JPS5861203A - Method for producing amorphous blast furnace slag and recovering retained heat - Google Patents

Method for producing amorphous blast furnace slag and recovering retained heat

Info

Publication number
JPS5861203A
JPS5861203A JP56159743A JP15974381A JPS5861203A JP S5861203 A JPS5861203 A JP S5861203A JP 56159743 A JP56159743 A JP 56159743A JP 15974381 A JP15974381 A JP 15974381A JP S5861203 A JPS5861203 A JP S5861203A
Authority
JP
Japan
Prior art keywords
slag
cooling
blast furnace
amorphous
furnace slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56159743A
Other languages
Japanese (ja)
Other versions
JPH0135882B2 (en
Inventor
Masami Fujimoto
藤本 政美
Yoshiichi Nagao
由一 長尾
Masami Fujiura
藤浦 正己
Michiaki Sakakibara
榊原 路昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP56159743A priority Critical patent/JPS5861203A/en
Publication of JPS5861203A publication Critical patent/JPS5861203A/en
Publication of JPH0135882B2 publication Critical patent/JPH0135882B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • C21B3/08Cooling slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/022Methods of cooling or quenching molten slag
    • C21B2400/024Methods of cooling or quenching molten slag with the direct use of steam or liquid coolants, e.g. water
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/022Methods of cooling or quenching molten slag
    • C21B2400/026Methods of cooling or quenching molten slag using air, inert gases or removable conductive bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/062Jet nozzles or pressurised fluids for cooling, fragmenting or atomising slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/08Treatment of slags originating from iron or steel processes with energy recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PURPOSE:To produce slag contg. amorphous materials at specific rates stably in the stage of cooling molten blast furnace slag by a dry system or the like by cooling the slag at specific cooling rates down to specific temps. thereafter cooling the same slowly stepwise down to specific temps. at a specific cooling rate. CONSTITUTION:In the stage of cooling molten blast furnace slag by a dry system or gas/liquid system, the slag is cooled quickly at >=20.0 deg.C/sec cooling rate down to 1,200 deg.C from right after the start of cooling by granulating the slag by the flow of gases or mists., and the hot wind thereof is recovered. Thereafter, the slag is cooled stepwise as slowly as possible at >=5.8 deg.C/sec cooling rate from 1,200 deg.C down to 1,100 deg.C, at >=2.5 deg.C/sec from 1,100 deg.C down to 1,000 deg.C, and >=0.3 deg.C/ sec from 1,000 deg.C down to 850 deg.C, and the hot wind is recovered. Thus the heat retained by the slag is recovered advantageously and easily, and the slag contg. >=95% amorphous materials is produced stably.

Description

【発明の詳細な説明】 この発明は、溶融高炉スラグを乾式又は気水方式で冷却
するに際し、非晶質の割合が95−以上のスラグを安定
的に製造する方法及び同表造に際し溶融高デスラグの保
有熱を回収する方法に関するものであ゛る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for stably producing slag with an amorphous ratio of 95 or more when cooling molten blast furnace slag using a dry method or an air-water method, and a method for stably producing slag with an amorphous content of 95 or more when cooling molten blast furnace slag using a dry method or an air-water method. It concerns a method of recovering the heat retained in the death lag.

製造時に発生する高炉スラグは、冷却後セメント用原料
、道路用材、コンクリート細骨材などとして利用基れて
いる。セメント用原料として利用する場合、その規格と
して非晶質の割合が95−以上のヌツダが要求される。
After cooling, the blast furnace slag generated during manufacturing is used as raw material for cement, road materials, fine aggregate for concrete, etc. When used as a raw material for cement, the standard requires that the amorphous content be 95 or more.

このセメント用原料としての非晶質スラブの需要は、今
後増大する機運に叡る。
The demand for amorphous slabs as a raw material for cement is likely to increase in the future.

現在セメント用原料として使用される非晶質の割合が9
51以上のスラグの製造は大量の水処理による水砕方式
によっている。この水砕後のスラグは非晶質の割合が9
5饅以上で安定している。
Currently, the proportion of amorphous materials used as raw materials for cement is 9
The production of slag of 51 or higher is by a granulation method using a large amount of water treatment. This slag after water pulverization has an amorphous ratio of 9
It is stable at 5 or more.

