JPS5858835A - Method of controlling power converter - Google Patents
Method of controlling power converterInfo
- Publication number
- JPS5858835A JPS5858835A JP56157403A JP15740381A JPS5858835A JP S5858835 A JPS5858835 A JP S5858835A JP 56157403 A JP56157403 A JP 56157403A JP 15740381 A JP15740381 A JP 15740381A JP S5858835 A JPS5858835 A JP S5858835A
- Authority
- JP
- Japan
- Prior art keywords
- power
- current
- value
- reactive
- power converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/30—Reactive power compensation
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
- Direct Current Feeding And Distribution (AREA)
- Control Of Electrical Variables (AREA)
- Ac-Ac Conversion (AREA)
- Inverter Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は異なる2つの電力系統間の電力潮流量を制御す
る電力変換装置の制御方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling a power conversion device that controls the amount of power flow between two different power systems.
わが国の電力系統は西日本の60Hz系統と東日本の5
0 Hz糸系統C二人きく分けることができる。Japan's electric power system consists of a 60Hz system in western Japan and a 50Hz system in eastern Japan.
0 Hz thread system C can be clearly distinguished by two people.
この2つの電力系統を結び、系統間の電力lvI流墓な
制御する装置として古くは訪導機等を使った回転形周波
数変換機あるいは水銀整流器を用いた静止形周波数変換
装置等がある。最近では水銀整流器の代りにサイリスタ
等の半導体制御整流器を用いた静止形周波数変換装鎗が
実用11供されている。As devices for connecting these two power systems and controlling the power lvl between the systems, there have been rotary frequency converters using a conductor or the like or static frequency converters using a mercury rectifier. Recently, static frequency converters using semiconductor-controlled rectifiers such as thyristors in place of mercury rectifiers have been put into practical use.
また501(Z系統の中でもいくつかの電力会社によっ
て管理される極々の電力系統があり電圧定格や設備容量
もさまざまである。これらの電力系統を有効に結びその
系統間の電力潮流量を制御するためにも、交流→直流→
交流の交換を行なう一カ変換装飯が使われている。特C
上記直流電線路の距離を長くしたものは直流送電用電力
変換装置と □して良く知られている。In addition, there are many power systems managed by several power companies within the 501 (Z system), and their voltage ratings and equipment capacities vary. Therefore, AC → DC →
A converter device is used to exchange AC. Special C
The above DC power line with a longer distance is well known as a power converter for DC power transmission.
第1図は従来の電力変換装置の構成図を示すもので、
50Hz系統と60Hz系統を結び、当該両系統間の
電力m流電を制御する場合を示す。Figure 1 shows a configuration diagram of a conventional power conversion device.
A case is shown in which a 50 Hz system and a 60 Hz system are connected and the electric current m between the two systems is controlled.
図中、BUSlは50H2を力系統の3相電線路、BU
8gは60H2’tjL力系統の3相電線路、 ’[
’R1,TRgは電源トランス、8S1. ss2はサ
イリスタブリッジ回路からなる交1fiL電力変換器%
IIOは直流リアクトル、CAPJ、 CAP2は
進相コンデンサ、8VO1,8VO2は無効亀力袖偵装
置である。In the figure, BUS1 connects 50H2 to the three-phase power line of the power system, and BU
8g is the 3-phase power line of the 60H2'tjL power system, '[
'R1, TRg is a power transformer, 8S1. ss2 is an AC 1fiL power converter consisting of a thyristor bridge circuit.
IIO is a DC reactor, CAPJ and CAP2 are phase advance capacitors, and 8VO1 and 8VO2 are reactive force detection devices.
1ず50Hz系統の電線路BUSlから60Hz系統の
1JL籾路BUZZに鋤、力を送る場合を例にとってこ
の装置の動作を説明する。1. The operation of this device will be explained by taking as an example the case where a plow and power are sent from the electric line BUS1 of the 50 Hz system to the 1JL Momiji BUZZ of the 60 Hz system.
BUSlからの受′邂端に電流検出器0T81と電圧検
出器PT81を設置し、3相の電圧電流の瞬時値を検出
する。これを有効無効電力演算回路PQ、CIに入カシ
1、有効電力PIと無効電力Qtを求める。同様にBU
S2からの受電端C二も電、流検出器c’rs 8及び
電圧検出器PTslを設置し、有効無効電力演算回路P
Qogと合わせて有効電力P2及び無効電力Q2を検出
する。Plは入ってくる方向を正%P2は出ていく方向
を正として検出する。またQ1+ Qzは遅れ無効電力
を正、進み無効電力を負として検出する。A current detector 0T81 and a voltage detector PT81 are installed at the receiving end from BUS1 to detect instantaneous values of voltage and current of three phases. This is input into active reactive power calculation circuits PQ and CI to obtain active power PI and reactive power Qt. Similarly, BU
The power receiving end C2 from S2 is also equipped with a current detector c'rs 8 and a voltage detector PTsl, and an active reactive power calculation circuit P.
Active power P2 and reactive power Q2 are detected together with Qog. Pl detects the incoming direction as positive, and P2 detects the outgoing direction as positive. Further, Q1+Qz detects delayed reactive power as positive and leading reactive power as negative.
