JPS5859302A - Monitor for steam turbine - Google Patents

Monitor for steam turbine

Info

Publication number
JPS5859302A
JPS5859302A JP15734981A JP15734981A JPS5859302A JP S5859302 A JPS5859302 A JP S5859302A JP 15734981 A JP15734981 A JP 15734981A JP 15734981 A JP15734981 A JP 15734981A JP S5859302 A JPS5859302 A JP S5859302A
Authority
JP
Japan
Prior art keywords
vibration
turbine shaft
value
amplitude
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15734981A
Other languages
Japanese (ja)
Other versions
JPH0114402B2 (en
Inventor
Shinya Ayano
綾野 真也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP15734981A priority Critical patent/JPS5859302A/en
Publication of JPS5859302A publication Critical patent/JPS5859302A/en
Publication of JPH0114402B2 publication Critical patent/JPH0114402B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/04Antivibration arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Abstract

PURPOSE:To detect the abnormal vibration of a turbine shaft and to enable an alarm to be produced for informing of cracks by a method wherein a rotary synchronizing vibration and a rotary synchronizing double vibraion component are extracted from the vibration of the turbine shaft and compared to each other, and the compared value is further compared with a total amplitude. CONSTITUTION:A vibration sensor 11 transduces the sensed vibration of a turbine shaft 8 to an electrical signal. A full amplitude calculater 13 calculates a full amplitude value of vibration. A synchronized vibration calculater 14 separates the vibration value of a rotating synchronizing vibration component as VOMEGA. The synchronizing double vibration calculater 15 separates a vibration value of the rotating synchronizing double vibration component as Z2OMEGA. A comparater calculater 17 compares all the amplitudes from the full amplitude calculater 13 with a value of V2OMEGA/VOMEGA from the divider 16, and when both values exceed the prescribed relation, an alarm signal is produced. In this way, some cracks in the turbine shaft 8 can properly be detected.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、火力発電、原子力発電等において使用する蒸
気ターーンの監視装置に係り、特に、ターーン軸にひび
割れが発生した場合に起きる特有な振動を検出可能にす
るととにより、その後の大事故を未然に防止しうる蒸気
タービンの監視装置に関する。 一般に、大容量の蒸気タービンにおいては、たとえば、
第1図に示すように、高圧タービン1、中圧タービン2
、低圧タービン3および発電機4の各軸は、複数個のラ
ジアル軸搬5.・・・・・・、5により支承されている
。さらに、前記各軸は、複数個の軸継手(たとえばカッ
プリング)6,6.6により一体的に連結される゛と共
に、1個のスラスト軸受7によりスラスト軸受に保持さ
れている。 このよデにスラスト軸受7が1個しか設けられないのは
、各軸が高温に加熱され
The present invention relates to a monitoring device for steam turns used in thermal power generation, nuclear power generation, etc., and in particular, it is capable of detecting vibrations peculiar to the occurrence of cracks in the turn shaft, thereby preventing subsequent major accidents. The present invention relates to a steam turbine monitoring device that can prevent steam turbines from occurring. Generally, in large capacity steam turbines, for example,
As shown in FIG. 1, a high pressure turbine 1, an intermediate pressure turbine 2
, the low pressure turbine 3 and the generator 4 each have a plurality of radial shafts 5. ......, supported by 5. Further, each of the shafts is integrally connected by a plurality of shaft joints (for example, couplings) 6, 6.6, and is held in the thrust bearing by one thrust bearing 7. The reason why only one thrust bearing 7 is provided in this model is because each shaft is heated to a high temperature.

