薄亜鉛めっき
鋼板用原板の餉遣方法。 & O: o、olI−o、ot%、 Kn : 0
6コO〜0.SO襲。 P:≦0.04!0 % 、 8 :≦0.04LO%
、残部r・及び、不可避的不純物であり、かつMu
/ S +≧10とした鋼をキャップドー塊に造塊し−
これを分塊圧延によって一片となし、この鋼片を熱間圧
延するに当り、A r 3点以下で70θ℃以上の温度
で仕上圧延を終了し、次いで400℃〜4130℃の温
度で巻取ってへ6−〜1.3m厚の熱延鋼帯となし、引
き続き酸洗岬の脱スケール処理をした後、冷間圧延する
ことを特徴とする、形状に優れた極薄亜鉛めっき鋼板用
原板の製造方法。[Claims] L C:≦0.01%, Sif≦0.03%l M
2R: 0, /Col 0.30%, P:≦0.030
%, S: ≦0.030%, Mul=≦o, ob%
, the remainder is y and unavoidable impurities, and Mu /
Steel with Sz≧/θ is made into slabs by continuous casting,
When hot rolling this, finish rolling is completed at a temperature of 00°C or higher with unevenness of 3 points or less, and then at a temperature of 400°C or higher! 0
A pole with an excellent shape, which is produced by winding it into a 3-thick hot-rolled steel strip at a temperature of ℃, followed by descaling treatment such as pickling, and then cold rolling. Method for glazing original sheets for thin galvanized steel sheets. & O: o, olI-o, ot%, Kn: 0
6 0~0. SO attack. P:≦0.04!0%, 8:≦0.04LO%
, the remainder r and unavoidable impurities, and Mu
/ S+≧10 steel is made into a cap-do ingot.
This is made into a piece by blooming rolling, and when hot rolling this steel piece, finish rolling is completed at a temperature of 70θ℃ or higher at 3 points or less of Ar, and then coiling at a temperature of 400℃ to 4130℃. An original sheet for an ultra-thin galvanized steel sheet with an excellent shape, characterized in that it is made into a hot-rolled steel strip with a thickness of 6-1.3 m, followed by pickling cape descaling treatment, and then cold-rolled. manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56158208A JPS6053086B2 (en) | 1981-10-06 | 1981-10-06 | Manufacturing method for ultra-thin galvanized steel sheets with excellent shape |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56158208A JPS6053086B2 (en) | 1981-10-06 | 1981-10-06 | Manufacturing method for ultra-thin galvanized steel sheets with excellent shape |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5861228A true JPS5861228A (en) | 1983-04-12 |
JPS6053086B2 JPS6053086B2 (en) | 1985-11-22 |
Family
ID=15666638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56158208A Expired JPS6053086B2 (en) | 1981-10-06 | 1981-10-06 | Manufacturing method for ultra-thin galvanized steel sheets with excellent shape |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6053086B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6033318A (en) * | 1983-08-01 | 1985-02-20 | Kawasaki Steel Corp | Manufacture of high tensile strength hot-dip zinc-coated caron steel sheet efficient in bending workability |
JPH01240617A (en) * | 1988-03-18 | 1989-09-26 | Sumitomo Metal Ind Ltd | Production of hot rolled steel strip having cold rolling property |
JP2007056319A (en) * | 2005-08-25 | 2007-03-08 | Jfe Steel Kk | Cold-rolled steel sheet for photosensitive resin plate material, and method for producing the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS623690A (en) * | 1985-06-29 | 1987-01-09 | Rhythm Watch Co Ltd | Electronic timepiece |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5425214A (en) * | 1977-07-28 | 1979-02-26 | Sumitomo Metal Ind Ltd | Method of producing hot-rolled soft steel plate |
JPS5526687A (en) * | 1978-08-16 | 1980-02-26 | Nec Corp | Manufacturing semiconductor device |
JPS5625922A (en) * | 1979-08-07 | 1981-03-12 | Kawasaki Steel Corp | Production of hot rolled plate and sheet of low carbon steel with superior cold rolling |
-
1981