電力潮流に:設定器VRPCよって電力指令値P8〉0
が与えられる。シュミット回路SHはP8〉0のとき出
力(H号111を発生しスイッチSWIをα側にスイッ
チsw2をb供すC:接続する。従って電力変換器88
1は一力制御回路APRによって、電力潮流tP−(P
l+Pz)/2がその指令値P8に等しくなるようにそ
の出力電圧Vlが制御され、1だ電力変換器ss4は足
電圧制御回路AVR1mよってその出力電圧v2が一定
1直vになるようC−制御される。For power flow: Power command value P8〉0 by setting device VRPC
is given. When P8>0, the Schmitt circuit SH generates an output (H number 111) and switches the switch SWI to the α side and provides the switch sw2 to the C: connection. Therefore, the power converter 88
1 is a power flow tP-(P
The output voltage Vl is controlled so that l+Pz)/2 becomes equal to the command value P8, and the power converter ss4 is controlled by the foot voltage control circuit AVR1m so that the output voltage v2 becomes constant 1V. be done.
PJ+ PH24’を各々881及び882の位相制御
回路である0
第2図はこのときの各電力変換器の交流入力側の1相分
の電圧電流ベクトル図である。(a)は881の電圧電
流ベクトル図、(b)I/1ssj cD電圧電流ベク
トル図である。図中、vs l + vs !はtm’
tc圧、ICapl +工。aplは進相コンデンサ0
AP1及びcAp2の電流、工881.■881 Fi
電力変換器881及びselの入力電流、■88B、■
884は無効電力補償装fJILsvcl及び8VC9
の入力電流である。血流リアクトルL。l電流れる電流
を工。とじた場合、変換定数を4とすると工881 ”
■882 ”’ A・工。となる。上記直流電流電。が
定常状態にあり、前記直流リアクトルL0の抵抗分が無
視できる札小さいとすればsslの出力電圧Vlとss
Bの出力電圧VpHは等しくつり合っていなければなら
ない。各々の点弧制御角をαl及びα8、電源電圧をV
B l+ vs Z s変換定数をAVとfると、Vl
:=Av 0VB10cmα1
V2=−AV −VB2 °部α2
の関係があるO VB1 =V82とすると、Vl =
Vgの状態ではα2 = 180°−αlの関係が成
り立っている。PJ+PH24' are phase control circuits 881 and 882, respectively. FIG. 2 is a voltage-current vector diagram for one phase on the AC input side of each power converter at this time. (a) is a voltage and current vector diagram of 881, and (b) is an I/1ssj cD voltage and current vector diagram. In the figure, vs l + vs ! istm'
tc pressure, ICapl + engineering. apl is phase advance capacitor 0
Current of AP1 and cAp2, 881. ■881 Fi
Input current of power converter 881 and sel, ■88B, ■
884 is a reactive power compensator fJILsvcl and 8VC9
is the input current. Blood flow reactor L. Create a current that flows. In the case of binding, if the conversion constant is 4, the process is 881 ”
■882 ''' A・Eng. If the above DC current is in a steady state and the resistance of the DC reactor L0 is negligible and small, then the output voltage Vl of ssl and ss
The output voltages VpH of B must be equally balanced. Each ignition control angle is αl and α8, and the power supply voltage is V.
B l+ vs Z If the s conversion constant is AV and f, then Vl
:=Av 0VB10cmα1 V2=-AV -VB2 If we assume that O VB1 =V82 where there is a relationship of ° part α2, then Vl =
In the Vg state, the relationship α2 = 180°-αl holds true.
電線路BUSlから電線路BUSBへ電力を送る場合、
sel it順変換器、 881!は逆変換器として動
作する。When sending power from electric line BUSl to electric line BUSB,
sel it forward converter, 881! acts as an inverse transformer.
定電圧制御される逆変換器sSgの点弧制御角α2は9
0°〜180°のある値に設定される。α、=180’
のとき入力側の力率は1(2)α21=1となるが、サ
イリスタを自然転流させるためC二点弧タイミングなr
だけ進ませなければならない。一般にrは転流進み角と
盲っている。故C二α2=180’−r=一定に設定さ
れる。この状態で11変換器881 によって箪カM流
量を制御する。SSl及び882の入カ寛圧はVlll
” VS2 =一定であるがら電力は1881及び工
882の各々の有効電流成分工、l及び工pZに比例し
ている。I、l及びIp2は次式のよう番−表わせる。The firing control angle α2 of the constant voltage controlled inverter sSg is 9
It is set to a certain value between 0° and 180°. α, = 180'
When , the power factor on the input side becomes 1 (2) α21 = 1, but in order to allow the thyristor to naturally commutate, the C two-strike timing r
I just have to move forward. In general, r is the same as the commutation advance angle. Therefore, C2α2=180′−r=set to constant. In this state, the flow rate of the drawer M is controlled by the converter 881. The input pressure of SSl and 882 is Vllll
” While VS2 = constant, the power is proportional to the active current components of 1881 and 882, l and pZ.I, l and Ip2 can be expressed as numbers in the following equation.
工pl=4−工0°邸αl
■、2=4・工。・暢α2
6g = 180’−αlの状態ではIpl=−工、2
の関係が成り立ち、順変換器Eelに入ってくる有効電
力が逆変換器ssBから出ていく有効電力に等しいこと
がわかる。Work pl = 4 - Work 0° House αl ■, 2 = 4・Work.・In the state of smooth α2 6g = 180'-αl, Ipl = -engine, 2
It can be seen that the following relationship holds true, and the active power entering the forward converter Eel is equal to the active power exiting from the inverse converter ssB.
