JPS5860022A - Production of discontinuous filament bundle of acrylic synthetic fiber - Google Patents

Production of discontinuous filament bundle of acrylic synthetic fiber

Info

Publication number
JPS5860022A
JPS5860022A JP15819681A JP15819681A JPS5860022A JP S5860022 A JPS5860022 A JP S5860022A JP 15819681 A JP15819681 A JP 15819681A JP 15819681 A JP15819681 A JP 15819681A JP S5860022 A JPS5860022 A JP S5860022A
Authority
JP
Japan
Prior art keywords
bundle
fibers
crimps
fiber
continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15819681A
Other languages
Japanese (ja)
Other versions
JPS6144973B2 (en
Inventor
Yasuo Tango
丹後 康夫
Makoto Kanezaki
金崎 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP15819681A priority Critical patent/JPS5860022A/en
Priority to DE19823236555 priority patent/DE3236555A1/en
Priority to IT23618/82A priority patent/IT1152693B/en
Priority to BE0/209176A priority patent/BE894606A/en
Publication of JPS5860022A publication Critical patent/JPS5860022A/en
Priority to US06/774,852 priority patent/US4583266A/en
Publication of JPS6144973B2 publication Critical patent/JPS6144973B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preliminary Treatment Of Fibers (AREA)

Abstract

PURPOSE:A bundle of crimped continuous filaments of acrylic fiber is brought into contact with a cooling medium, as the crimp is kept, to give drawing and shearing forces to break each filament in the bundle, thus producing the titled discontinuous filament yarn through a simple process. CONSTITUTION:A bundle 31 of continuous filaments of crimped acrylic fiber is adjusted in its thickness as it is separated into filaments uniformly with a certain width is overfed with the back roller 36 to reform the original crimps 32 and fed into the low-temperature tank 33. The bundle is brought into contact with a cooling medium of a temperature lower than -20 deg.C in the tank 33 to increase the toughness and make its elongation almost zero as well as fix its crimps. Then, break draft is given between the middle rollers 37 and the break roller 38 to generate concentrated stress or shear stress on the fixed crimps and break filaments, thus giving a bundle of discontinuous filaments 34. The bundle is drafted with the front rollers 39 and contained in to the can 35.

Description

【発明の詳細な説明】 本発明は、アクリル系合成繊維からなる連続線IsO束
例えばトクやマルチフィラメントから紡績糸を製造する
為の中間製品である不連続繊維0束を製造する方法に関
する。更に詳しく扛、アクリル系合成繊維から表る連続
繊維の束を捲縮を維持した状態で一20℃以下の媒体K
II!触させつつ、また株接触させた徒直ち罠、連続繊
維の束に延伸力および又は剪断力を与えて各単繊維を切
断して不連続繊維の束を製造する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing zero bundles of discontinuous fibers, which are intermediate products for producing spun yarn from continuous IsO bundles of acrylic synthetic fibers, such as toku and multifilament. In more detail, a bundle of continuous fibers made from acrylic synthetic fibers is heated in a medium K at -20°C or less while maintaining crimping.
II! The present invention relates to a method for manufacturing a bundle of discontinuous fibers by applying a drawing force and/or a shearing force to a bundle of continuous fibers and cutting each single fiber by applying a drawing force and/or a shearing force to a bundle of continuous fibers while touching the fibers.

従来、紡績糸の製造方法として、短繊維群管カード工程
→ギル工程又は線条工程→粗紡工騙→精紡工程により製
造する方法が知られている。しかし、この方法はカード
エ1を経る為 ■ 生産性が低い。
BACKGROUND ART Conventionally, as a method for producing spun yarn, a method is known in which the following steps are followed: short fiber group carding process → gill process or filament process → roving process → spinning process. However, this method requires 1 card step, so productivity is low.

■ 紡績工程で紡績糸に収縮性を付与できない。■ Shrinkage cannot be imparted to the spun yarn during the spinning process.

■ 原綿製造工1!において、紡績目的に応じ次繊維長
に切断し短繊維を製造する工程が必要である。
■ Raw cotton manufacturing worker 1! In this process, a step is required to produce short fibers by cutting the fibers into the following fiber lengths depending on the purpose of spinning.

■ カード工程でネップ(単繊維どうしのからtC>、
フック(単繊維先端が湾曲する)が発生する更K、平行
度が悪い為ギル工程を長く′する等の対策が必要である といった問題点がある。
■ In the carding process, NEP (tC between single fibers),
There are problems such as the occurrence of hooks (curved ends of single fibers) and the need to take countermeasures such as lengthening the gill process due to poor parallelism.

一方、トウ、フィラメントのような連続繊維の束を不連
続繊維の束に変換した後、紡績糸會製迄する方法として
室温近辺の温度において/(−ロック方式、ターボ方式
等によシネ連続繊維の束を製造する方法が知られている
On the other hand, after converting a bundle of continuous fibers such as tow or filament into a bundle of discontinuous fibers, the method of producing a spun yarn is to convert the continuous fibers into a bundle of discontinuous fibers at a temperature around room temperature by using the lock method, turbo method, etc. Methods are known for producing bundles of.