- 1981-10-06 JP JP56158208A patent/JPS6053086B2/en not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5425214A (en) * | 1977-07-28 | 1979-02-26 | Sumitomo Metal Ind Ltd | Method of producing hot-rolled soft steel plate |
JPS5526687A (en) * | 1978-08-16 | 1980-02-26 | Nec Corp | Manufacturing semiconductor device |
JPS5625922A (en) * | 1979-08-07 | 1981-03-12 | Kawasaki Steel Corp | Production of hot rolled plate and sheet of low carbon steel with superior cold rolling |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6033318A (en) * | 1983-08-01 | 1985-02-20 | Kawasaki Steel Corp | Manufacture of high tensile strength hot-dip zinc-coated caron steel sheet efficient in bending workability |
JPH01240617A (en) * | 1988-03-18 | 1989-09-26 | Sumitomo Metal Ind Ltd | Production of hot rolled steel strip having cold rolling property |
JPH0668124B2 (en) * | 1988-03-18 | 1994-08-31 | 住友金属工業株式会社 | Manufacturing method of hot-rolled steel strip with excellent cold rolling property |
JP2007056319A (en) * | 2005-08-25 | 2007-03-08 | Jfe Steel Kk | Cold-rolled steel sheet for photosensitive resin plate material, and method for producing the same |
JP4655826B2 (en) * | 2005-08-25 | 2011-03-23 | Jfeスチール株式会社 | Cold-rolled steel sheet for photosensitive resin plate material and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPS6053086B2 (en) | 1985-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110819877B (en) | Method for producing ultra-pure ferrite stainless steel for decoration by using steckel mill | |
KR100259403B1 (en) | Hot rolled steel sheet and process for producing the same | |
KR101921595B1 (en) | Ferritic stainless steel having excellent ridging property and excellent in surface quality and method of manufacturing the same | |
JPS5861228A (en) | Production of original black plate for ultra thin galvanized steel plate having excellent shape | |
JPS59113123A (en) | Production of ultra-hard extra-thin cold rolled steel sheet | |
KR101938588B1 (en) | Manufacturing method of ferritic stainless steel having excellent ridging property | |
JPS62278232A (en) | Manufacture of non-aging cold-rolled steel sheet for deep drawing by direct rolling | |
JPS6234804B2 (en) | ||
JPS62161919A (en) | Manufacture of hard sheet steel for can excellent in drawability and minimized in anisotropy | |
JPH02141536A (en) | Production of steel sheet for drawn can decreased earing | |
CN113025887B (en) | DH980 steel with high edge quality and preparation method thereof | |
JP3735142B2 (en) | Manufacturing method of hot-rolled steel sheet with excellent formability | |
JP3257390B2 (en) | Method for producing two-piece steel sheet with small in-plane anisotropy | |
JPH02141535A (en) | Production of steel sheet for drawn can decreased earing | |
JPH0257128B2 (en) | ||
JPH02263931A (en) | Production of cr-ni stainless steel sheet excellent in surface quality | |
KR940008064B1 (en) | Making method of hot rolling steel plate | |
JPH0561341B2 (en) | ||
JPH08120348A (en) | Production of steel sheet for hard can small in plane anisotropy | |
JPS61204325A (en) | Production of as-rolled thin steel sheet for working having excellent ridging resistance and strength-elongation balance | |
JPS6047323B2 (en) | Manufacturing method for continuously cast slabs for steel plates | |
JPS634024A (en) | Production of cold rolled steel sheet for deep drawing from thin cast strip | |
JPH0463232A (en) | Manufacture of cold rolled steel sheet excellent in press formability by continuous annealing | |
JPH0432128B2 (en) | ||
JPS585971B2 (en) | Seiriyuureienkouhanno Seizouhou |