【軸方向に伸びた゛場合の軸の
拘束を防ぐため−ある。 また、第°2図に示すように、前記軸継手6,6゜6は
、通常、タービン軸8に焼ばめされている。 前記タービン軸8には、円板、円胴等の重量および自重
による曲げモーメントMが負荷されるため、前記軸継手
6,6.6の焼ばめ部分にも曲げモーメン)Mが負荷さ
れる。したがって、第3図、第4図に示すようにモーメ
ン)Mが負荷されない場合のタービン軸8における軸継
手6め端面との接触点A、B(第3図)は、モーメン)
Mが負荷された場合にはそれぞれ4VC第4図)に移動
する。この移動は、タービン軸8の回転に伴って繰り返
され、それにより、タービン軸8の外周面と軸継手6の
内周面とがこすれ合う(フレッティング現象)。この現
象が生じると、タービン軸8は、強度上極めて不利にな
り、ひび割れが発生しやすくなる。・すなわち、通常の
−曲げ疲労の場合に比して非常に小さい曲げ応力が負荷
されただけでひび割れが卑生する。そしてついには、タ
ービン軸゛8が破断してしまう。この場合、前述のよう
に、各2−ビン軸8および発電機軸は、複数の軸継手6
゜6.6により一体的に連結され、その一体的な軸が、
1個のスラスト軸受7により軸方向に支持されているた
め、上記のよ5な軸破断が−か所でも起きるとすべての
タービン軸8および発電機軸の軸方向支持が不可能にな
り、破断の起きたタービンに支障が生ずるのみならず、
すべてのタービンにおかて、タービン羽根がケーシング
あるいはノズルに接触し、甚大な2次損傷が起きること
が考えられる。 そこで、本発明は、タービン軸に7レツテイング現象に
よるひび割れが発生すると同時に、そのひび割れの発生
を検出して警報を発することにより甚大な2次損傷を未
然に防止することができる蒸気タービンの監視装置を提
供することを目的としている。 本発明は、蒸気タービンのタービン軸の回転振動を検出
しその検出振動を電気信号に変換する振動検出器、と、
前記振動検出器からの電気信号を増幅する増幅器と、前
記電気信号を積分してタービン軸の有する振動の全振幅
値を求める全振幅演算器と、前記振動検出電気信号のう
ちタービン軸の回転数と同じ周波数の振動成分の振幅値
および回転数の2倍の周波数を有する振動成分の振幅値
をそれぞれ求める同期振動演算器および同期2倍蛋動演
算器と、前記同期2倍振動演算器で求めた振幅値を同期
振動演算器で求めた振幅値で除する除。 算器と、前記全振幅演算器で求めた全振幅値に対する前
記除算器で求めた除数−の大きさを判断してその大きさ
が所定量を越えた場合に警報信号を出力する比較演算器
とからなることを特徴としている。 以下、本発明の実施例を図面にもとづいて詳細振動検出
器11は、検出部11mと変換器11bとからなってい
る。前記検出部11mの先端部分には、円錐状の検出子
lieが形成されていて、その検出子lieは、検出棒
lidを介してタービン軸8の外周面に押圧され、前記
タービン軸8の振動に従って往復動するようになってい
る。この検出子11oの往復動は、検出棒lidを通し
て変換器11bに伝達され、タービン軸−の振動の速度
あるいは振幅に応じた電気信号に変換される。 その電気信号は、増幅器12により増幅された後、全振
幅演算器13、同期振動演算器14および同期2倍振動
演算器15に出力される。まず、全振幅演算器13は、
積分機能を有するものであって、その全動 振幅演算器13により、前記振−検出器11からの電気
信号に含まれる全周波数成分が積分される。その結果、
タービン軸8の有する振動の全振幅値が求められ、その
値は、比較演算器17へ出力される。 次に、同期振動演算器14においては、前記振動検出器
11で検出されたタービン軸8の振動の有する全周波数
成分のうち、タービン軸80回転数と同じ周波数を有す
る振動成分(回転同期振動成分)の振幅値をVΩとして
分離する。同様K、同期2倍振動演算器15においては
、タービン軸8の振動が有する全周波数成分の5ちから
、ターー/軸8の回転数の2倍の周波数を有する振動成
分(回転同期2倍振動成分)の振幅値をV2Oとして分
離する。そして、これらのVΩ、v20 の信号は、除
算器16に送られる。前記除算器16においては、v2
ΩΔΩ、なる演算が行われ、とのv2Ω、/VΩの信号
は、比較演算器17へ出力される。     今比較演
算器17においては、前記全振幅演算器13からの全損
幅値と前記除算器16からのv2Ω7ハWの値とを比較
し、両値が所定の関係を越えたときに警報信号を発する
ようになっている。この警報信号は、図示しない警報器
に出力され、その警報器−ビン軸8にひび割れがない場
合には、前記タービン軸8の振動は、はとんど回転同期
振動成分であり、その他の周波数の振動成分はごく僅か
である。なお、この振動の振幅値は、タービン軸8の温
度変化その他の諸条件により時々刻々と変動する。そし
て、フレッティング現象によるひび割れが発生すると、
タービン軸8の曲げ剛性が、中心軸に対して非対称とな
るため、タービン軸8の回転数の整数倍の周波数を有す
る振動が生じ(たとえば、 The Vlbratio
n B@havior of A Turbln@Ro
torComtalning A Transurse
 Crack 、 B、Grabowiki 。 140/Vol 102 、 January 198
0 Transaatlon of The ABME
2に記載)、回転同期2倍振動成分の振幅値v2Ωが大
−きくなる。したがつ【、■2Ωの値によって、ひび割
れの発生を知ることができる。ところが、このv2Ωの
値は、VΩと同様に、タービン軸8の諸条件によって変
動するため、ひび割れの発生を判断するに・は、単に、
■20の大きさをみるのではなく、V20/VΩの値の
大小をもって判断する必要がある。 さらに、タービン軸8に連結された発電機の軸は、構造
上非軸対称であるため、もともと一定振幅の回転同斯2
倍振動成分を有し【いる。そして、その2倍振動成分が
、タービン軸8に軸継手6を介して伝達されるため、タ
ービン軸8から検出されぎ振動には、ひび割れあるいは
全損幅値の変動とは無関係に一定値のv2Ωが含まれて
いる。したがって、タービン軸8にひび割れが発生して
いないときでも、■の値が小さい方に変□動すれば。 v2Ω/VΩの値は太ぎくなる。すなわち、v2ΩAΩ
の値の単独ではひび割れの発生を判断することは暢(m
VΩが小さいときには、 V2Ω/V^の値がより大き
くなければひび割れは発生しておらず、全損〜゛ 幅値
あるいは■Ωの値が大きいと、きには、v2Ω/■)の
値が小さくてもひび割れは発生してい−る場合がある。 したがって、ひび割れ発生とv2ΩAΩの値とを対応さ
せるためには、全振幅値あるいは、VΩの値に対する■
2Ω/VΩの値を評価し@断する竹輪がある。結局□、
第6図に示す曲−によりひび割れ発生の境界−が表わさ
れ、この曲線よりも上りA領域においてひび割れが発生
しており、下のB領域においては、ひび割れは発生して
いない。 したがって、比較演算器17においては、v2Ω/■Ω
の値が、所定の値を越えてA@域にある場合に、警報信
号を発するようになっている。 以上述べたように、本発明は、タービン軸に発生してい
る振動を検出し、その検出撮動の中から回転同期振動成
分および回転同期2倍振動成分を 。 抽出して両者の振幅値を比較すると共に、その比較した
値を軸振動の全振幅値と比較することにより警報信゛号
を発するようにしたので、蒸気タービンの長期使用の間
に起きるタービン軸の疲労現象、さら忙は、タービン軸
と軸継手部とがこすれ合うフレッティング現象によって
、タービン軸にひび割れが発生したどきKは、ひび割れ
の発生と同時に、タービン軸の異常機#を適格に検出し
てその警報を出すことができ、他のタービンが連鎖的に
事故を起こす2次損傷を未然に防止することかできると
い、う大きな効果を有する。 】
[This is to prevent the shaft from being restrained when it is extended in the axial direction.] Further, as shown in FIG. 2, the shaft couplings 6, 6 are normally shrink-fitted onto the turbine shaft 8. Since the turbine shaft 8 is loaded with a bending moment M due to the weight of the disk, cylinder, etc. and its own weight, a bending moment M is also loaded on the shrink-fit portions of the shaft couplings 6, 6.6. . Therefore, as shown in Fig. 3 and Fig. 4, the contact points A and B (Fig. 3) with the sixth end face of the shaft coupling on the turbine shaft 8 when no moment) M is applied are the moment).
When M is loaded, each moves to 4VC (Fig. 4). This movement is repeated as the turbine shaft 8 rotates, whereby the outer peripheral surface of the turbine shaft 8 and the inner peripheral surface of the shaft coupling 6 rub against each other (fretting phenomenon). When this phenomenon occurs, the turbine shaft 8 becomes extremely disadvantageous in terms of strength and becomes susceptible to cracking.・In other words, cracks occur even when a very small bending stress is applied compared to the case of normal bending fatigue. Finally, the turbine shaft 8 breaks. In this case, as described above, each two-bin shaft 8 and the generator shaft are connected to a plurality of shaft couplings 6.
It is integrally connected by ゜6.6, and its integral axis is
Since they are supported in the axial direction by a single thrust bearing 7, if a shaft fracture like the one described above occurs at any location, axial support of all the turbine shafts 8 and the generator shaft will become impossible, and the fracture will occur. Not only will the turbine be damaged, but
In all turbines, it is conceivable that the turbine blades may come into contact with the casing or nozzle, causing severe secondary damage. Therefore, the present invention provides a steam turbine monitoring device that is capable of preventing serious secondary damage by simultaneously detecting the occurrence of cracks in the turbine shaft due to the 7 retting phenomenon and issuing an alarm. is intended to provide. The present invention includes a vibration detector that detects rotational vibration of a turbine shaft of a steam turbine and converts the detected vibration into an electrical signal;