パーロック方式は、連続繊維の束をローラーに工り延伸
して各単繊維を切断して、平行度の高い不連続繊維の束
を高速にて得ようとする方法である。切断に際して、第
7図のアクリル系合成繊維の強伸度−[11(C) K
示すように、繊維を伸度O〜約S−の弾性変形域を経て
、5−以上の塑性変形域において、破断伸度迄延伸して
切断を行う為K(1)  通常の紡績条件下では、延伸
に伴ない繊維に K大きな残留ひずみが存在する為、低
収縮率紡績糸om*wc限度がある。
The Purlock method is a method in which a bundle of continuous fibers is stretched using a roller and each single fiber is cut to obtain a bundle of highly parallel discontinuous fibers at high speed. When cutting, the strength and elongation of the acrylic synthetic fiber in Figure 7 - [11(C) K
As shown, the fibers are stretched through an elastic deformation region with an elongation of O to about S-, and then stretched to a breaking elongation in a plastic deformation region of 5- or more before being cut. There is a limit to the low shrinkage rate spun yarn om*wc due to the presence of a large residual strain in the fibers during stretching.

(■)  強伸度、殊にループ強伸度が大きく低下する
為、紡績糸の製造工程で繊維の切断やフライが多発する
(■) Since the strength and elongation, especially the loop strength and elongation, are greatly reduced, fibers are often cut and fried during the manufacturing process of spun yarn.

(l 高伸度の繊維を延伸して切断する場合、予備延伸
を行った後、パーロック方式で延伸切断する為、(1)
の欠点が助長される。
(l) When stretching and cutting highly elongated fibers, after pre-stretching, stretching and cutting is performed using the Parlock method, so (1)
The disadvantages of

翰 切断された繊維先端がチヂレる為、これが紡績糸の
糸斑をひきおこす。
翰 The cut fiber tips become jittery, which causes unevenness in the spun yarn.

という問題点がある。There is a problem.

ターボ方式は、連続繊維の束を延伸しつつ、剪断力を与
えて切断する方法である。この方式では。
The turbo method is a method in which a bundle of continuous fibers is stretched and cut by applying shearing force. In this method.

必ずしも繊維を破断伸度迄延伸する必l!はないが。It is not necessary to stretch the fibers to the elongation at break! Not though.

切断された繊維のステープルダイヤグラムが悪くなる。The staple diagram for cut fibers looks bad.

即ち適長繊維及び短繊維含有割合が多くなる。In other words, the content ratio of long fibers and short fibers increases.

本発明線、このような従来法の欠点を解決するいエネル
ギーで行うことができると共に低収縮率から高収縮率の
アクリル系合成繊維からなる紡績糸を自在に製造でき、
繊維切断やフライの発生が極めて少なく、極めて優れた
品質の紡績糸を高速で製造することのできる不連続繊維
束の製造方法を提供する4のである。
The present invention solves the drawbacks of the conventional method, can be performed with less energy, and can freely produce spun yarns made of acrylic synthetic fibers with low to high shrinkage rates.
A fourth object of the present invention is to provide a method for producing a discontinuous fiber bundle, which can produce spun yarn of extremely excellent quality at high speed with extremely little occurrence of fiber breakage or fly.

本発明の連続繊維の束としては、トウ、マルチフィラメ
ントが一般に用いられる。
As the continuous fiber bundle of the present invention, tow or multifilament is generally used.

繊維の束とびでは単繊維デ=−ル0.1 d〜60 d
から構成されるトータル・デニール30 d〜200万
dのフィラメント、ラージ・フィラメントおよび。
For fiber bundle skipping, single fiber diameter is 0.1 d to 60 d.
Filaments with a total denier of 30 d to 2,000,000 d, consisting of large filaments and.

トウ等に適用される。Applicable to tow etc.

更に、上記連続繊維の東と短繊維からなる繊維束との混
合体、他種繊維との混合体にも適用できる。
Furthermore, it can also be applied to a mixture of the above-mentioned continuous fibers and a fiber bundle made of short fibers, or a mixture with other types of fibers.

本発明における1つの発明様捲縮を有するアクリル系合
成繊維からなる連続繊維の束を冷却域において捲縮を維
持した状態で一20℃以下の媒体。
One aspect of the present invention is a medium in which a bundle of continuous fibers made of acrylic synthetic fibers having crimps is kept crimped in a cooling region at -20°C or lower.

好ましくは一40℃以下、より好ましくは一80℃以下
の媒体に接触させつつ、または接触後直ちK。
K while contacting with a medium preferably at -40°C or lower, more preferably -80°C or lower, or immediately after contact.

単繊維を切断する方法である。This is a method for cutting single fibers.

もう1つの発明は、捲縮を有するアクリル系合成繊維か
らなる連続繊維の束を、冷却域にオーバーフィードする
ことKよって、捲縮を維持した状態で上記温度の冷却媒
体に接触させつつ、または接触後輪ちに単繊維を切断し
て不連続繊維の束を製造する方法である。
Another invention is to overfeed a bundle of continuous fibers made of acrylic synthetic fibers having crimps into a cooling zone, while keeping the crimps in contact with a cooling medium at the above temperature, or This method produces a bundle of discontinuous fibers by cutting the single fibers immediately after contact.

第1図(A)はアクリル系繊維(商品名:カシミロン[
株])の単繊維が捲縮を有する状態で一100℃の液体
i1素に45秒間接触させた状態で延伸した時の強伸度
曲線、(B)は張力を与え、捲縮のない状態で同様の媒
体に接触させた状態で延伸した時の強伸度曲線である。
Figure 1 (A) shows acrylic fiber (product name: Cashmilon [
(B) is the strength and elongation curve when a single fiber of the same company (Co., Ltd.) with crimps is stretched in a state where it is in contact with liquid I1 at -100°C for 45 seconds. This is the strength and elongation curve when stretched in contact with a similar medium.

