JPS5858831B2 - Method for manufacturing semiconductor light emitting device - Google Patents
Method for manufacturing semiconductor light emitting deviceInfo
- Publication number
- JPS5858831B2 JPS5858831B2 JP51104801A JP10480176A JPS5858831B2 JP S5858831 B2 JPS5858831 B2 JP S5858831B2 JP 51104801 A JP51104801 A JP 51104801A JP 10480176 A JP10480176 A JP 10480176A JP S5858831 B2 JPS5858831 B2 JP S5858831B2
- Authority
- JP
- Japan
- Prior art keywords
- light emitting
- etching
- emitting device
- semiconductor light
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Weting (AREA)
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
Description
【発明の詳細な説明】 本発明は半導体発光装置の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing a semiconductor light emitting device.
光IC用半4体レーザとしては、分布帰還型゛レーザ、
集積二重導波路型レーザ;ニジチック共振面型レーザな
といくつかの”レーザが考えられている。Distributed feedback type laser,
Several types of lasers are being considered, including integrated dual waveguide lasers; Nischitic resonant surface lasers.
このうちエツチング共振面型レーザは製造方法がきわめ
て簡単であるため、よく研究されているがまだ室温連続
発振は実現されていなかった。Among these, etched resonant surface lasers are very simple to manufacture and have been extensively researched, but continuous oscillation at room temperature has not yet been achieved.
その理由としては、(1)活性領域で発生した熱を有効
に逃がすことができる構造が見つげられていなかったこ
と、(2)従来のエツチング方法では、キャビテイ面が
十分平担でなく、そのため発振しきい値が高かったこと
、という2つが主な理由であった。The reasons for this are (1) a structure that could effectively dissipate the heat generated in the active region had not been found, and (2) in the conventional etching method, the cavity surface was not sufficiently flat. There were two main reasons: the oscillation threshold was high.
本発明は上記の従来の欠点を除き、エツチング共振面型
レーザとしては初めて室温連続発振を実現した半導体レ
ーザ装置の製造方法に関するものである。The present invention relates to a method of manufacturing a semiconductor laser device that eliminates the above-mentioned conventional drawbacks and realizes continuous oscillation at room temperature for the first time as an etched resonant surface type laser.
以下図面とともに本発明を説明する。The present invention will be explained below with reference to the drawings.
第1図は本発明の一実施例により作製した半導体レーザ
装置を示す斜視図であって、発光部としてのレーザ素子
領域なメサストライプ状にし、その側面に高抵抗のGa
As 1X PX (0<x<1 ) 11を埋め込む
、この構造では活性領域2で発生した熱はp−GaAl
As3、p+−GaAs4を通してだけでなく、GaA
s1 xpx 11を通しても電極21に逃げること
ができる。FIG. 1 is a perspective view showing a semiconductor laser device manufactured according to an embodiment of the present invention, in which the laser element region as a light emitting part is formed into a mesa stripe shape, and a high resistance Ga layer is formed on the side surface of the laser element region.
In this structure, the heat generated in the active region 2 is absorbed by the p-GaAl
Not only through As3, p+-GaAs4, but also through GaA
It can also escape to the electrode 21 through s1 xpx 11.
従って電極21を銅ブロック等の放熱体に付着すること
により、放熱特性は大幅に改善される。Therefore, by attaching the electrode 21 to a heat dissipating body such as a copper block, the heat dissipation characteristics can be greatly improved.
またストライプ幅を1〜2μm程度にすることにより発
振しきい値は10mA程度にまで下げられ、電極21に
は放熱体を付着しなくても室温連続発振が可能である。Further, by setting the stripe width to about 1 to 2 μm, the oscillation threshold value can be lowered to about 10 mA, and continuous oscillation at room temperature is possible without attaching a heat sink to the electrode 21.
発光部の発光面としてのレーザ発振用のキャビテイ面3
1はエツチング形成するが、どの結晶面においても平坦
性を最高べするために、水酸化ナトリウム、過酸化水素
水、アンモニア水の混液を開発した。Cavity surface 3 for laser oscillation as a light emitting surface of the light emitting part
1 is formed by etching, but in order to maximize flatness on any crystal plane, we developed a mixed solution of sodium hydroxide, hydrogen peroxide, and ammonia water.