電力潮流b:ニ直流電流流電の大きさを変えることによ
り制御される。時流電、流電。は直流リアクトル−L。Power flow b: Controlled by changing the magnitude of DC current. Current current, current current. is DC reactor-L.
(二印加される電圧vl + VBを変えることによっ
て制御されるO v2は一定に制御されるのでbVl”
Av−VBl−cosαlを変えて制御することになる
。■。を増加させたい場合s vl> VZとなるよう
にαlを制御し、逆に工。を減少させたい場合にはVl
< VBとなるよう5二αlを制御する。定常点附近
では直流すアクドルL0の抵抗を無視すれげVl =V
gの関係が成り立ち、傷αl″−−帽α2となっている
。(2) O controlled by changing the applied voltage vl + VB Since v2 is controlled constant bVl”
It is controlled by changing Av-VBl-cosαl. ■. If you want to increase s vl > VZ, control αl and conversely. If you want to decrease Vl
52αl is controlled so that <VB. Near the steady point, the resistance of the accelerator L0 that flows directly can be ignored, Vl = V
The relationship g holds true, and the flaw αl''--the cap α2.
(
一方、変換器SSl及びEIS2の受電端の無効電力は
次のように制御される。すなオコち、第2図のベクトル
図において、次式の関係が成、り立つよう■二工、88
及び工884の値を制御している。(On the other hand, the reactive power at the receiving end of the converters SS1 and EIS2 is controlled as follows. In other words, in the vector diagram of Fig. 2, the relationship of the following equation is established, 88
and controls the value of 884.
工oapl””■i1+よりBB iA qo 1gt
o“1+工sss工QQp2”’■?2+工884 =
A HIo ’ tinα! ” l884電力醐流
量の設定値P*を変えると、直流電流電。が変わりそれ
に応じて工SSS及び1884も制御される。BB iA qo 1gt from Koapl””■i1+
o “1 + 工sss 工QQp2”’■? 2 + engineering 884 =
AHIo' tinα! "If you change the set value P* of the 1884 power flow rate, the DC current and current will change and the power SSS and 1884 will be controlled accordingly.
上記関係式が成り立っていれば、 BUS1から供給さ
れる電流は工AOI ”工、lとなり又BUEI2から
供給される電流は工AO2” IpB =−■、1とな
って受電端の基本波力率は1に保持された状態で有効電
力だけがBUSIからBUS 2番−送られる。If the above relational expression holds true, the current supplied from BUS1 will be AOI, 1, and the current supplied from BUEI2 will be AO2, IpB = -■, 1, resulting in the fundamental wave power factor at the receiving end. is held at 1, and only active power is sent from BUSI to BUS No. 2.
電力−流量の設定値P*を負の値にするとスイッチSW
Iはb側にスイッチEIWfiはα側に接続され、今度
は60Hz系統の電線路BUZZから50Hz系統の!
線路BU81へ電力が送られるようになる。このときS
ol #を逆変換器として出力′電圧一定制御が行なわ
れ5szrj順変換器として直流電流制御が行なわれる
。When the power-flow rate set value P* is set to a negative value, the switch SW
I is connected to the b side, switch EIWfi is connected to the α side, and this time, the 60Hz system power line BUZZ is connected to the 50Hz system!
Power will now be sent to line BU81. At this time S
ol# is used as an inverse converter to perform constant output voltage control, and 5szrj is used as a forward converter to perform DC current control.
この従来の電力変換器fIILは次のような欠点がある
。すなわち電力潮流量を制御するために直流電流電。を
大きくしたり、小さくしたりするがその変化C伴なって
上記変換器E]81及びssBの入力側の無効電流成分
Itl = AI。出αl及びIt2 = A Io出
α2も変化しその変化に応じて無効電力補償装置5vc
1及びBVC2の電流l8BB+ l884を制御する
必要がある。この無効電力補償装ft 5vc1.5V
(14の容重は直流電流■0の最大値を工。(鳳)とし
た場合l888 ”ICapl −111=: A (
工0(I&)−工o)’ghtαlより84:工aap
2− Iy2 = 4 (工o(wc) −Ioトmα
2となりαl”=γ、α2 = 180°−rの関係を
考慮し上記工。が0〜工。(IIK)の間で変化すると
考えると工88z5工ss4”= A °工o (m)
$ rが必要となる。rは前にも述べたようi電電力
変換器のサイリスタを自然転流させるため2二必要な転
流進み角で電源側のインダクタンス及びサイリスタのタ
ーンオフタイム等に関係する。%≦二前者は変換器のア
ーム短絡事故Cユ備えるためかなり大きな値になる。そ
のためrは30°〜40°の@に1:なるのが常である
。r−30°としてもrrtrrr = 0.5で、無
効電力補償装[5VO1及び5V(4の容量は電力変換
器ssl及び88gの各賞の半分の値C二もなってしま
う。This conventional power converter fIIL has the following drawbacks. In other words, DC current is used to control the power flow rate. is increased or decreased, but the change C is accompanied by the reactive current component Itl = AI on the input side of the converter E]81 and ssB. Output αl and It2 = A Io output α2 also changes, and the reactive power compensator 5vc changes according to the change.