第S図のは捲縮を維持した状態で各温度1分間放置後の
破断強度を示す曲線、■は捲縮を充分伸ばした状態で同
様の処理をした後の破断強度を示定化を行うと捲縮を伸
ばした状態で冷却して切断する場合に比べて、約10−
の切断に景する張力が減少する。そして、従来のストレ
ッチ・プレーキング方式に対しても同等の張力で切断で
きる。
The curve in Figure S shows the breaking strength after being left at each temperature for 1 minute with the crimp maintained, and ■ shows the breaking strength after the same treatment with the crimp fully stretched. Compared to cooling and cutting with the crimp stretched out, it is about 10-
The tension force acting on the cut is reduced. Furthermore, it can be cut with the same tension as the conventional stretch breaking method.

−40℃以下の媒体に接触させることによって、連続繊
維の東はヤ繊維損傷が少なく、同様にフライ、収縮の発
現の少ない、物理的性能、ならびに、平行度、斑、ネッ
プ等の品質に優れ九不連続縁維の束がえられる。−go
℃以下の媒体Km触することによって、従来のストレッ
チ・ブレーキング方式に比べて、半分以下という少ない
張力で切断することが可能となる。
By contacting with a medium at -40°C or lower, continuous fibers have less fiber damage, less fly and shrinkage, and excellent physical performance and quality such as parallelism, unevenness, and neps. A bundle of nine discontinuous edge fibers is obtained. -go
By touching the medium Km at a temperature of 0.degree.

との捲縮の状態を第4図によって説明すると連続繊維の
束=1を構成している単繊維!2の長さ方向の捲縮XS
は0)の如く連続的に存在した状態でもよいが、(ロ)
の如く少なくとも切断ゾーンの長さLの範囲内に1ケの
捲縮23を有していてもよい。連続繊維の束21として
みた場合、長さ方向に2ンダ五に在存することが望まし
い。そして、この捲縮を有する連続繊維の束を一定の巾
に均一に単繊維を分繊するとともに厚みを整えた状態で
冷却域に供給するのが好ましい。
To explain the crimp state using Figure 4, the single fibers constituting a bundle of continuous fibers = 1! 2 Longitudinal crimp XS
may exist continuously like 0), but (b)
The cutting zone may have at least one crimp 23 within the length L of the cutting zone. When viewed as a continuous fiber bundle 21, it is desirable that the continuous fibers exist in two strands in the length direction. Then, it is preferable to uniformly split the bundle of crimped continuous fibers into single fibers with a constant width and adjust the thickness before supplying the bundle to the cooling zone.

本発V!Aにおいて、冷却域へ連続繊維の束を供給する
KW!Aして、オーバーフィードしつつ行うことが破断
エネルギーを減少させる上で一層好ましい。
The original V! At A, KW! supplies a bundle of continuous fibers to the cooling zone! A, it is more preferable to carry out the process while overfeeding in order to reduce the breaking energy.

即ち、オーバーフィードして、元の繊維の捲縮をできる
だけ維持しつつ、冷却域で−to℃以下の媒体に接触さ
せて切断するか、この媒体と接触後直ちに切断する。
That is, the fibers are cut by overfeeding and brought into contact with a medium at -to DEG C. or lower in a cooling zone while maintaining the crimp of the original fibers as much as possible, or are cut immediately after contact with this medium.

第10図は、捲縮を有するアクリル系合成繊維(単繊維
デニール34 X 100本)からなる連続繊維の束を
、−100℃の冷却域へ、45秒間、各種のオーバーフ
ィード率で供給した時の破断強力を示す図でおるが、オ
ーバーフィード率の増加と共に破断強力が減少している
ことがよく理解される。
Figure 10 shows the results when a continuous fiber bundle consisting of crimped acrylic synthetic fibers (single fiber denier 34 x 100 fibers) was fed to a -100°C cooling zone for 45 seconds at various overfeed rates. It is well understood that the breaking strength decreases as the overfeed rate increases.

本発明罠おいて冷却域に供給するときとの単繊維の捲縮
は切断ゾーンの長さL内において、少なくとも1ケの捲
縮O角度(りが#E5図の如く0〈θ≦120であるこ
とが好ましい。
In the trap of the present invention, the single fiber is crimped when fed to the cooling zone, within the length L of the cutting zone, at least one crimp O angle (0<θ≦120 as shown in Figure #E5). It is preferable that there be.

尚、角gc <e>は211F/dの荷重を付与した状
態で測定したものである。
Note that the angle gc <e> was measured with a load of 211 F/d applied.

冷却媒体としては−H℃以下のものであれば使用可能で
あるがアンモニア、二酸化縦索、空気、酸素、g1素等
の気化ガスまたは液体、シよび、寒剤として、アルコー
ル、固体無水炭酸、エーテルほか、氷と塩化亜鉛、塩化
ナトリウム、硝酸ナトリウム、硫酸チドリ五等の塩化、
硝酸、硫酸化合物との混合物および、その気化ガス等を
使用することができる。
As a cooling medium, anything below -H°C can be used; however, ammonia, carbon dioxide, air, oxygen, vaporized gases such as G1 element, or liquids, alcohol, solid carbonic anhydride, and ether can be used as cooling agents. In addition, chlorides of ice and zinc chloride, sodium chloride, sodium nitrate, sulfuric acid, etc.
A mixture of nitric acid and a sulfuric acid compound, a vaporized gas thereof, etc. can be used.

この冷却媒体に接触させる時間は7、繊維の種類、供給
方法、媒体のm類やm度等によシJ!4なるが、一般に
は1〜ioo秒程度が用いられる。
The time of contact with this cooling medium varies depending on the type of fiber, feeding method, type of medium, degree of medium, etc. 4, but generally about 1 to 100 seconds is used.