従来、キャビティ形成用の化学エツチング液としては、
H2SO,、H2O2,H2Oの混液、あるいはH2O
2,NH,OHの混液が多く用いられていたが、これら
の液では、共振用のキャビティとなる発光面31に部分
的に凹凸が多く生じたり、GaAsとG’aAIAsに
対するエツチング速度の差が大きいためにキャビティ端
面31が第2図aのように平担でなかったりして不都合
を生じていた。Conventionally, chemical etching solutions for forming cavities include:
H2SO, H2O2, H2O mixture, or H2O
A mixed solution of 2, NH, and OH was often used, but with these solutions, the light emitting surface 31, which serves as the cavity for resonance, may have many unevenness in some parts, and the difference in etching rate between GaAs and G'aAIAs may occur. Due to the large size, the cavity end face 31 was not flat as shown in FIG. 2a, which caused problems.
例えば、H2O2とNH,OHだげの混液を用いると、
第2図aのようになる。For example, if you use a mixture of H2O2, NH, and OH,
The result will be as shown in Figure 2a.
この場合、発光部の活性領域2の端部は接合面に対して
直角とならず、反射率が減少して良好な共振面となり得
ない。In this case, the end of the active region 2 of the light emitting part is not perpendicular to the bonding surface, and the reflectance decreases, making it impossible to form a good resonant surface.
またGaAlAsの層1及び3は活性領域2よりも深く
エツチングされるため、活性領域2に均一に電流が注入
されず、従って発振しきい値が大幅に増す。Also, since the GaAlAs layers 1 and 3 are etched deeper than the active region 2, current is not uniformly injected into the active region 2, thus significantly increasing the oscillation threshold.
エツチング液として水酸化ナトリウム水溶液、過酸化水
素水及びアンモニア水の混液を用いると、その各々の液
の量を適当に選ぶことにより、第2図すに示すように、
キャビティ端面は接合面に対し垂直となり、そのエツチ
ング表面も同一面内にそろえることができる。When a mixed solution of sodium hydroxide solution, hydrogen peroxide solution and ammonia solution is used as the etching solution, by appropriately selecting the amounts of each solution, as shown in Fig. 2,
The cavity end face is perpendicular to the bonding surface, and its etched surfaces can also be aligned in the same plane.
これは、どのような結晶面に対しても同じであった。This was true for any crystal plane.
実験の結果、1モルの水溶液にした水酸化ナトリウム、
30%過酸化水素水、30%アンモニア水を3〜lO:
1:lの比で調製したエツチング液でエツチングした時
が、キャビティ端面が最も平坦であり、発振しきい値も
低かった。As a result of the experiment, sodium hydroxide made into a 1 molar aqueous solution,
3-10 30% hydrogen peroxide solution and 30% ammonia solution:
When etched with an etching solution prepared at a ratio of 1:1, the cavity end face was the flattest and the oscillation threshold was also low.
以下に具体的な実施例を挙げて半導体レーザ装置の製造
方法を詳しく述べる。A method for manufacturing a semiconductor laser device will be described in detail below with reference to specific examples.
なお、第3図a〜eおよび同図a′〜e′は本発明の半
導体レーザ装置の製造方法の工程断面図および平面図、
第4図は同完成斜視図である。Note that FIGS. 3 a to 3 e and 3 a' to e' are process cross-sectional views and plan views of the method for manufacturing a semiconductor laser device of the present invention,
FIG. 4 is a completed perspective view of the same.
実施例
基板トシてI X 1018cIfr3f) n型Ga
As5で(100)面のものを用い、その上に通常の液
相エピタキシャル法でn−GaAlAs層1.p−Ga
As層z、p GaAlAs層3.p+−GaAs層
4を成長する(第3図a、aつ。Example substrate (IX 1018cIfr3f) n-type Ga
A (100) plane of As5 was used, and an n-GaAlAs layer 1. p-Ga
As layer z, p GaAlAs layer 3. A p+-GaAs layer 4 is grown (Fig. 3a, a).
次にp+−GaAs層4の表面にS i 02膜6を付
着し、フォトエツチング技術を用いて3μm幅のストラ
イプ状に5in2膜6を残し、他のSiO□膜を除去す
る。Next, a SiO2 film 6 is deposited on the surface of the p+-GaAs layer 4, and a 5in2 film 6 is left in a stripe shape of 3 μm width using a photoetching technique, and the other SiO□ film is removed.
ストライプ方向は任意の方向でよいが、本実験では(1
00)、(110)。The stripe direction may be any direction, but in this experiment it was set to (1
00), (110).
(120)の3方向にストライプを作った(同す。(120) stripes were made in three directions (same as above).
b/)。b/).
次に硫酸、過酸化水素及びアンモニア水の混液な用いて
S i 02膜6の付着してない領域をエツチングする
。Next, the area to which the SiO2 film 6 is not attached is etched using a mixture of sulfuric acid, hydrogen peroxide, and aqueous ammonia.
そのエツチングの深さは2〜3μmとする。The etching depth is 2 to 3 μm.