一方近年のエネルギー事情から省エネルギーが重要な課
題となってきている。
On the other hand, energy conservation has become an important issue due to the energy situation in recent years.

このため溶融スラグの膨大な保有熱を回収しようとする
試みがなされている。しかしながら前記水砕設備で溶融
高炉ヌ2ダの保有熱を回収する場合は、大量の水を使用
するため、処理後のスラグ温度および水の温度が低く熱
回収は技術的に困難である。
For this reason, attempts have been made to recover the enormous amount of heat retained in the molten slag. However, when recovering the heat retained in the molten blast furnace core using the fracking equipment, a large amount of water is used, and the slag temperature and water temperature after treatment are low, making it technically difficult to recover the heat.

このようなことから大量の水処理による冷却でなく、ス
ラグの保有熱の回収に支障がない程度に、例えば2スト
状の水を少量使用するか、全く水を使用しない乾式で冷
却しながら、スラグの保有熱を回収し、かつ冷却後のス
ラグは非晶質の割合が95多以上のセメント用原料の製
造法が求められている・ これまで非晶!スラグを製造する方法として、溶融高炉
スラグ110℃/…以上で冷却すれば、可能であるとさ
れてき友。
For this reason, rather than using a large amount of water for cooling, for example, a small amount of 2-stroke water or a dry method that does not use any water is used to cool the slag to the extent that it does not interfere with the recovery of the heat retained in the slag. There is a need for a method for producing raw materials for cement that recovers the heat retained in slag and in which the slag after cooling has an amorphous ratio of 95 or more. It has been said that slag can be produced by cooling molten blast furnace slag at a temperature of 110°C or higher.

すなわち、例えば特公昭55−43412に示された乾
゛式粒状化スラブの例ではlO℃/−〇〇を境に、lO
℃/ sse以上の冷却速度であると、非晶質スラグが
、lO℃/m@e未満の冷却速度であると、結晶質スラ
グが得られるとしている。しかしながらこれらの水冷に
゛よらない乾式冷却による公知方法では、非晶質の割合
が95%以上のスラグを安定して製造することは、出来
ない欠点を有している。
That is, for example, in the example of the dry granulation slab shown in Japanese Patent Publication No. 55-43412, the temperature of lO
It is said that amorphous slag is obtained at a cooling rate of 10° C./sse or higher, and crystalline slag is obtained at a cooling rate of less than 10° C./m@e. However, these known dry cooling methods that do not rely on water cooling have the disadvantage that they cannot stably produce slag with an amorphous content of 95% or more.

一方、溶融高炉スラグの・熱回収を目的とした処理方法
としては、鋳mに注入、固化後保有熱を回収する方法が
考えられている。
On the other hand, as a treatment method for the purpose of heat recovery of molten blast furnace slag, a method of injecting it into a casting m and recovering the retained heat after solidification has been considered.

しかし、このような方法では、溶融スラグの固化に長時
間を要し、高温域での熱回収が困難であること、また、
冷却後のスラグが結晶化してしまうなどの欠点を有して
いる。
However, with this method, it takes a long time to solidify the molten slag, and it is difficult to recover heat at high temperatures.
It has drawbacks such as the slag crystallizing after cooling.

また、溶融高炉ヌラダ會粒状化し、粒状スラグ071形
を保ち1kがら熱回収しようとする試みもある。しかし
この方法では、粒状化したスラグの融着を防止する九め
に再融着しない温度、900℃近傍まで冷却する必要か
あ〕、粒化開始部から900℃近傍まで冷却する九めの
空間が大きくなり、必然的に設備が大型化する欠点を有
する。
There has also been an attempt to granulate the molten blast furnace slag and recover heat while maintaining the granular slag type 071. However, with this method, it is necessary to cool the granulated slag to a temperature close to 900°C, which is a temperature that prevents re-fusion, to prevent fusion of the granulated slag. This has the disadvantage that the equipment becomes larger.