冷却媒体との接触方法は*に限定されないが、気体雰囲
気中、液体中に連続繊維の束を通過させる方法、冷却媒
体を連続繊維の束に滴下させる方法等がある。
The method of contact with the cooling medium is not limited to *, but includes a method of passing the bundle of continuous fibers through a gas atmosphere or a liquid, a method of dropping the cooling medium onto the bundle of continuous fibers, and the like.

連続繊維の束の切断は、−w℃以下の媒体に接触させつ
つ、行ってもよいし、接触後直ちに行ってもよい。
The continuous fiber bundle may be cut while being brought into contact with a medium at −w° C. or lower, or may be cut immediately after contact.

切断は、連続繊維の束に延伸力及び/または剪断力を与
えて、各単繊維を切断する。これらの他に別の切断力を
併用し【も差しつかえ麦い。かくして、見られた不連続
繊維0束は良好なステープルダイヤプ2Aを有すること
になる。このよ5にして製造された不連続繊維の束とし
ては、具体的には、スライバー、粗糸直紡用の繊維束勢
がある。
In cutting, each single fiber is cut by applying a drawing force and/or a shearing force to the bundle of continuous fibers. In addition to these, another cutting force can also be used. Thus, zero bundles of discontinuous fibers found will have a good staple diameter 2A. Specifically, the bundle of discontinuous fibers produced in this manner includes fiber bundles for direct spinning of slivers and rovings.

第1図はアクリル系繊維(商品名:カシjaン■)につ
いて捲縮を維持した状態で切断を行った場合、冷却媒体
の温度と、不連続繊維の束を構成する単繊維の収縮率の
関係を示す図であるが、これかられかるように本発明の
方法によれば、低収縮率から高収縮率迄達成が可能であ
る◇また、切断に際して、所要の媒体温度が設定され九
場合、第1図に示す如く、その温度に対応した単繊維の
収縮率が決定される。その場合、でも決定された収縮率
より高い収縮率の付与は一意o℃以下の媒体に接触させ
る前に前以って延伸、好ましくは熱延伸を行うことによ
シ達成される。第6図(C)はアクリル系繊維(商品名
:カシ々四ン@)を、前以って熱延伸した後、−100
℃の媒体に接触ささせつつ切断した場合の収縮率変化を
示す図である。熱延伸しない場合の収縮率は4チである
が、熱延伸倍率が増加すると共に、収縮率が増加する。
Figure 1 shows the relationship between the temperature of the cooling medium and the shrinkage rate of the single fibers that make up the bundle of discontinuous fibers when cutting acrylic fibers (product name: Kashijan ■) while maintaining crimping. This is a diagram showing the relationship, and as you will see, according to the method of the present invention, it is possible to achieve from a low shrinkage rate to a high shrinkage rate.In addition, when the required medium temperature is set during cutting, As shown in FIG. 1, the shrinkage rate of the single fiber corresponding to the temperature is determined. In that case, the provision of a shrinkage rate higher than the determined shrinkage rate is achieved only by carrying out stretching, preferably hot stretching, before contacting the medium at temperatures below 0°C. Figure 6 (C) shows acrylic fibers (product name: Kashishin@) that have been hot-stretched at -100°C.
It is a figure which shows the shrinkage rate change when cut while making it contact with the medium of degreeC. The shrinkage rate without hot stretching is 4 inches, but as the hot stretching ratio increases, the shrinkage rate increases.

一方、(D)はパーロック方式で20℃で切断した場合
の収縮率である。この場合、収縮率はZSS〜28−の
範囲でしか調節できない0 本発明は、このようK、−加C以下という冷却媒体に接
触させて不連続繊維の束を製造する−のであるから、 0)捲縮を維持した状態で切断して不連続繊維の束を製
造する場合、切断に伴うエネルギーが極めて少なくてす
む (ロ)冷却媒体の温度を変えることによね低収縮から高
収縮に至る任意の収縮率をもつ紡績糸の製造が可能とな
る。
On the other hand, (D) is the shrinkage rate when cutting at 20° C. using the Parlock method. In this case, the shrinkage rate can only be adjusted within the range of ZSS to 28-28. Since the present invention produces bundles of discontinuous fibers by bringing them into contact with a cooling medium of K, -C or less, ) If a bundle of discontinuous fibers is produced by cutting while maintaining crimping, the energy required for cutting is extremely small. It becomes possible to manufacture spun yarn with a shrinkage rate of .

(ハ)切断に先立って、延伸処理を行うことにより、収
縮率を任意に変更することが可能となる に)紡績工程におけるフライ、繊維切断の発生が極めて
減少する。
(c) By carrying out the stretching process prior to cutting, it becomes possible to arbitrarily change the shrinkage rate.) The occurrence of fly and fiber breakage during the spinning process is extremely reduced.

(ホ)本発明の方法による不連続繊維の束からつくられ
九紡績糸は糸斑が極めて少なく、糸強力は大きい。
(e) Nine spun yarns made from bundles of discontinuous fibers according to the method of the present invention have extremely little unevenness and high yarn strength.

という顕著な作用効果を示す。It shows remarkable action and effect.