It is necessary to control the current l8BB+l884 of 1 and BVC2. This reactive power compensator ft 5vc1.5V
(The capacity and weight of 14 is the maximum value of DC current ■0. If (Otori)
84: 工 aap
2-Iy2 = 4 (ko(wc) -Iotomα
2, and considering the relationship αl"=γ, α2 = 180°-r, and considering that the above k changes between 0 and k.
$r is required. As mentioned earlier, r is the commutation advance angle required for natural commutation of the thyristor of the i-electric power converter, and is related to the inductance on the power source side, the turn-off time of the thyristor, etc. %≦2 The former is a fairly large value because it prevents the arm short-circuit accident of the converter. Therefore, r is usually 1: at @ of 30° to 40°. Even if r-30°, rrtrrr = 0.5, and the capacity of the reactive power compensator [5VO1 and 5V (4) becomes half the value C2 of each award of the power converter ssl and 88g.
従って装置が陶価で複雑になる欠点があった。Therefore, there was a drawback that the device was expensive and complicated.
本発明は以上に一みてなされたもので従来の無効電力補
償装置を用いることなく受電端の基本波力率を常5二1
に保持し、かつ、2つの電力系統間の電力潮流1iI−
を自由f−副制御うる電力変換装置の制御方法を提供す
ることを目的とする。The present invention has been made in view of the above, and the fundamental wave power factor at the power receiving end can be constantly adjusted to 521 without using a conventional reactive power compensator.
and the power flow between the two power systems 1iI-
An object of the present invention is to provide a control method for a power conversion device that can freely control f-sub.
第3図は本発明の電力変換装置の一実施例を示す構成図
である。図中、BUS1は第1の電力系統(例えば50
H2系統)の3相電線路、 BU8iは第2の電力系
統(例えば60H2系統)の3相電線路、C!API。FIG. 3 is a configuration diagram showing an embodiment of the power conversion device of the present invention. In the figure, BUS1 is connected to the first power system (for example, 50
H2 system) 3-phase power line, BU8i is the 3-phase power line of the second power system (for example, 60H2 system), C! API.
CAP2は進相コンデンサ、TR1,TR9は電源トラ
ンス、881、 S82はサイリスタブリッジ回路から
なる交直電力変換器% LOは直流リアクトルである
。また、CToは直流電流検出器、01=(4は比較器
、AI〜A8は加算器% K(LKIは演算増幅器、M
1+MBは来舞器、Ht(8) 、 Hp(8)は制御
補償回路%SQは2乗演算回路、 8QRは平方根演
算回路、LMはリミッタ回路、PHI、PJは位相制御
回路である。CAP2 is a phase advance capacitor, TR1 and TR9 are power transformers, 881 and S82 are AC/DC power converters consisting of thyristor bridge circuits, and LO is a DC reactor. In addition, CTo is a DC current detector, 01=(4 is a comparator, AI to A8 are adders %K(LKI is an operational amplifier, M
1+MB is a conventional circuit, Ht(8) and Hp(8) are control compensation circuits, %SQ is a square calculation circuit, 8QR is a square root calculation circuit, LM is a limiter circuit, PHI and PJ are phase control circuits.
まず、直流側の電圧の制御動作を説明する。説明を簡単
にするため直流電流電。けその指令値工。8に等しく制
御含れている状態を考える。First, the control operation of the voltage on the DC side will be explained. For simplicity of explanation, we use DC current. Keso command value engineering. Consider a condition containing control equal to 8.
制御補償回路Hp(8)の出カシaは、加算器AIを介
して位相制御回路PH1へ、−マだ反転tIII幅器に
!(=−1)及び加算器A3を介して位相制御(ロ)路
PHgへ各々入力される。■。=工。8であるから比較
器c2の出力ε、=I■8−■。は零である。従ってP
H1及びPI(2の入力電圧ET、1.111はνal
” Ua
νg2 = −ua
となる。故に電力変換器Sexの点弧位相α11ユ対し
て882の点弧位相α2は、α2=180’−α1とな
り、各々の出力電圧VlとVSlがつり合った状態で運
転されることC二なる。Vl = V9を増力口させる
g二は、上記制御補償回路H,(8)の出力値v1を増
大させ力。The output a of the control compensation circuit Hp(8) is sent to the phase control circuit PH1 via the adder AI, and then to the inverter tIII width amplifier! (=-1) and are respectively input to the phase control (b) path PHg via the adder A3. ■. = Engineering. 8, the output ε of comparator c2, =I■8-■. is zero. Therefore P
H1 and PI (2 input voltage ET, 1.111 is νal
"Ua νg2 = -ua. Therefore, the firing phase α2 of the 882 is α2=180'-α1 for the firing phase α11 of the power converter Sex, and the output voltages Vl and VSl of each are balanced. C2 is operated at C2.G2, which increases Vl = V9, increases the output value v1 of the control compensation circuit H, (8).
ばよい。Bye.
次に直流電流電。の制御動作を説明する0iiI流検出
器CT0によって検出された直流電流電。Next is DC current. DC current detected by current detector CT0.