また高温の粒化スラグを回収する九めKFI何らかの融
着防止対策が必要となる。
In addition, some measure to prevent fusion of KFI, which collects high-temperature granulated slag, is required.

更に、スラグの粒が小さく、流動層もしくは充填層で熱
回収する場合、高水準の技術を要するなどの欠点も多く
t九非晶質ス2ダを安定して得ることは難しく、実用化
された例は少な込のが現状である。
Furthermore, the slag grains are small, and there are many drawbacks such as requiring a high level of technology when heat is recovered in a fluidized bed or packed bed, making it difficult to stably obtain t-9 amorphous slag, and it has not been put into practical use. Currently, there are only a few examples.

本発明者らは、従来の大量の水冷却によらない冷却条件
において、実験を重ねた結果、溶融高炉スラグの冷却開
始温度から1200Cまでの冷却速度が重要であ〉、こ
の間の冷却速1に20.0℃/ sec以上の速度に制
御すれば、非晶質の割合が9596以上のスラグが安定
して得られること、更に1200℃から850℃までの
冷却は、従来公知の冷−速度よシはるかにゆるやかな速
度で、1200℃までに得られた非晶質の割合を保持で
きることを見出した。
As a result of repeated experiments under cooling conditions that do not rely on conventional large amounts of water cooling, the present inventors found that the cooling rate from the cooling start temperature of molten blast furnace slag to 1200C is important, and that the cooling rate 1 during this period is important. If the rate is controlled to 20.0°C/sec or more, slag with an amorphous ratio of 9596 or more can be stably obtained, and cooling from 1200°C to 850°C is faster than conventionally known cooling rates. It has been found that the amorphous fraction obtained up to 1200° C. can be maintained at a much slower rate.

このことによって溶融高炉スラグ11200℃までは気
流又はミスト流で粒化することによって20.0℃/s
ee以上に急冷し、粒化したスラグをI 200℃以下
では比較的ゆるやかに冷却しながら、熱回収し、冷却後
のスラグを非晶質の割合がF(−以上のものとして得る
ことが可能とな゛つ九。
As a result, molten blast furnace slag can be granulated up to 11,200 degrees Celsius by being granulated by air flow or mist flow at 20.0 degrees Celsius/s.
It is possible to rapidly cool the granulated slag to above ee and recover the heat while cooling it relatively slowly below 200°C, and obtain the slag with an amorphous ratio of F(- or more) after cooling. Tonatsu nine.

こ9ように本発明は1200℃まで急冷し、12(00
℃以下はゆるやか忙冷却しながら熱回収し、非晶質の割
合が95−以上のスラグを製造することを特徴とするも
のである。
In this way, the present invention rapidly cools to 1200°C,
℃ or below, heat is recovered while slowly cooling, and slag with an amorphous ratio of 95 or more is produced.

本発明の最も好ましい実施態様とじてに、溶融スラグを
冷却開始直後から1200℃才でt気流で粒状化しなが
ら急冷して非晶質スラグを得て、それ以降は落下後のス
ラグ粒を融着し次状態で比較的ゆるやかに冷却しながら
保有熱を回収する方法である。このことKよって、落下
地点のスラグ粒は、融着させる九め高温で良く、粒化開
始から落下地点までの空間は小さくて良く、その結果設
備を示璽化できる利点を有する。
In the most preferred embodiment of the present invention, the molten slag is rapidly cooled at 1200°C immediately after the start of cooling while being granulated with an air flow to obtain an amorphous slag, and after that, the slag particles after falling are fused. This method recovers retained heat while cooling relatively slowly in the next state. Therefore, the slag grains at the point of fall need only be heated to a relatively high temperature to be fused, and the space from the start of granulation to the point of fall may be small, and as a result, there is an advantage that the equipment can be marked.

更に、粒状スラグが融着し塊状となる九めに、冷却過寝
ての保有熱回収に流動層もしくは充填層などの熱回収法
が適用でき、他の分野で実用化されている技術を応用す
れば良く、容易に実用化可能である。
Furthermore, when granular slag fuses and becomes lumpy, heat recovery methods such as fluidized bed or packed bed can be applied to recover retained heat during overcooling, applying technology that has been put into practical use in other fields. It can be easily put into practical use.