このとき、ストライプ部直下のGaAs及びGaAlA
sもエツチングされ結局ストライプ幅は約1μmとなる
(同図e、Cつ。At this time, GaAs and GaAlA directly under the stripe part
S is also etched, and the stripe width becomes about 1 μm (e and C in the same figure).
次にSiO2膜6がストライプ部上部にのみ残るように
再びフォトエツチングを施し、ストライプ部以外の領域
に高抵抗G a A s□−XPX層1層上1相成長法
で成長する。Next, photoetching is performed again so that the SiO2 film 6 remains only on the upper part of the stripe part, and the SiO2 film 6 is grown in a region other than the stripe part by a single-phase growth method on one high-resistance GaAs□-XPX layer.
本実施例ではG a AS、 99 ”0.01 を
G a (CHa ) s s AsH2及びPH3を
用いた熱分解法で成長させた。In this example, Ga AS, 99''0.01 was grown by a pyrolysis method using Ga (CHa) ss AsH2 and PH3.
成長温度が630℃で1040−のの比抵抗の埋め込み
層ができた。At a growth temperature of 630° C., a buried layer with a specific resistance of 1040 − was formed.
この時埋め込み層の表面とp十−GaAs4の表面とが
同一平面になるようにする(同図d 、 d’)。At this time, the surface of the buried layer and the surface of p-GaAs4 are made to be on the same plane (d and d' in the same figure).
次にSiO2膜6をフッ酸で除去した後、表面全体にA
u−Zn合金21を蒸着により付着し、フォトエツチン
グ法を用いて、ストライプ方向に丁度直角方向に300
μm幅でAu−Zn合金21を残し他のAu−Znは除
去する(同図e、eつ。Next, after removing the SiO2 film 6 with hydrofluoric acid, the entire surface is
A u-Zn alloy 21 is deposited by vapor deposition and etched by 300 mm in a direction just perpendicular to the stripe direction using a photoetching method.
Leaving the Au-Zn alloy 21 with a μm width, the other Au-Zn is removed (e and e in the same figure).
次に1モル水酸化ナトリウム=30多過酸化水素水:3
0%アンモニア水が5:1:1のエツチング液で、Au
−Zn合金21が付着されていない部分のGaAs及び
GaAlAsをエツチングにより除去する。Next, 1 mol sodium hydroxide = 30-rich hydrogen peroxide solution: 3
Au
- GaAs and GaAlAs in the areas to which the Zn alloy 21 is not attached are removed by etching.
この時のエツチング深さは約5μmとする。The etching depth at this time is approximately 5 μm.
このエツチング後のキャビティ端面ば前述のように、レ
ーザ共振器として十分利用できるものである。The end face of the cavity after this etching can be fully utilized as a laser resonator, as described above.
その後、全体の厚さが100μmになるよ5n−GaA
s5を研磨し、電極金属22を付着し、ストライプ領域
を含む適当な大きさに切断することにより第4図のよう
なモノリシックレーザ装置が完成スル。After that, the total thickness will be 100 μm.
A monolithic laser device as shown in FIG. 4 is completed by polishing s5, attaching electrode metal 22, and cutting to an appropriate size including a stripe region.
Au−Zn合金21のフォトエツチング工程でAu−Z
n合金21を適当な形にして残せば、第2図のような構
造のレーザも容易にできる。In the photoetching process of Au-Zn alloy 21, Au-Z
If the n-alloy 21 is left in a suitable shape, a laser having the structure as shown in FIG. 2 can be easily produced.
なお本発明は半導体レーザ装置だけでなく通常の発光ダ
イオード装置等の半導体発光装置にも用いることができ
るのは勿論のことである。It goes without saying that the present invention can be used not only for semiconductor laser devices but also for semiconductor light emitting devices such as ordinary light emitting diode devices.
さらに本発明のエツチング液は、Ga、Al*As5P
を含んだ半導体以外にも種々の半導体装置の作製の際の
エツチング液として用いることができるのは当然である
。Furthermore, the etching solution of the present invention includes Ga, Al*As5P.
Naturally, it can be used as an etching solution for manufacturing various semiconductor devices other than semiconductors containing .