第1図は捲縮を維持し良状態で切断する方法の一実施態
様例を示す工程図である。一定の巾に均一に単繊維を分
繊しながら厚みを整えた捲縮を有する単繊維からなる連
続繊維の束31をバックローラー36にてオーバーフィ
ードすることによって、元の捲縮32を回復発現させな
がら低温槽33内に供給する◇そして、低温槽33内に
おいて一20℃以下の低温媒体に接触させることによっ
て、繊維の剛性を増し、伸度のほとんどない状態にする
ととも−に1その捲縮の固定化を行う。次に、5ドル・
ローラー37とブレイク・ローラー北の間で若干のブレ
ーク・ドラフトを与えて、固定化され九捲縮部に剪断応
力または集中応力を発生せしめ、単繊維を切断して不連
続繊維の束Uとしフロント・ロー2−39でドラフトし
た後、ケンス35に収納するものである。
FIG. 1 is a process diagram showing an embodiment of a method for maintaining crimp and cutting in good condition. The original crimp 32 is recovered by overfeeding a continuous fiber bundle 31 made of single fibers having crimps with a uniform thickness while dividing the single fibers into a constant width using a back roller 36. ◇Then, by bringing the fibers into contact with a low-temperature medium at -20°C or lower in the cryostat 33, the stiffness of the fibers is increased and the elongation becomes almost non-existent, and the winding of the fibers is increased. Fix the contraction. Next, $5.
A slight break draft is applied between the roller 37 and the break roller north to generate shear stress or concentrated stress in the fixed and crimped portion, and the single fiber is cut into a bundle of discontinuous fibers U at the front.・After drafting with low 2-39, it is stored in can 35.

第2図はバック・四−シー36とミドル・ロー2−7の
間にクリンp: −40を設けて、捲縮のない、または
、捲縮の弱い連続繊維の束31に適当な捲縮32を与え
て、低温槽33内に供給した後、ミドル・p−シーs7
とブレイク・シーラー襲の間でブレーク・ドラフトを与
えて切断し不連続繊維の束34を製造する工程図である
FIG. 2 shows that a crimp p:-40 is provided between the back four-sea 36 and the middle row 2-7, and a bundle 31 of continuous fibers without crimp or with weak crimp is crimped appropriately. 32 and supplied into the cryostat 33, the middle p-sea s7
It is a process diagram for producing a bundle 34 of discontinuous fibers by applying a break draft between the fibers and the break sealer and cutting the fibers.

第3図は任意の収縮をもつ不連続繊維の束34を製造す
るに適した工程図であシ、連続繊維の束31をパック・
ローラー36と、延伸・p−シー41との間に上下1対
の熱板4意を設け、連続繊維の束31を加熱軟化させる
と同時に、所定の収縮を得るに適した延伸倍率にて延伸
する。次に、クリンパ−40で捲縮32を与え、低温槽
33内に供給した後、ミドル・ローラー37とブレイク
・p−シー38の間で若干のブレーク・ドラフトを与え
て、固定化された捲縮部32に剪断応力または集中応力
を発生せしめ、単繊維を切断して不連続繊維の束Uとし
ケンス35に収納するものである。
FIG. 3 is a process diagram suitable for manufacturing a bundle 34 of discontinuous fibers with arbitrary shrinkage, in which a bundle 31 of continuous fibers is packed and
A pair of upper and lower heating plates is provided between the roller 36 and the stretching/p-sea 41, and the continuous fiber bundle 31 is heated and softened, and simultaneously stretched at a stretching ratio suitable for obtaining a predetermined shrinkage. do. Next, a crimp 32 is applied with a crimper 40 and the material is fed into a cryostat 33, and then a slight break draft is applied between a middle roller 37 and a break p-sea 38 to form a fixed crimping. A shearing stress or concentrated stress is generated in the constricted portion 32, and the single fibers are cut into a bundle U of discontinuous fibers, which is stored in the can 35.

実施例1 ポリアクリロニトリル繊維3dで構成される50万デニ
ールのトウを舘1図の装置に仕掛けて下記条件にて紡出
した。
Example 1 A 500,000 denier tow composed of 3D polyacrylonitrile fibers was placed in the apparatus shown in Figure 1 and spun under the following conditions.

、つ捲縮状態    捲縮数1!(+/(7f)捲縮角
度・O0≦−≦1200 オーバーフィード率       lo (%)冷 却
 媒 体      液体窒素 低温檜内宴囲気温度      −1o・ (℃)滞留
時間   45 (謬ec) ブレーク・ドラ7 )       1.11紡出速度
   1(10(m/sb) 次に、上記トウをOM)ウリアクタ−(OM製作所社)
K仕掛ゆ下記条件で紡出を行い、その結果について比較
した。
, one crimp state, the number of crimp is 1! (+/(7f) Crimp angle・O0≦−≦1200 Overfeed rate lo (%) Cooling medium Liquid nitrogen Low-temperature cypress indoor banquet air temperature -1o・(℃) Residence time 45 (EC) Break driver 7) 1.11 Spinning speed 1 (10 (m/sb) Next, the above tow was OM) Ureactor (OM Seisakusho Co., Ltd.)
Spinning was carried out under the following conditions and the results were compared.

熱  板  温  度        1zo(℃)熱
延伸倍率   1.281 滞  留  時  間          6(島ea
)トータル・ドラフト       6.51(ブレー
ク・ドラ7 ) )        (2,53)牽切
斌雰四気温度      2G(u)紡  出  速 
 度        ioo (tm/m)更に、梳毛
紡績工程において、ローシー・カードに同じ(3dを7
O−127(諺)のバイアスにカットし九ステーブル・
ファイバーを供給し下記条件で紡出したものについても
その工程性能・スライバー物性について比較した。
Hot plate temperature 1zo (℃) Hot stretching ratio 1.281 Residence time 6 (Island ea
) Total Draft 6.51 (Break Drawer 7) ) (2,53) Driving Atmosphere Temperature 2G(u) Spinning Speed
degree ioo (tm/m) In addition, in the worsted spinning process, the same as rosy card (3d to 7
O-127 (proverbial) bias cut and nine stable
The process performance and physical properties of the sliver were compared using fibers supplied and spun under the following conditions.