また、冷却後のスラグを非晶質の割合が95嘩以上のも
のとして回収てきるため、需要の2増大が予想されてい
るセメント用原料として利用できる利点も有する。この
ように本発明によって得られる利点は大11い。
In addition, since the slag after cooling can be recovered as having an amorphous content of 95% or more, it has the advantage that it can be used as a raw material for cement, whose demand is expected to increase by 2. As described above, the advantages obtained by the present invention are elevenfold.

以下実験結果によ)説明する。This will be explained below based on the experimental results.

第1111K示す装置で高炉スラグを溶解し、溶解し九
ヌラグを金IIK注入し冷却速度を種々費えて冷却した
Blast furnace slag was melted in a device shown in No. 1111K, gold IIK was injected into the melted slag, and the cooling rate was varied to cool the slag.

冷却速度の調IIFi金型の温度を習えることによりて
行なった。
The cooling rate was adjusted by learning the temperature of the IIFi mold.

冷却速度と冷却後のスラグ中の非晶質の割合の結果の一
例を表1に示し良。
Table 1 shows an example of the results of the cooling rate and the proportion of amorphous in the slag after cooling.

実験41 、2 、3から明らかなように非晶質の割合
が959C以上のスラグを得るには1400℃から12
00C1でt 20.0℃/s@s+以上の冷却速度忙
することが必要であることが判る。
As is clear from Experiments 41, 2, and 3, in order to obtain slag with an amorphous content of 959C or higher, heating from 1400℃ to 12
It can be seen that at 00C1, it is necessary to increase the cooling rate to t20.0°C/s@s+ or higher.

また、J16g、7,8,9,10から、非晶質の割合
が951C以上のスラグとして維持するKは、1200
℃から850℃までの冷却速度として、1200℃から
1100℃まで5.8℃/l@l1以上、1100℃か
ら1QOO’cまで2.5で7口・以上、1000℃か
ら850Cまで0.3で/see以上が必要であること
が判る。
Also, from J16g, 7, 8, 9, and 10, the K to be maintained as a slag with an amorphous ratio of 951C or more is 1200
The cooling rate from ℃ to 850℃ is 5.8℃/l@l1 or more from 1200℃ to 1100℃, 7 mouths or more at 2.5 from 1100℃ to 1QOO'c, 0.3 from 1000℃ to 850C It turns out that /see or more is required.

なお、1400℃から1200℃までの冷却速度が20
.0℃/I@@未満になると43 、4 、5から明ら
かなように1200℃以下の冷却速度の遅速にかかわら
ず非晶質の割合が9511以上のスラグは得られないこ
とが明らかである。
In addition, the cooling rate from 1400℃ to 1200℃ is 20℃.
.. It is clear from 43, 4, and 5 that when the temperature is less than 0°C/I@@, a slag with an amorphous ratio of 9511 or more cannot be obtained regardless of the slow cooling rate below 1200°C.

なお、表1中46は1400℃から1200℃までt 
201) C/ s@eで急速冷却し、1200℃以下
はゆるやかに冷却する場合の95多以上の非晶質スラグ
を得るための冷却速度の下限を示すものである、とO:
s度よ〉遅い冷却では9!s嘩以上の非晶質スラグを得
ることは不可能である。
In addition, 46 in Table 1 indicates t from 1400°C to 1200°C.
201) This indicates the lower limit of the cooling rate to obtain an amorphous slag of 95% or higher when rapidly cooling with C/s@e and cooling slowly below 1200°C, and O:
S degree〉 9 with slow cooling! It is impossible to obtain more than amorphous slag.