an amplifier that amplifies the electrical signal from the vibration detector; a total amplitude calculator that integrates the electrical signal to obtain a total amplitude value of vibrations possessed by the turbine shaft; A synchronous vibration calculator and a synchronous double vibration calculator that respectively calculate the amplitude value of a vibration component having the same frequency as the rotation speed and the amplitude value of a vibration component having a frequency twice the rotation speed, and the synchronous double vibration calculator Dividing the obtained amplitude value by the amplitude value obtained by the synchronous vibration calculator. a comparator; and a comparator that determines the magnitude of the divisor - determined by the divider with respect to the total amplitude value determined by the total amplitude arithmetic unit, and outputs an alarm signal if the magnitude exceeds a predetermined amount. It is characterized by consisting of. Hereinafter, the details of the vibration detector 11 will be explained based on the drawings of the embodiments of the present invention. A conical detector lie is formed at the tip of the detection portion 11m, and the detector lie is pressed against the outer circumferential surface of the turbine shaft 8 via the detection rod lid, thereby suppressing vibrations of the turbine shaft 8. It is designed to reciprocate according to the This reciprocating motion of the detector 11o is transmitted to the converter 11b through the detection rod lid, and converted into an electric signal corresponding to the speed or amplitude of vibration of the turbine shaft. The electrical signal is amplified by an amplifier 12 and then output to a full amplitude calculator 13, a synchronous vibration calculator 14, and a synchronous double vibration calculator 15. First, the total amplitude calculator 13 is
It has an integration function, and its total amplitude calculator 13 integrates all frequency components included in the electrical signal from the vibration detector 11. the result,
The total amplitude value of the vibrations of the turbine shaft 8 is determined, and the value is output to the comparator 17. Next, in the synchronous vibration calculator 14, among all the frequency components of the vibration of the turbine shaft 8 detected by the vibration detector 11, a vibration component having the same frequency as the turbine shaft 80 rotation speed (a rotation synchronous vibration component ) is separated as VΩ. Similarly, in the synchronous double vibration calculator 15, a vibration component having a frequency twice the rotational speed of the turbine shaft 8 (rotation synchronous double vibration component ) is separated as V2O. These VΩ and v20 signals are then sent to the divider 16. In the divider 16, v2
The calculation ΩΔΩ is performed, and the signals of v2Ω and /VΩ are output to the comparator 17. Now, the comparison calculator 17 compares the total loss width value from the total amplitude calculator 13 with the value of v2Ω7haW from the divider 16, and when both values exceed a predetermined relationship, an alarm signal is issued. It is designed to emit. This alarm signal is output to an alarm device (not shown), and if there is no crack in the alarm device-bin shaft 8, the vibration of the turbine shaft 8 is mostly a rotational synchronous vibration component, and other frequencies are detected. The vibration component of is very small. Note that the amplitude value of this vibration changes from moment to moment due to temperature changes of the turbine shaft 8 and other conditions. When cracks occur due to the fretting phenomenon,
Since the bending rigidity of the turbine shaft 8 is asymmetric with respect to the central axis, vibrations having a frequency that is an integral multiple of the rotation speed of the turbine shaft 8 occur (for example,
n B@havior of A Turbln@Ro
torComtalning A Transurse
Crack, B., Grabowiki. 140/Vol 102, January 198
0 Transaatlon of The ABME
2), the amplitude value v2Ω of the rotationally synchronized double vibration component becomes large. However, the occurrence of cracks can be determined by the value of 2Ω. However, like VΩ, the value of v2Ω varies depending on the conditions of the turbine shaft 8, so to determine the occurrence of cracks, simply
(2) Instead of looking at the magnitude of 20, it is necessary to make a judgment based on the magnitude of the value of V20/VΩ. Furthermore, since the shaft of the generator connected to the turbine shaft 8 is structurally non-axisymmetric, it is originally rotated with a constant amplitude.
It has a double vibration component. Since the double vibration component is transmitted to the turbine shaft 8 via the shaft coupling 6, the excessive vibration detected from the turbine shaft 8 has a constant value regardless of cracks or fluctuations in the total loss width value. Contains v2Ω. Therefore, even when no cracks occur in the turbine shaft 8, if the value of ■ changes to the smaller side. The value of v2Ω/VΩ becomes thick. That is, v2ΩAΩ
It is difficult to judge the occurrence of cracks using only the value of (m
When VΩ is small, cracks have not occurred unless the value of V2Ω/V^ is larger, and a total loss~゛ If the width value or the value of ■Ω is large, sometimes the value of v2Ω/■) Cracks may occur even if they are small. Therefore, in order to correlate the occurrence of cracks with the value of v2ΩAΩ, it is necessary to
There is a chikuwa that evaluates and cuts the value of 2Ω/VΩ. In the end □,
The curve shown in FIG. 6 represents the boundary where cracks occur, and cracks occur in region A above this curve, and no cracks occur in region B below. Therefore, in the comparator 17, v2Ω/■Ω
When the value exceeds a predetermined value and is in the A@ range, an alarm signal is issued. As described above, the present invention detects vibrations occurring in the turbine shaft, and detects rotation-synchronous vibration components and rotation-synchronous double vibration components from the detected and captured images. By extracting the amplitude values and comparing the two amplitude values, and by comparing the compared values with the total amplitude value of the shaft vibration, a warning signal is issued. When a crack occurs in the turbine shaft due to the fretting phenomenon in which the turbine shaft and shaft joint rub against each other, K accurately detects an abnormality in the turbine shaft at the same time as the crack occurs. This has a great effect in that it can issue a warning and prevent secondary damage that could cause a chain reaction of accidents to other turbines. ]