紡出速度   3・(泗/−’) 結果1 また、上記スライバー(トウリアクター・スライバーは
リラックス・セットを行った。)より、通常の紡績工程
を経て得られた、゛リング瞥績糸および、その製品につ
いても比較したみ 結果3 トータル・デニール50万のトウを一106℃の冷却ご
  媒体に接触させることKよって、従来のトウリアク
ターでは11倍以下のブレーク・ドラフトでは牽切でき
なかったのに対して、本発明では1G−のオーバーフィ
ードをし友後でも、′i、xs倍という低いブレーク・
ドラフトで切断することができ、フライおよび落綿の発
生も少なく、従来法のカート。
Spinning speed 3・(泗/-') Result 1 In addition, ring spun yarn obtained from the above sliver (the tow reactor sliver was subjected to relaxation set) through a normal spinning process and We also compared these products and found that 3. Because tow with a total denier of 500,000 denier is brought into contact with the cooling medium at -106°C, conventional tow reactors could not be used to achieve full power with a break draft less than 11 times. On the other hand, in the present invention, even after overfeeding 1G-, the break rate is as low as ′i,xs times.
This cart can be cut using a draft, and there is less fly and cotton drop than the conventional method.

方式と比べても良好であった。得られたスライバーは収
縮率が少ないうえに、元の捲縮が維持されているので、
トウリアクタ一方式のようにリラックスを行うとともに
1牽切後に付与された捲縮を固定するためのセッタ一工
程が必要でなくなった。
It was also good compared to other methods. The obtained sliver has a low shrinkage rate and maintains its original crimp.
It is no longer necessary to use a setter step to relax and fix the crimp applied after one tension cut as in the one-type tow reactor.

また、同じく収縮発現のないカード・スライバーに比べ
て、平行度・ネップ・USとも優れた品質をもつスライ
バーを高速にて製造することができ7’j。
Furthermore, compared to card slivers that also do not exhibit shrinkage, slivers with superior quality in terms of parallelism, neps, and US can be produced at high speed7'j.

糸物性においても、本発明法では従来法のトウリアクタ
ーのものに比べ、繊維損傷はほとんどなく査手強力積が
良好であるとともに、カード方式に比べて、U%糸欠点
等O品質にすぐれている。
In terms of yarn physical properties, the method of the present invention has almost no fiber damage and better fiber strength than the conventional tow reactor method, and is superior in U% yarn defects and O quality compared to the card method. There is.

壕九、製品においても、カード方式と同様に、反撥性が
ありかつ、染色性、熱ポリラシャ−性とも良好であった
Similarly to the card method, the molded product had good repellency, and had good dyeability and hot polyurethane properties.

実施例2 本発明法と従来法とで、切断に要する引張張力を比較す
る為に、ポリアクリロニトリル繊維3dからなる300
デニールの繊維束(捲縮数100A7f 。
Example 2 In order to compare the tensile force required for cutting between the method of the present invention and the conventional method, a 300% polyacrylonitrile fiber 3D was
Denier fiber bundle (crimps number 100A7f).

捲縮角度goO≦θ≦two0)を下記条件にてデンジ
pンで引張り、それぞれOS−Sカーブについて比較し
た。結果は第1図に示す。
The crimp angle goO≦θ≦two0) was stretched with Denjip under the following conditions, and the OS-S curves were compared. The results are shown in Figure 1.

従来法 20 (r、)の雰囲気温度にて延伸切断した
。(グラスC) 本i明法 単繊維の束を長さ方向に10 (−)たるま
せ、捲縮を発現させた状−9におい ゛て一1oo (℃’)の液体9素で45i関冷却した
後、延伸切断した。(グツ7ム) また、張力を4え、捲−を伸ばした 状態で−ZGo (℃) K 45 sec冷却した後
、延伸切断した時のS−Sカーブにつ いても検討した。(グラフB) 夾−例3 実施例2と同じサンプjL−にて、−100℃の液体窒
素で捲縮を冷却固定した場合と捲縮を仲にして冷却した
場合の切断に要する引張張力の温度分散並び罠、その温
度による収縮率を検討した。(第8゜9図) 本発明法 捲縮を長さ方向K 10 (*)た、るませ
ることによって発現させた状態で45 sec冷却した
後、延伸・切断した。(グラフA)比較法 捲縮を伸ば
した状態で45闘C冷却【7た後、延伸・切断した3、
(グラフB) このように、冷却媒体に接触させることによって、非常
に低いブレーク・ドラフトで切断することが可能となる
とともに、収縮率C発現も#ユとんどなく々ることがわ
かった0良に1捲縮を固定してブレーク・ドラフトを4
えることによって、非常に小さ表引張張力によって切断
できるとと−に1収量率の発現もよ抄小さなものとなる
ことかわかった。
Conventional method Stretch cutting was carried out at an ambient temperature of 20 (r). (Glass C) This method A bundle of single fibers is made to slack in the longitudinal direction by 10 (-) and crimped, and then cooled at 45 degrees with liquid 9 at 110°C (°C). After that, it was stretched and cut. (Gutsu 7m) In addition, the SS curve when the tension was increased to 4 and the winding was stretched was cooled for -ZGo (° C.) K 45 sec, and then stretched and cut. (Graph B) Example 3 In the same sump jL as in Example 2, the tensile tension required for cutting when the crimp was cooled and fixed with liquid nitrogen at -100°C and when the crimp was cooled with the crimp in between. We investigated the temperature dispersion alignment trap and the shrinkage rate depending on the temperature. (Fig. 8-9) Method of the Invention After cooling for 45 seconds in a state in which crimps were developed by twisting and loosening K 10 (*) in the length direction, they were stretched and cut. (Graph A) Comparative method After cooling at 45°C with the crimps stretched out, the crimps were stretched and cut.
(Graph B) In this way, it was found that by contacting the cooling medium, it became possible to cut with extremely low break draft, and the shrinkage rate C was also found to be almost negligible. Fix 1 crimp and break draft 4
It was found that if the material could be cut with a very small surface tension, the yield rate would also be much smaller.