本発明はこの下限冷却速度になるぺ〈近い速度でスラグ
を冷却して非晶質が9511以上のスラグを得ると同時
に有利忙スラグの保有熱を回収しようとするものである
。したがって本発明における1200℃以下の各温度域
の冷却速度の上限は、例えば表1の雇4に示す従来公知
の冷却速度、以下にすることが好ましく、それによって
従来の熱回収装置よ)装置【コンノ譬りト化でき、又溶
融スラグの保有熱を有利に回収することが出来る。
The present invention attempts to cool the slag at a rate close to the lower limit cooling rate to obtain a slag with an amorphous content of 9511 or more, and at the same time recover the heat retained in the busy slag. Therefore, in the present invention, it is preferable that the upper limit of the cooling rate in each temperature range of 1200° C. or lower be equal to or lower than the conventionally known cooling rate shown in Table 1, for example, as shown in Table 1. It is possible to convert the molten slag into concrete, and the heat retained in the molten slag can be advantageously recovered.

次に溶融スラグを粒化しながら冷却する場合について説
明する。
Next, a case will be described in which the molten slag is cooled while being granulated.

第2図に示す装置でタンディジー11から1400℃の
溶融高炉スラグ12を処理量0−2 k#/ s@aで
落下させ空気ノズル13から2600 wt”/スフダ
tの空気流で粒化するととによって冷却した。
Using the apparatus shown in Fig. 2, molten blast furnace slag 12 at 1400°C is dropped from Tandigy 11 at a throughput of 0-2 k#/s@a and granulated by an air flow of 2600 wt''/sufda t from air nozzle 13. It was cooled by

この場合の冷却速度は1200C近傍まで、20〜b 粒状スラグ14は鉄板15に落下し融着する。In this case, the cooling rate is around 1200C, 20~b The granular slag 14 falls onto the iron plate 15 and is fused thereto.

鉄板へ落下時の粒状スラグの温度#11200℃近傍で
ある。
The temperature of the granular slag when it falls onto the iron plate is around #11200°C.

融着スラグ16の温度は熱電対17で測温し記録針18
で記録した。融着スラグは上下アーム19で鉄板を下方
へ傾動させ回収した。この際の冷却速度と冷却後融着ス
ラグの非晶質の割合の結果の一例を表2に示した。
The temperature of the fused slag 16 is measured with a thermocouple 17 and recorded with a recording needle 18.
It was recorded in The fused slag was collected by tilting the iron plate downward with the upper and lower arms 19. Table 2 shows an example of the results of the cooling rate and the amorphous ratio of the fused slag after cooling.

この表2から明らかなように冷却速度11400Cカら
1200C1’t’を20.0℃/I・以上、1200
℃から1100℃までヲ5.8℃/I@1!以上、11
00℃から1000C1’t’t−2,5℃/sec以
上、1000℃から5sot:ま”t”t−0,3℃/
as++以上で冷却すれば前述の実験結果と同様に冷却
完了時点でも非晶質の割合が95%以上のスラグが得ら
れることを知見した。
As is clear from Table 2, the cooling rate from 11400C to 1200C1't' is 20.0℃/I・or more, 1200C
From ℃ to 1100℃ 5.8℃/I@1! Above, 11
From 00℃ to 1000C1't't-2,5℃/sec or more, from 1000℃ to 5so: ma"t"t-0,3℃/
It has been found that if the slag is cooled at a temperature of as++ or higher, a slag with an amorphous content of 95% or more can be obtained even after cooling is completed, similar to the experimental results described above.

本発明者らは以上のような知見をもとにコンノ譬り)e
lfで、非晶質の割合が95s以上のスラグを調造する
方法および溶融高炉スラグの保有熱を容Sに回収できる
方法を発明するに至った1のである。
The present inventors based on the above knowledge
lf, he came to invent a method for preparing slag with an amorphous content of 95s or more, and a method for recovering the retained heat of molten blast furnace slag to a volume S.

第3図はこの発明を実施する場合の、スラグの冷却過s
Kおける熱回収法の一例を示したものである。
Figure 3 shows the slag cooling process when carrying out this invention.
This shows an example of a heat recovery method in K.

溶融高炉スラグ371空気ノズル21で粒化して得られ
たスラグ22Fi1200C近傍まで、20.0℃/s
@・以上の速度で冷却され、スチールベルト23へ落下
し、融着する。
Molten blast furnace slag 371 Slag 22 obtained by granulating with air nozzle 21 Until near Fi1200C, 20.0 ° C / s
It is cooled at a speed higher than @, falls onto the steel belt 23, and is fused.