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は複数の蒸気タービンと発電機との配置状態を示
した平面図、第2図はタービン軸の軸継部を示す模式図
、第5゛図は本発明の一実施例における監視装置の構成
を示す系統図、第6図はひび割れの発生i−となる線図
である。 1.2.3・・・蒸気タービン、4・・・発電機、6・
・・軸4(本手、8・・・タービン軸、11・・・振@
検出器、12・・・増幅器、13・・・全振幅演算器、
14・・・同期撮動漬す器、15・・・同期2倍振動演
算器、16・・・除算器、17・・・比較演II器。・ ・出動人代理人   猪 股    揃第 l 図 JIfJz  図 第 6 図
Fig. 1 is a plan view showing the arrangement of a plurality of steam turbines and a generator, Fig. 2 is a schematic diagram showing a shaft joint of a turbine shaft, and Fig. 5 is a monitoring device in an embodiment of the present invention. Fig. 6 is a system diagram showing the structure of the system, and is a line diagram showing the occurrence of cracks i-. 1.2.3... Steam turbine, 4... Generator, 6...
...Axis 4 (main hand, 8...turbine shaft, 11...shaft @
Detector, 12... Amplifier, 13... Total amplitude calculator,
14... Synchronous photographing and dipping device, 15... Synchronous double vibration calculator, 16... Divider, 17... Comparison operator II.・ ・Deputy of dispatcher Inomata Figure 6 Figure JIfJz Figure 6