実施例2、と同じサンプルにて−10011::  の
液体窒素でオーバーフィードした捲縮を4s秒冷却固定
し九場合の切断に要する引張強力とオーバー・フィード
率の関係を示した。(第10図)実施例5 ポリアクリロニトリル縁線3dで構成される開方デニー
ルのトウを第3図の装置に下記条件にて仕掛1、熱板で
の熱延伸倍率と得られたスライバーの収縮率を従来法の
トウリアクタ一方式で紡出したものについて比較した。
Using the same sample as in Example 2, -10011:: crimps were overfed with liquid nitrogen and fixed by cooling for 4 seconds, and the relationship between the tensile strength required for cutting in 9 cases and the overfeed rate was shown. (Fig. 10) Example 5 An open denier tow composed of polyacrylonitrile edge line 3d was placed in the apparatus shown in Fig. 3 under the following conditions: 1, hot drawing ratio on a hot plate and shrinkage of the obtained sliver. The yield was compared with that of the conventional method, which was spun using a single tow reactor.

1) 本発明条件 熱板温度   12o (C) 滞留時間   約l5(see) トウの聚縮状態 捲縮数  12 1外9ンチ捲縮角度
 60°≦0≦1200 オーバー・フィード率    1G  (*)低温媒体
   液体窒素 低温槽内雰囲気1!t    −1oo(r、)滞留時
間   45(see) ブレーク・ドラフト     1.15紡出速度   
100 (m/”) 2)トウリアクタ一方式 熱板温度   120 (U) 滞留時間   約6(畠ec) ドータ化・ドラフト     LSI (ブレーク・ドラフト)       (z、sx)紡
出速度   loo (m/−) 結果はjI6図に示した如く、従来法では熱延伸した後
に牽切するために、破断伸度Kまで単繊維を延伸しなく
てはならず、熱延伸による収編以外に、牽切による収縮
が付加される。そこで収縮率は熱延伸倍率が比較的に^
い領域において舎ま比例関係にあるが、熱延伸倍率の低
い領域においては牽切による付加収縮のため、ある一定
値以下の低い収縮率は得られなかった。つまり、従来法
では非常に得られる収縮の巾は狭かった。それに対して
、本発明法では熱蛙伸倍率に応じて、その繊維のもつ蝦
高収縮まではは直線的に比例して、収縮カーブを得るこ
とができるので、任意の収縮率をもつスライバーを容易
に紡出することができることがわかまた。
1) Invention conditions Hot plate temperature 12o (C) Residence time Approximately 15 (see) Tow crimping state Number of crimps 12 1 out of 9 inches crimping angle 60°≦0≦1200 Overfeed rate 1G (*) Low temperature Medium: Atmosphere inside liquid nitrogen cryostat 1! t -1oo (r,) Residence time 45 (see) Break draft 1.15 Spinning speed
100 (m/”) 2) Tow reactor one-side hot plate temperature 120 (U) Residence time Approx. 6 (Hatake ec) Daughterization/draft LSI (break draft) (z, sx) Spinning speed loo (m/-) The results are shown in Figure jI6. In the conventional method, the single fiber must be drawn to the breaking elongation K in order to perform tension cutting after hot drawing. is added.Therefore, the shrinkage rate is relatively higher than the hot stretching ratio^
Although there is a proportional relationship in the area where the hot stretching ratio is low, it was not possible to obtain a shrinkage rate below a certain value due to additional shrinkage due to tension cutting in the area where the hot stretching ratio was low. In other words, with the conventional method, the range of shrinkage obtained was extremely narrow. On the other hand, with the method of the present invention, it is possible to obtain a shrinkage curve that is linearly proportional to the heat frog stretching magnification up to the height shrinkage of the fiber. It is also found that it can be easily spun.

【図面の簡単な説明】 #441〜3図は、本発明を実施する工程の例を示す図
、第4図(イ)、(ロ)は捲縮の状態を示す模式図、第
5図は捲縮角度を示す図、第6図は熱延伸倍率と煮沸後
の収縮率の関係を示す図、第7図はアクリル系合成繊維
(商品名二カシミロン■)の引張伸度と引張強力の関係
を示す図、第8図社切断に際しての6却縁体の温度と破
断強力との関係を示す図、ms図は切断[11iiiし
ての冷却媒体の温度と切断されたjfL繊維の煮沸後の
収縮率との関係を示す図、第10図はオーバーフィード
率と破断強力との関係を示す図である。 特許出願人 旭化成工業株式会社 第4図 第5図 第6図 熱延伸倍率 一引張伸度(%) → 1廣 (0C) 一温度(0C) 第1o図 → オーバ一つ仁ド率(%)
[BRIEF DESCRIPTION OF THE DRAWINGS] #441-3 are diagrams showing examples of steps for implementing the present invention, Figures 4 (a) and (b) are schematic diagrams showing the crimp state, and Figure 5 is a diagram showing an example of the process of carrying out the present invention. Figure 6 shows the relationship between the crimp angle and the shrinkage rate after boiling. Figure 7 shows the relationship between the tensile elongation and tensile strength of acrylic synthetic fiber (product name: Nikacimiron ■). Fig. 8 is a diagram showing the relationship between the temperature of the JFL fiber and the breaking strength during cutting. A diagram showing the relationship between the shrinkage rate and FIG. 10 is a diagram showing the relationship between the overfeed rate and the breaking strength. Patent applicant: Asahi Kasei Kogyo Co., Ltd. Figure 4 Figure 5 Figure 6 Hot drawing ratio 1 tensile elongation (%) → 1 hi (0C) 1 temperature (0C) Figure 1 o → Over-stretch ratio (%)