融着後はスラグの移動速度を調整しながら第1表の/I
i6に示す下限冷却速度以上に冷却速度を維持して比較
的ゆるやかに冷却することによって非晶質は維持される
After fusion, adjust the moving speed of the slag and /I in Table 1.
The amorphous state is maintained by maintaining the cooling rate above the lower limit cooling rate shown in i6 and cooling relatively slowly.

融着スラグ24は粗破砕機25で粗破砕する。The fused slag 24 is roughly crushed by a coarse crusher 25 .

融着はスラダ粒が点融着に近いものが多く、容易に粗破
砕される。
In many cases, the sludder grains are close to point fusion, and are easily crushed.

粗破砕は融着しない温度900℃近傍で行なう。Rough crushing is carried out at a temperature around 900° C. at which no fusion occurs.

粗破砕されたスラグ26けバケットコンベアー27で搬
送し、上、下ベル28,291−通じて、充填層30へ
装入する。
26 roughly crushed slags are conveyed by a bucket conveyor 27 and charged into a packed bed 30 through upper and lower bells 28, 291.

空気を空気吸込み口31から吹込み熱風吹出し口32か
ら熱風を回収する。この場合の熱回収技術はスラグが塊
状となっているためコークスの保有熱などの熱回収に使
用されている既存のものを適宜応用すれば良く、実用化
は容易である。また粒化時の空気は熱風吹出し口33か
ら熱風として回収する。冷却後のスラグ3411ベルト
フイダー35で切シ出され回収される。
Air is blown in from an air suction port 31 and hot air is recovered from a hot air blowout port 32. Since the slag is in the form of lumps, the heat recovery technique in this case can be easily put to practical use by appropriately applying existing techniques used for recovering heat such as the heat retained in coke. Further, the air during granulation is recovered as hot air from the hot air outlet 33. After cooling, the slag 3411 is cut out by the belt feeder 35 and collected.

このスラグは非晶質の割合が954以上であシセメント
用原料として利用できる。
This slag has an amorphous ratio of 954 or more and can be used as a raw material for cement.

ま九溶融高炉スラグを粒化開始直後から120D℃tで
冷却する手段としては空気流によるだけではなく、溶融
スラグの保有熱の回収に支障のない程度であれば水を少
量使用した気水・流でも可能である。
The method for cooling molten blast furnace slag at 120D℃t immediately after the start of granulation is not only by air flow, but also by using a small amount of water, such as air and water, as long as it does not hinder the recovery of the heat retained in the molten slag. It is also possible in the flow.

以上説明し念ように、本発明は非晶質の割合が9591
以上のスラグを安定して得る九めの新規な冷却速度限界
を見い出したことに基づいてなされたものであり、その
結果、コンノダクトな装置て非晶質のスラグが得られ同
時に溶融スラグの保有熱を有利にかつ容JIK回収する
ことができ、その工業的メリットは大1!イものである
As explained above, the present invention has an amorphous ratio of 9591
This was done based on the discovery of the ninth new cooling rate limit for stably producing slag, and as a result, it was possible to obtain amorphous slag using a conductive device, and at the same time reduce the retained heat of molten slag. It is possible to recover JIK in an advantageous manner, and its industrial merit is the biggest! It's a good thing.

【図面の簡単な説明】[Brief explanation of drawings]