Claims (1)

【特許請求の範囲】[Claims] 蒸気タービンのタービン軸の回転振動を検出しその検出
振@を電気信号に変換する振動検出、′aと、MiJ記
振動検出器からの電気信号を増幅する増幅器と、前記電
気信号を積分してタービン軸の有する1に1妨の全振幅
値を求める全振幅演算器と、前g+−J、振動検出電気
信号のうちタービン軸の回転数と同じ周波数の振動成分
の振幅値および回転数の2倍の周波数を有する振動成分
の振幅値をそれぞれ求める同期振動演算器および同期2
倍振動演算4と、■1■朋同期2倍振動演算器で求めた
振幅値を四期振1演算器で求めた振幅値で除する除算器
と、萌dピ全振幅演算器で求めた全振幅値に対する前記
除算’l+iで求めた除数値の大きさを判断してその大
きさか所定鷺を越えた場合に警報信号を出力する比軟演
算器とからなることを特徴とする蒸気タービンの監視装
置。
A vibration detector for detecting the rotational vibration of the turbine shaft of a steam turbine and converting the detected vibration into an electric signal; an amplifier for amplifying the electric signal from the MiJ vibration detector; and an amplifier for integrating the electric signal. A total amplitude calculator that calculates the total amplitude value of 1 to 1 of the turbine shaft, and the amplitude value of the vibration component of the vibration detection electric signal having the same frequency as the rotation speed of the turbine shaft and the rotation speed of the turbine shaft. A synchronous vibration calculator and synchronous 2 that calculate the amplitude values of vibration components with twice the frequency.
Double vibration calculation 4, ■1■ A divider that divides the amplitude value obtained by the Ho-synchronous double vibration calculation unit by the amplitude value calculated by the four-period vibration 1 calculation unit, and a Moe d Pi total amplitude calculation unit. A steam turbine characterized in that it comprises a ratio soft calculator which judges the magnitude of the divisor value obtained by the above-mentioned division 'l+i with respect to the total amplitude value and outputs an alarm signal when the magnitude exceeds a predetermined value. monitoring equipment.
JP15734981A 1981-10-02 1981-10-02 Monitor for steam turbine Granted JPS5859302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15734981A JPS5859302A (en) 1981-10-02 1981-10-02 Monitor for steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15734981A JPS5859302A (en) 1981-10-02 1981-10-02 Monitor for steam turbine