第1図は本発明の一実施例により作製した半導体レーザ
装置の概略斜視図、第2図a、bはレーザ装置のキャビ
ティ端の断面の従来と本発明との比較図、第3図a”−
e、a’−♂は本発明の半導体発光装置の製造方法の一
実施例を示す工程断面図および同平面図、第4図は実施
例により得られた半導体レーザ装置の構造斜視図である
。
1−−−−−−n−GaAIAs、2・・−−−−p−
GaAS。
3・−・−p−GaAIAs、4−・・p+−GaAs
15 ・−・−n−G a A s、 5−−−−−−
8 i 02膜、11−・・・・・高抵抗G a A
s I z P z 層、21 、22−−−−−−
オー□ツク電極、31・・・・・・・エツチングによる
共振面。FIG. 1 is a schematic perspective view of a semiconductor laser device manufactured according to an embodiment of the present invention, FIGS. 2a and 2b are comparison views of the conventional and inventive cross-sections of the cavity end of the laser device, and FIG. 3 is a. −
e and a'-♂ are a process sectional view and a plan view showing one embodiment of the method for manufacturing a semiconductor light emitting device of the present invention, and FIG. 4 is a structural perspective view of a semiconductor laser device obtained by the embodiment. 1-------n-GaAIAs, 2...---p-
GaAS. 3--p-GaAIAs, 4--p+-GaAs
15 ・----n-Ga As, 5-------
8 i 02 film, 11-... High resistance Ga A
s I z P z layer, 21, 22------
Open electrode, 31... Resonance surface by etching.
Claims (1)
なる°とともに、活性領域を含むメサストライプ状の発
光部を形成するに際し、前記発光部の接合面に垂直な発
光面を、水酸化ナトリウム水溶液と過酸化水素水とアン
モニア水との混液な用いてエツチングすることを特徴と
する半導体発光装置の製造方法。1. When forming a mesa stripe-shaped light-emitting part made of GaAs and GaAlAs and including an active region on a semiconductor substrate, the light-emitting surface perpendicular to the bonding surface of the light-emitting part is treated with an aqueous solution of sodium hydroxide and hydrogen peroxide. A method for manufacturing a semiconductor light emitting device, characterized in that etching is performed using a mixed solution of water and aqueous ammonia.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51104801A JPS5858831B2 (en) | 1976-08-31 | 1976-08-31 | Method for manufacturing semiconductor light emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51104801A JPS5858831B2 (en) | 1976-08-31 | 1976-08-31 | Method for manufacturing semiconductor light emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5329687A JPS5329687A (en) | 1978-03-20 |
JPS5858831B2 true JPS5858831B2 (en) | 1983-12-27 |
Family
ID=14390529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51104801A Expired JPS5858831B2 (en) | 1976-08-31 | 1976-08-31 | Method for manufacturing semiconductor light emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5858831B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0773132B2 (en) * | 1986-03-28 | 1995-08-02 | 古河電気工業株式会社 | Semiconductor light emitting device and method of manufacturing the same |
JPH0294682A (en) * | 1988-09-30 | 1990-04-05 | Furukawa Electric Co Ltd:The | Manufacture of semiconductor laser device |
JP2674592B2 (en) * | 1996-04-22 | 1997-11-12 | 株式会社日立製作所 | Semiconductor laser |
-
1976
- 1976-08-31 JP JP51104801A patent/JPS5858831B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5329687A (en) | 1978-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001251016A (en) | Surface emitting semiconductor laser and its manufacturing method | |
JP2000312054A (en) | Semiconductor element and manufacture thereof | |
JP3863962B2 (en) | Nitride III-V compound semiconductor light emitting device and method for manufacturing the same | |
JP2000058981A (en) | Gallium nitride based semiconductor light emitting element and fabrication thereof | |
JPS6343908B2 (en) | ||
JPS5858831B2 (en) | Method for manufacturing semiconductor light emitting device | |
JPH01164077A (en) | Light-emitting diode and its manufacture | |
JP2000501571A (en) | Method for manufacturing optoelectronic semiconductor device having mesa portion | |
EP0076761A1 (en) | Semiconductor lasers and method for producing the same | |
JPH02156588A (en) | Semiconductor laser and its manufacture | |
JP3521792B2 (en) | Manufacturing method of semiconductor laser | |
JP3108183B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JPS5831751B2 (en) | Manufacturing method of semiconductor laser | |
JPS59114885A (en) | Manufacture of semiconductor device | |
JPS61253882A (en) | Semiconductor laser device | |
JP2550717B2 (en) | Method for manufacturing semiconductor laser device | |
JPH0437598B2 (en) | ||
JPS59108386A (en) | Semiconductor light emtting device | |
JPS62296490A (en) | Semiconductor laser device | |
JPH10510102A (en) | Ridge laser in channel | |
JPS58220485A (en) | Semiconductor light emitting device and manufacture thereof | |
JPH02181488A (en) | Heat sink for semiconductor laser element use | |
JPS6118189A (en) | Semiconductor laser array device and manufacture thereof | |
JP2538258B2 (en) | Semiconductor laser | |
JPH03185889A (en) | Semiconductor laser element and manufacture thereof |