N l 5Hj溶融高炉ス2グを金型に注入して冷却す
るための実験装置を示す図、第2図は溶融高炉スラグを
粒化することに際して、急冷するために使用し九装置を
示す図、第3図はこの発明を実施するための粒化から熱
回収装置までの例を示す縦断面図である。 l・・・回転溶解炉、    2・・・バーナ、3・・
・S融高炉ヌラグ、  4・・・冷却スラグ、5・・・
金型、       6・・・金型蓋、7・・・熱電対
、      8−・記録計、9・、・電気iP、11
・・・タンプイシド12・・・溶融高炉スラグ、13・
−空気ノズル、14・・・粒状スラグ、   15・・
・鉄板16・・・融着スラグ、   17・・・熱電対
、18・・・記録計、     19・・・上下アーム
、21・・・空気ノズル、   22・・・粒状スラグ
、24・・・融着スラグ、 23・・・スチールベルトコンベア、 25・・・粗破砕榛、 26−・粗破砕後融着スラグ、 27・・・パケットコンベア、28・・・上ヘル、29
・・・下ペル、     30・・・充填層、31・・
・空気吹込み口、  32・・・熱風吹出し口、33・
・・熱風吹出し口、  34・・・冷却後スラグ、35
・・・ベルトフィダー、36・・・タンプイシド、37
・・・溶融高炉スラグ。 第 1 図 ノ
Figure 2 shows an experimental device for injecting molten blast furnace slag into a mold and cooling it. , FIG. 3 is a longitudinal sectional view showing an example from granulation to a heat recovery device for carrying out the present invention. l...rotary melting furnace, 2...burner, 3...
・S melting blast furnace nlug, 4...cooling slag, 5...
Mold, 6... Mold lid, 7... Thermocouple, 8- Recorder, 9... Electric iP, 11
... Tanpuiside 12 ... Molten blast furnace slag, 13.
- Air nozzle, 14... Granular slag, 15...
・Iron plate 16... Fusion slag, 17... Thermocouple, 18... Recorder, 19... Upper and lower arms, 21... Air nozzle, 22... Granular slag, 24... Fusion Adhesive slag, 23... Steel belt conveyor, 25... Roughly crushed slag, 26-- Roughly crushed fused slag, 27... Packet conveyor, 28... Upper shell, 29
...Lower Pel, 30...Filled layer, 31...
・Air inlet, 32... Hot air outlet, 33.
...Hot air outlet, 34...Slag after cooling, 35
...Belt feeder, 36...Tampuiside, 37
...Melted blast furnace slag. Figure 1

Claims (4)

【特許請求の範囲】[Claims] (1)  涛融高デスラダを乾式又は気液方式で冷却す
ゐに際し、冷却#I始産直後ら1200t:まてを2a
Oで/I@@以上、1200ctPら1100℃tでt
ts℃/−・・以上、1100Cから1000C1k 
”1” t l S Ic / s@e以上、1000
℃から850℃まてをα3℃/−軸以上の、冷却速度で
冷却することt4I黴とする非晶質の割合が9s優以上
の非晶質高炉ヌ2ダの製造方法。
(1) When cooling high melting desladder using dry method or gas-liquid method, cooling #I 1200t immediately after production starts: 2a
At O/I@@ or more, 1200ctP et al. 1100℃t
ts℃/-...more than 1100C to 1000C1k
"1" t l S Ic / s@e or more, 1000
A method for producing an amorphous blast furnace mold having a proportion of amorphous of 9s or more, which involves cooling from 0C to 8500C at a cooling rate of at least α3C/-axis.
(2)  溶融高炉スラグを冷却するに際し、冷却開始
直後から1!OO1:までt粒化することKよって20
.0℃/畠・・以上て急冷し、1200C以下の温度域
は1200℃から1100℃までt&、8C/s**以
上、1100℃から1000C1fを15℃/−・1以
上% 1000℃からm5octでを0.3℃/−・・
以上の冷却速度でなるべくゆるやかに冷却しなからスラ
グの保有熱を回収することを特徴とする非晶質の割合が
9−5s以上の非晶質高炉スラグの製造と同時に保有熱
を回収する方法。
(2) When cooling molten blast furnace slag, 1! immediately after the start of cooling. OO1: To make t grains, K means 20
.. 0℃/hata... or more, quench cooling, temperature range below 1200C from 1200℃ to 1100℃ t&, 8C/s** or more, 1100℃ to 1000C1f to 15℃/-・1% or more from 1000℃ to m5oct 0.3℃/-・・
A method for recovering retained heat at the same time as producing amorphous blast furnace slag with an amorphous content of 9-5 s or more, characterized in that the retained heat of the slag is recovered while cooling the slag as slowly as possible at the above cooling rate. .
(3)粒状スラグを融着させた状態で1200℃以下を
冷却する特許請求の範囲第2項記載の非晶質高炉スラグ
の製造と同時に保有熱を回収する方法・
(3) A method for recovering retained heat at the same time as manufacturing amorphous blast furnace slag according to claim 2, which cools granular slag to 1200°C or less in a fused state.
(4)  冷却速度が異る、各一度域内の任意の温度域
でスラグの保有熱を回収する特許請求の範囲第2項記載
の非晶質高炉スラグの製造と同時に保有熱を回収する方
法。
(4) A method for recovering the retained heat of the slag simultaneously with the production of amorphous blast furnace slag according to claim 2, wherein the retained heat of the slag is recovered at an arbitrary temperature range within each temperature range where the cooling rate is different.
JP56159743A 1981-10-07 1981-10-07 Method for producing amorphous blast furnace slag and recovering retained heat Granted JPS5861203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56159743A JPS5861203A (en) 1981-10-07 1981-10-07 Method for producing amorphous blast furnace slag and recovering retained heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56159743A JPS5861203A (en) 1981-10-07 1981-10-07 Method for producing amorphous blast furnace slag and recovering retained heat