とその指令値工。′を比較し、その偏差、z= ニー−
■。を取り出す。当該偏差c8を増幅器KQによって増
幅し、加算器AI、 A4に入力する。従って位相制御
回路PH1及びPH2の入力電圧”b l’*2は、ν
al −να + KO・ε2
ν、B = −va +KO”2となる。故に、
前記αB = 180’−clの関係はくずれ、KO”
2に比例した分だけVlが増加し、 Vfiが減少する
。当該差電圧Vl −vBが直流リアクトルL0に印加
し直流電流電。を増加させる。and its command value engineering. ′ and its deviation, z = knee
■. Take out. The deviation c8 is amplified by an amplifier KQ and input to adders AI and A4. Therefore, the input voltage "b l'*2 of the phase control circuits PH1 and PH2 is ν
al −να + KO・ε2 ν, B = −va +KO”2. Therefore,
The above relationship αB = 180'-cl collapses, KO''
Vl increases by an amount proportional to 2, and Vfi decreases. The difference voltage Vl - vB is applied to the DC reactor L0, resulting in a DC current. increase.
■。〉■。となった場合、62〈oとなり、vl〈v2
となって、直流亀流電。を減少させる。最終的に、■。■. 〉■. In this case, it becomes 62〈o, and vl〈v2
So, it is a direct current tortoise current. decrease. Finally, ■.
−工。木に落ち着き、定常状態でFivlキVgとなっ
て、α、 弁180’−αlの関係を満足する。-Eng. It settles on a tree, becomes Fivl-Vg in a steady state, and satisfies the relationship α, valve 180'-αl.
次にこの電力変換器の有効電力制御動作と無効電力制御
動作を説明する。Next, the active power control operation and reactive power control operation of this power converter will be explained.
位相制御回路PHI及びpH2の入力電圧ν#1及びv
lは各々点弧位相角α1及びα2の余弦値に比例するこ
とは知られている。Input voltages ν#1 and v of phase control circuits PHI and pH2
It is known that l is proportional to the cosine value of the firing phase angles α1 and α2, respectively.
制御補償回路Hp(8)の出力電圧Vαと上記PH1及
びPH3の入力電圧El、1及び11g2との間には次
式で示すような関係がある。There is a relationship as shown in the following equation between the output voltage Vα of the control compensation circuit Hp(8) and the input voltages El, 1 and 11g2 of the above-mentioned PH1 and PH3.
v、=(1g1 + va2 ) / 2−Aa(μs
αl十四αz)/ま
ただし、Amは比例定数である。v, = (1g1 + va2) / 2-Aa (μs
αl 14 αz)/where Am is a proportionality constant.
従って上記v1を検出し、係数(1/Aα)を乗するこ
とによって、点弧位相角の余弦値の平均値傷α=(邸α
l+億α2)/2
が求まる。リミツク回路LMは上記比例係数(1/a、
)を有するもので、−1≦■α≦+1を満足する範囲内
(二制限する役目をなしている。Therefore, by detecting the above v1 and multiplying it by the coefficient (1/Aα), the average value of the cosine value of the firing phase angle is calculated as follows:
l + billion α2)/2 is found. The limit circuit LM has the above proportional coefficient (1/a,
) within the range satisfying -1≦■α≦+1 (2).
2乗演算回路BQ+加算器A3及び平方根演算回路SQ
Rによって、J 1− cm”cL の演算を行なう
。Square calculation circuit BQ + adder A3 and square root calculation circuit SQ
Using R, calculate J 1-cm"cL.
この値は位相角αの正弦値出αj1等しい。This value is equal to the sine value αj1 of the phase angle α.
乗算器M1及びM2は直流電流値工。と前記上弦値 ・
S−α及び余弦4fjicmαとの乗算を行なうもので
、各々の出力値として
Iy= ■。・翁α
Ip = I。・帽α
が求められる。前者工?は、電力変換器ssl及びss
2の受14L端の無効電流分の平均値で、後者工、は不
効篭流分の平均値となっている。Multipliers M1 and M2 are DC current value processors. and the said waxing value ・
It multiplies S-α and cosine 4fjicmα, and each output value is Iy=(2).・Okina α Ip = I.・Cap α is required. Former engineer? is the power converter ssl and ss
2 is the average value of the reactive current at the end of the receiver 14L, where the latter is the average value of the reactive current.
無効電流指令値工? と前記無効電流検出値工tを比較
6 clで比較し、その偏差εl=ニー−Iyを次の制
御補償回路Hy、(8) l−人力する。定常偏差g1
を零にするため、上記Hi(8)は積分要素が使われる
ことがある。H,1,(8)の出力が直流電流指令値工
。8となる。■tく工?の場合、clは正の値となって
工。8を増加させる。故(二比較器c2の出力偏差ε2
=工。′−工。が増加しs Vl> V2となって直
流電流Ioを増加させるが、このとき、va :” (
v、1 +v、2)/2は変化しない。従って、■、=
工。・内αが増加し、■?−工−となるように!+1
@lされる。坏〉イネとなった場合もIn2様に制御さ
れ、最終的にIy =ニーになる。Reactive current command value? The reactive current detection value t is compared with 6 cl, and the deviation εl=knee-Iy is input to the next control compensation circuit Hy, (8) l-manually. Steady deviation g1
In order to make the value zero, an integral element may be used for the above Hi(8). The output of H, 1, (8) is the DC current command value. It becomes 8. ■t-work? In this case, cl becomes a positive value. Increase 8. Therefore (output deviation ε2 of the two comparators c2
= Engineering. ′-Eng. increases, s Vl > V2, and the DC current Io increases, but at this time, va :" (
v,1 +v,2)/2 does not change. Therefore, ■,=
Engineering.・Inner α increases and ■? -Work-! +1
@l will be done. Even when it becomes rice, it is controlled like In2, and eventually Iy = knee.