Claims (1)

【特許請求の範囲】 L 捲縮を有するアクリル系合成繊維からなる連続繊維
の束を冷却域において、捲縮を維持し次状態で一3G℃
以下の媒体に接触させつつ、ま曳はこの冷却媒体に接触
後直ちに、:s続繊維の東に延伸力及び/またFi、m
断力を与えて連続繊維の束を構成する6単繊維を切断す
ることによってアクリル系合成繊維からなる不連続繊維
の東tg造する方法。 *m縮を有するアクリル系合成繊維からなる連続繊維の
束t、冷却域に、オー/く−フィードすることによって
、捲縮を維持し良状態で、−10℃以下Og体に接触さ
せつつ、ま九社この冷却媒体に接触後直ちに、連続繊維
の束に延伸力及び/または剪断力を与えて、連続繊維の
束を構成すゐ各単繊維を切断することによってアクリル
系合成繊維からまる不連続繊維の束を製造する方法。
[Scope of Claims] L A bundle of continuous fibers made of acrylic synthetic fibers having crimps is kept crimped in a cooling region and heated to -3G°C in the following state.
Immediately after contact with this cooling medium, the mahiki applies a drawing force to the east of the continuous fiber and/or Fi, m
A method for producing discontinuous fibers made of acrylic synthetic fibers by applying shear force and cutting six single fibers constituting a bundle of continuous fibers. * A bundle t of continuous fibers made of acrylic synthetic fibers having crimps is fed into the cooling zone with Og/C to maintain the crimps and in good condition while contacting the Og body at -10°C or below, Immediately after contact with this cooling medium, a drawing force and/or a shearing force is applied to the bundle of continuous fibers to cut each single fiber that makes up the bundle of continuous fibers, thereby creating a discontinuous strand of acrylic synthetic fibers. A method of manufacturing fiber bundles.
JP15819681A 1981-10-05 1981-10-06 Production of discontinuous filament bundle of acrylic synthetic fiber Granted JPS5860022A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP15819681A JPS5860022A (en) 1981-10-06 1981-10-06 Production of discontinuous filament bundle of acrylic synthetic fiber
DE19823236555 DE3236555A1 (en) 1981-10-05 1982-10-02 METHOD FOR PRODUCING INTERRUPTED FILAMENT BUNDLES AND TIP-ENDING FILAMENTS
IT23618/82A IT1152693B (en) 1981-10-05 1982-10-05 PROCEDURE FOR THE PREPARATION OF DISCONTINUOUS BANDS OF FILAMENTS AND POINTED END FILAMENTS
BE0/209176A BE894606A (en) 1981-10-05 1982-10-05 METHOD FOR MANUFACTURING A PACK OF DISCONTINUOUS FILAMENTS AND THREADED END FILAMENTS
US06/774,852 US4583266A (en) 1981-10-05 1985-09-09 Process for preparation of discontinuous filament bundles and sharp-ended filaments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15819681A JPS5860022A (en) 1981-10-06 1981-10-06 Production of discontinuous filament bundle of acrylic synthetic fiber

Publications (2)

Publication Number Publication Date
JPS5860022A true JPS5860022A (en) 1983-04-09
JPS6144973B2 JPS6144973B2 (en) 1986-10-06

Family

ID=15666366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15819681A Granted JPS5860022A (en) 1981-10-05 1981-10-06 Production of discontinuous filament bundle of acrylic synthetic fiber

Country Status (1)

Country Link
JP (1) JPS5860022A (en)

Also Published As

Publication number Publication date
JPS6144973B2 (en) 1986-10-06

Similar Documents

Publication Publication Date Title
US4477526A (en) High strength aramid spun yarn
US4583266A (en) Process for preparation of discontinuous filament bundles and sharp-ended filaments
US4547933A (en) Process for preparing a high strength aramid spun yarn
JPS5860022A (en) Production of discontinuous filament bundle of acrylic synthetic fiber
JPS5860021A (en) Production of bundle of discontinuous filament yarn
KR850001305B1 (en) Multi-filament making method and the same kind of other part
US3435608A (en) Strand treatment
KR0133617B1 (en) Process for manufacturing polyester single fiber for non woven fabric
JPS6144972B2 (en)
Kwak et al. Mechanical properties of wool fiber in the stretch breaking process
KR830002698B1 (en) Transformation method and product of acryl spun yarn by heating
JPS5912771B2 (en) Spun yarn and its manufacturing method
JPS5823930A (en) Blended spun bonded yarn and production thereof
JPS5898420A (en) Polyester tow for stretch-breaking
JPH0341573B2 (en)
JPS6014122B2 (en) Method for manufacturing polyester sliver
CN118087107A (en) Process for producing 100-count Jacel fiber yarns based on compact sirospun
JPH03130431A (en) Drawing of fiber
JPH0466927B2 (en)
JPH041092B2 (en)
JPS5843486B2 (en) Sliver manufacturing method
JPH05171533A (en) Production of conjugate textured yarn
JPS60181316A (en) Manufacture of sprinkly colored polyester slub yarn
JPS59168130A (en) Production of discontinuous fiber bundle
JPS6323291B2 (en)