Publications (2)

Publication Number Publication Date
JPS5861203A true JPS5861203A (en) 1983-04-12
JPH0135882B2 JPH0135882B2 (en) 1989-07-27

Family

ID=15700295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56159743A Granted JPS5861203A (en) 1981-10-07 1981-10-07 Method for producing amorphous blast furnace slag and recovering retained heat

Country Status (1)

Country Link
JP (1) JPS5861203A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006110261A (en) * 2004-10-18 2006-04-27 Olympus Corp Endoscope
CN103154275A (en) * 2010-09-13 2013-06-12 保尔伍斯股份有限公司 Dry granulation of metallurgical slag
CN103820588A (en) * 2014-03-05 2014-05-28 中钢集团鞍山热能研究院有限公司 Quenching dry type broken fusion blast furnace slag sensible heat recovery method and device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006110261A (en) * 2004-10-18 2006-04-27 Olympus Corp Endoscope
CN103154275A (en) * 2010-09-13 2013-06-12 保尔伍斯股份有限公司 Dry granulation of metallurgical slag
CN103820588A (en) * 2014-03-05 2014-05-28 中钢集团鞍山热能研究院有限公司 Quenching dry type broken fusion blast furnace slag sensible heat recovery method and device

Also Published As

Publication number Publication date
JPH0135882B2 (en) 1989-07-27

Similar Documents

Publication Publication Date Title
CA1052575A (en) Method and apparatus for granulating
JPS5861203A (en) Method for producing amorphous blast furnace slag and recovering retained heat
US3979168A (en) Apparatus for the manufacture of light granulates
CA1124470A (en) Method of and apparatus for making slag sand and slag wool
SU1269739A3 (en) Method of producing desulfurizer for cast iron and steel
US2062650A (en) Production of noncrystalline borax
JPH11236609A (en) Treatment of blast furnace slag and apparatus thereof
JPH01226732A (en) Hollow spherical stabilized zirconia and production thereof
JPS5921989A (en) Method of recovering heat of molten slag
JP7448033B2 (en) Granular solidified slag manufacturing method and its manufacturing equipment
EP1366002A1 (en) Production of products from steel slags
JPS5934143B2 (en) Slag cooling device
JPS6037053B2 (en) Silicon carbide manufacturing method
JPS58159941A (en) Method for regulating temperature of molding sand recovered from green sand mold in cooling drum
JPS584273B2 (en) Metallurgical molten slag processing method
JPS6350351A (en) Treatment of molten slag
JP2963274B2 (en) Cooling method of molten material extracted from waste melting furnace
JPS582181B2 (en) Molten slag granulation manufacturing method
JP2002060255A (en) Separate recovery process of hard water-granulated slag
CN109180029A (en) A kind of liquid slag comminution granulation
JPS6136143A (en) Treatment of steel slag
SU587117A1 (en) Method of manufacturing slag pumice
JPS5853697B2 (en) Ingot steel and its manufacturing method
SU56809A1 (en) Method for producing phosphate fertilizer
JPS623052A (en) Treatment for blast furnace slag