壕だ、有効電流指令値■−と有効電流指令値工。It's a moat, the effective current command value - and the effective current command value.
を比較器C2で比較し、その偏差c8=工−−工、を次
の制御補償回路Hp(8)に入力する。定常偏差εlを
零にするためs Hp(s)は積分要素が使われること
があるっ)1.(8)の出力が881及び8192の出
力電圧Vl及びv2の平均値を決定する信号ν、となる
。are compared by the comparator C2, and the deviation c8=work is input to the next control compensation circuit Hp(8). In order to make the steady-state deviation εl zero, an integral element is sometimes used for s Hp(s).)1. The output of (8) becomes a signal ν that determines the average value of the output voltages Vl and v2 of 881 and 8192.
■、〈I、の場合、#B〉QとなってVαを増加させる
。v、を変えてもVl = v2の状態は保持されるの
で、直流電流電。け変わらない。v、 =: Aa・房
αの関係があるので、■、=工。・部αが増加し、■、
=ニーになるようC二制御される。■、〉■い とな
った場合にはε8く0となってZl、を減少させ、やけ
リエ、=■−となるように制御される。(2) In the case of <I, #B>Q and Vα is increased. Even if v is changed, the state of Vl = v2 is maintained, so it is a direct current current. It doesn't change. v, =: Since there is a relationship between Aa and tassel α, ■, = engineering.・Part α increases, ■,
= knee is controlled by C2. In the case of (2), > (2), ε8 becomes 0, Zl is decreased, and the control is performed so that the equation becomes = (2) -.
第1の電力系@ BUSlがら第2の電力系統BUSI
に電力を送りたい場合には、■、’>01ニして制御す
ればよい。逆(二、 BUEI2がらBUSlに電力を
送る時にけ■、〈0にして制御すればよい。First power system @ BUSl to second power system BUSI
If you want to send power to , you can control by setting ■, '>01. Conversely (2) When sending power from BUEI2 to BUS1, control should be performed by setting it to <0.
ここで、工、制御系と工9.制御系の相互の影舎を考察
する。Here, engineering, control system and engineering 9. Consider the mutual influence of control systems.
■−を増加させると、■、=ニーになるように傷αが増
加する。故に癲α=JTaye” a−が減少し工、=
工。・出αを減少させる。故に工tくニー となるため
、■?=工?8になるよう1ニエ。を増加させる。■When - is increased, the damage α increases so that ■,=knee. Therefore, α = JTaye” a- decreases, =
Engineering.・Decrease output α. Therefore, in order to become a labor force, ■? = Engineering? 1 nie to make it 8. increase.
この結果、■、=I0・□□□αも増加し、工、>I−
となる。従って、今度は郭αを減少させ逆の動作となる
。As a result, ■, =I0・□□□α also increases, and
becomes. Therefore, this time the circle α is decreased and the operation is reversed.
以上の振動現象を何回か繰り回し、最終的に工、=Ip
” 、 II = IfP’ l二落ち着く。この振動
現象をいかC二速く減該させられるかは、制御補償回路
Ht(8)及びHp(81の制御定数の選び方にかかつ
ている。The above vibration phenomenon is repeated several times, and finally,
, II = IfP' l2. How quickly this vibration phenomenon can be reduced depends on how the control constants of the control compensation circuits Ht(8) and Hp(81) are selected.
しかし通常の自動制御理論を用いるととC二よって容易
に最適化が図れるものである。However, if ordinary automatic control theory is used, optimization can be easily achieved using C2.
同様1ニエ、を減少させた場合及びニーを増減さ京
せた場合も振動現象を経過して落ち着くように制御され
る。Similarly, when the knee is decreased by 1, and when the knee is increased or decreased by 1,000, the vibration is controlled so that it settles down after passing through the vibration phenomenon.
すなわち定常的に工、=工1.工、=工、*を満足本
させるような直流電流電。及び位相角αの余弦値■αに
なる。In other words, work steadily, = work 1. A direct current current that satisfies the requirements of engineering, = engineering, and *. and the cosine value ■α of the phase angle α.
第4図は第3図の各電力変換器の交流入力側の1相分の
電圧電流ベクトル図を示すものである。FIG. 4 shows a voltage-current vector diagram for one phase on the AC input side of each power converter shown in FIG.
(α)はSSl (7)電圧電流ベクトル図、(b)は
882の電圧電流ベクトル図である。va 1 + v
92は電源電圧、■。、p l +工。apilは進相
コンデンサ0APl及びahpBの電a、 ■881
1工88Bは電力変換器881及びss2の入力電流で
ある。直流11流を工。とじた場合、変換定数を4とす
ると工881 =工8ElB ” 4・工。の関係があ
る。(α) is a voltage-current vector diagram of SSL (7), and (b) is a voltage-current vector diagram of 882. va 1 + v
92 is the power supply voltage, ■. , p l + Eng. apil is the voltage a of the phase advance capacitor 0APl and ahpB, ■881
The input current 88B is the input current of the power converter 881 and ss2. Engineered 11 DC currents. In the case of binding, if the conversion constant is 4, there is a relationship of 881 = 8ElB 4.