Publications (2)

Publication Number Publication Date
JPS5859302A true JPS5859302A (en) 1983-04-08
JPH0114402B2 JPH0114402B2 (en) 1989-03-10

Family

ID=15647730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15734981A Granted JPS5859302A (en) 1981-10-02 1981-10-02 Monitor for steam turbine

Country Status (1)

Country Link
JP (1) JPS5859302A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104727866A (en) * 2015-01-31 2015-06-24 浙江浙能中煤舟山煤电有限责任公司 Control method for preventing trip accident caused by steam turbine steam-flow excited vibration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104727866A (en) * 2015-01-31 2015-06-24 浙江浙能中煤舟山煤电有限责任公司 Control method for preventing trip accident caused by steam turbine steam-flow excited vibration
CN104727866B (en) * 2015-01-31 2016-07-06 浙江浙能中煤舟山煤电有限责任公司 The control method of the chaser accident that prevention Steam Flow Excited Vibration on Steam Turbine causes

Also Published As

Publication number Publication date
JPH0114402B2 (en) 1989-03-10

Similar Documents

Publication Publication Date Title
US10787275B2 (en) Propeller health monitoring
US4955269A (en) Turbine blade fatigue monitor
JP6122237B2 (en) Transverse, angular and torsional vibration monitoring of rotor dynamic systems
CN109488630B (en) Centrifugal fan rotor misalignment fault diagnosis method based on harmonic relative index
CN107202663B (en) Rotor axial force measuring device and measurement method
JP2824523B2 (en) Method and apparatus for measuring fatigue of vibrating member
EP2402563B1 (en) Method for monitoring health of airfoils
US11708175B2 (en) Propeller health monitoring
JP5898865B2 (en) System and method for monitoring airfoil health
JPH0315698B2 (en)
CN111397909A (en) Online monitoring method for low-cycle fatigue cracks of aero-engine turbine disc
CN110686764A (en) Method for measuring asynchronous vibration frequency of constant-speed blade based on full-phase difference principle
KR101949622B1 (en) Method for operating a machine plant having a shaft train
EP2551513A2 (en) Wind turbine condition monitoring method
JP6145020B2 (en) Rotating machine abnormality determination device and abnormality determination method
Václavík et al. Torsion vibrations monitoring of turbine shafts
JPS5859302A (en) Monitor for steam turbine
JP2572530B2 (en) Vibration spectrum monitoring device, and health monitoring method and device
CN113804425B (en) Early friction instability fault identification method for sleeve gear connection structure
JP2019128179A (en) Method for detecting falling of vibration sensor and apparatus for diagnosing abnormalities
JPH0129248B2 (en)
KR101412619B1 (en) system for estimating shaft stress of turbin generator
Grigor’ev et al. Ensuring the Vibration Reliability of Steam Turbine Rotor Blades during Manufacture
JP2909134B2 (en) Abnormality detector for rotating parts of rotating machinery
LI et al. Simulation Analysis and Experimental Study of Stiffness Characteristics of Aero-engine Spline Couplings