定常状態を考えるとVlキv2となっており、8Sl及
びss2の点弧位相角はα2≠180°−clの関係が
ある。工881を有効分I、lと無効分工、lに分離し
、直f&11流工。との関係式で弄わ丁と工pl:工s
e1’cosα1=J工Oaαl工tl=工881−−
α1=J工。画αlとなる。また工ssgを南効分工l
と無効分It2に分離し直流電流電。との関係式で六わ
すと■ps=工5sli°―αg=A工□aytα2工
f2″工88z°房αz=4工。(2)α2となる。こ
こでα8″=180°−cl の関係を入れると備αl
キー(2)α1(α
虐αl斗iα2≠虐α
となるから、第3図の制御量工、=工。・(2)α、工
、=工。・虐αを上記関係式に代入し
Ipi岬AI。Considering the steady state, Vl and v2, and the firing phase angles of 8Sl and ss2 have a relationship of α2≠180°−cl. Separate the work 881 into effective parts I, l and ineffective parts, l, and perform direct f & 11 flow machining. Play around with the relational formula between ding and kopl: kos
e1'cosα1=J Engineering Oaαl Engineering tl= Engineering 881--
α1 = J engineering. The image becomes αl. In addition, the engineering ssg
The DC current is separated into a reactive component It2 and a reactive component It2. Using the relational expression, ps = 5 sli° - αg = A □ ayt α 2 ng f 2'' 88z° tuft αz = 4 ng. (2) α2.Here, α8'' = 180° - cl. If you include the relationship,
Key (2) α1 (α αl i α2 ≠ α Since it becomes, the control amount in Fig. 3, = engineering. (2) α, engineering, = engineering. Substitute α into the above relational expression. Ipi Misaki AI.
工?l岬4工?
■1.弁−4工p
工?2六A工?
となる。進相コンデンサCAPl及び0AP2の進み無
効篭流電崎l ” Ioap2と上記遅れ無効電流It
lキエtiが等しくなるように無効1を流膜定値I、を
選定すれば、電力変換器8Sl及び882の各受電端の
無効電力は零となり、従来の無効電力補償装置を設ける
ことなく基本波力率=1の運転ができる。一方肩効篭流
設定値工、を止に選べは、工pi > OwIpilく
0となって、有効電力が第1の電力系統BU81から第
2電力系統BUZZに送られ、工、を負に選べばIpl
< O+ 工、2 > oとなって有効電力がB[T
8fiからBUSI l二速られる。すなわち、工、を
変えるととC二よって、電力潮流量を種々の値5ユ選ぶ
ことができるのである。Engineering? L Cape 4 construction? ■1. Valve-4 engineering p engineering? 26A engineer? becomes. Ioap2 and the above lagging reactive current It of the phase advance capacitors CAPl and 0AP2
If the reactive power 1 and the film constant value I are selected so that lkieti is equal, the reactive power at each power receiving end of the power converters 8Sl and 882 becomes zero, and the fundamental wave can be realized without providing a conventional reactive power compensator. Operation with power factor = 1 is possible. On the other hand, if the shoulder effect set value BUZZ is selected to stop, then PI > OwIpil becomes 0, and the active power is sent from the first power system BU81 to the second power system BUZZ, and BUZZ is selected to be negative. If Ipl
<O+ Eng, 2>o, and the effective power becomes B[T
8fi to BUSI l second speed. In other words, by changing C, and C2, various values of the power flow amount can be selected.
以上のよう1′″一本発明の電力変換装置においては従
来の無効電力補償装置を用いることなく、受電端の基本
波力率を常C二1に保持し、かつ2つの電力系統間の電
力潮流源を自由C二制御することができる。(7かも、
受I!端の無効電力を制御するに当つて、血流tiL流
検出値工。と、点弧位相角の余弦値(2)αから、直接
無効t#Lを演算し制御しているため従来必要とされた
受電端の無効電力を検出するための変流器、変成益等が
不要となり、又検出遅れの問題もなくなり、応答性がき
わめて良い制御系を達成することができる。As described above, the power converter of the present invention maintains the fundamental wave power factor at the power receiving end at C21 without using the conventional reactive power compensator, and the power converter of the present invention It is possible to freely control the tidal current source (7).
Uke I! In controlling the reactive power at the end, the blood flow tiL flow detection value is used. Since the reactive t#L is directly calculated and controlled from the cosine value (2) α of the firing phase angle, current transformers, transformation gain, etc. are required to detect the reactive power at the receiving end, which was conventionally required. , and the problem of detection delay is also eliminated, making it possible to achieve a control system with extremely good responsiveness.
第1図は従来の電力変換装置の構成図、第2図は第1図
の装置の受一端の電圧′電流ベクトル図。
第3図は本発明の電力変換装置の一笑施例な示す構成図
、第4図は第3図の装置の受電端の電圧電流ベクトル図
をそれぞれ示すものである。
BUSI、 BUS2・・・第1及び第2の電力系統の
電線路、0AP1. CAP2 ・=進相コンデンサ、
TR1,TR2−電源トランス、eel、 ss2・・
・父直寛力変換器、 LO・・・直流リアクトル、C
To・・・直流、電流検出器s cl、 CBm C
B・・・比較器、Al、 Ag+ A8・・・加算器、
:KO+KI・・・演算増幅器、My(8)、 Hp
(8)・・・制御補償回路、LM・・・リミッタ回路、
SQ、・・・2乗演算回路% 8QR・・・平方根演
算回路s Ml+Mg・・・乗算器、PH1,PH2
・・・位相制御回路。FIG. 1 is a block diagram of a conventional power converter, and FIG. 2 is a voltage and current vector diagram at one end of the receiver of the device shown in FIG. FIG. 3 is a block diagram showing a simple embodiment of the power conversion device of the present invention, and FIG. 4 is a voltage-current vector diagram at the receiving end of the device shown in FIG. 3. BUSI, BUS2... electric lines of the first and second power systems, 0AP1. CAP2 = phase advance capacitor,
TR1, TR2 - power transformer, eel, ss2...
・Direct current converter, LO...DC reactor, C
To...DC, current detector s cl, CBm C
B... Comparator, Al, Ag+ A8... Adder,
:KO+KI...Operation amplifier, My(8), Hp
(8)...Control compensation circuit, LM...Limiter circuit,
SQ,...square calculation circuit % 8QR...square root calculation circuit s Ml+Mg...multiplier, PH1, PH2
...Phase control circuit.
Claims (1)
し、また、第2の交直電力変換器の交流側を第2の電力
系統(二接続し、かつ当該2つの電力変換器の直流側を
直流リアクトルを介して一定力向の直fJtL* k工
。が流れるように接続してなる電力変換装置(−おいて
、上記2つの電力変換器の位相制御入力信号から点弧制
御角αの余弦値幅α及び正弦値−αを演舞−シ、その値
に上記直流電流工。 の検出値を乗すること(二よって梅効寛流工、=工。・
部α及び無効電流Iy=I。・虐αを求め、無効電流指
令値■*と上記無効電流工、を比較しその偏差に? 応じて上記直流電流工。を制御し、かつ有効電流指令値
ニーと上記有効電流工、を比較しその偏差C二応じて上
記2つの電力変換器の直流側電圧を制御することにより
前記第1及び第2の電力系統間の電力潮流量と前hピ2
つの電力変換器の受電端の無効電力を制御するようにし
たことを%徴とする電力変換装置の制御方法。[Claims] The AC side of the first AC/DC power converter is connected to the first power system, and the AC side of the second AC/DC power converter is connected to the second power system (two connected and A power converter device in which DC sides of the two power converters are connected through a DC reactor so that direct current fJtL*k in a constant force direction flows (-, phase control of the two power converters is performed. From the input signal, calculate the cosine value width α and the sine value −α of the ignition control angle α, and multiply those values by the detected value of the DC current controller (2, therefore, the Ume-effect Kanryu ratio, = the current value).
part α and reactive current Iy=I.・Determine the force α, compare the reactive current command value ** and the reactive current value above, and find the deviation? According to the above DC electrician. between the first and second power systems by controlling the DC side voltage of the two power converters in accordance with the deviation C and comparing the effective current command value K and the effective current Power flow rate and front h pi 2
A method for controlling a power converter, the feature of which is controlling reactive power at the receiving end of two power converters.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56157403A JPS5858835A (en) | 1981-10-05 | 1981-10-05 | Method of controlling power converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56157403A JPS5858835A (en) | 1981-10-05 | 1981-10-05 | Method of controlling power converter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5858835A true JPS5858835A (en) | 1983-04-07 |
JPS6322135B2 JPS6322135B2 (en) | 1988-05-10 |
Family
ID=15648866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56157403A Granted JPS5858835A (en) | 1981-10-05 | 1981-10-05 | Method of controlling power converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5858835A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04246200A (en) * | 1991-01-28 | 1992-09-02 | Fujitsu Ltd | Method for electroplating substrate |
-
1981
- 1981-10-05 JP JP56157403A patent/JPS5858835A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04246200A (en) * | 1991-01-28 | 1992-09-02 | Fujitsu Ltd | Method for electroplating substrate |
Also Published As
Publication number | Publication date |
---|---|
JPS6322135B2 (en) | 1988-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59172994A (en) | 3-phase power factor controller for 3-phase induction motor | |
CA1160682A (en) | Digital power converter trigger | |
JPS5858835A (en) | Method of controlling power converter | |
US3676766A (en) | Multiphase alternating current regulation system for transformer-coupled loads | |
US5404093A (en) | Low distortion alternating current output active power factor correction circuit using capacitor coupled bi-directional switching regulator | |
JP3343711B2 (en) | Static var compensator | |
US4674026A (en) | Delta-connected circulating current cycloconverter apparatus | |
JPS6399770A (en) | Method for controlling circulating current type cycloconverter | |
JPS6347058B2 (en) | ||
CA1196686A (en) | Regulating system employing an rms composite controller | |
JP3553180B2 (en) | Converter device | |
JPS59127531A (en) | Power converter | |
JPH0221220B2 (en) | ||
JPS6039368A (en) | Controlling method of circulating current type delta- connection cycloconverter | |
JPS6336213B2 (en) | ||
JPH0152992B2 (en) | ||
JPH0477550B2 (en) | ||
JPS583537A (en) | Power converter | |
SU957409A1 (en) | Thyristor converter control method | |
JPS6155343B2 (en) | ||
JPS6039372A (en) | Circulating current type cycloconverter device | |
JPS6039371A (en) | Cycloconverter device | |
JPS6155347B2 (en) | ||
JPS6014583B2 (en) | Control method for power converter | |
JPH011476A (en) | Control device for circulating current control type cycloconverter |