JPS5858813B2 - Charge transfer type semiconductor device - Google Patents

Charge transfer type semiconductor device

Info

Publication number
JPS5858813B2
JPS5858813B2 JP3063977A JP3063977A JPS5858813B2 JP S5858813 B2 JPS5858813 B2 JP S5858813B2 JP 3063977 A JP3063977 A JP 3063977A JP 3063977 A JP3063977 A JP 3063977A JP S5858813 B2 JPS5858813 B2 JP S5858813B2
Authority
JP
Japan
Prior art keywords
channel
transfer
input
electrode
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3063977A
Other languages
Japanese (ja)
Other versions
JPS53116081A (en
Inventor
通裕 山田
紘一 長沢
一康 藤島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3063977A priority Critical patent/JPS5858813B2/en
Publication of JPS53116081A publication Critical patent/JPS53116081A/en
Publication of JPS5858813B2 publication Critical patent/JPS5858813B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • H01L27/1057Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components comprising charge coupled devices [CCD] or charge injection devices [CID]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

【発明の詳細な説明】 この発明は電荷移送形半導体装置に係り、特にその高密
度集積化のための構造の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a charge transport type semiconductor device, and particularly to an improvement in its structure for high-density integration.

この種の装置は、ディジタル情報を所要時間遅延し、記
憶機能を有する電荷移送形シフトレジスタとして最も多
く用いられており、更に後述のようにこの発明が複数チ
ャネルのものに適用して一層効果が顕著であるので、以
下複数チャネル電荷移送シフトレジスタを例にとって説
明する。
This type of device is most commonly used as a charge transfer type shift register that delays digital information by the required time and has a storage function, and as will be described later, the present invention can be applied to multiple channels to be even more effective. Since it is conspicuous, a multi-channel charge transfer shift register will be explained below as an example.

第1図は従来の4チヤネル電荷移送形シフトレジスタの
一例を示す平面図、第2図a、bはそれぞれ第1図II
A−IIA線およびIIB−IIB線での断面図である
Fig. 1 is a plan view showing an example of a conventional 4-channel charge transfer type shift register, and Fig. 2 a and b are respectively Fig. 1 II.
FIG. 3 is a cross-sectional view taken along line A-IIA and line IIB-IIB.

図において、1はp形半導体基体の活性領域、2は不活
性領域、3は情報信号人力りを受けてそれに応じた信号
電荷を供給する計形の入力拡散領域4,5.6および7
a〜7dはそれぞれ信号電荷を移送する移送電極、8,
9゜10および11はそれぞれ入力拡散領域3から注入
された電荷が移送されてゆく第1、第2、第3および第
4チヤネル、12は活性領域1の上に形成されたゲート
絶縁膜で、各移送電極4〜7はこのゲート絶縁膜12を
介して活性領域1上に形成されている。
In the figure, 1 is an active region of a p-type semiconductor substrate, 2 is an inactive region, and 3 is a meter-shaped input diffusion region 4, 5, 6, and 7 that receives information signal input and supplies signal charges accordingly.
a to 7d are transfer electrodes 8 and 7d for transferring signal charges, respectively;
9. Reference numerals 10 and 11 are first, second, third and fourth channels to which charges injected from the input diffusion region 3 are transferred, respectively; 12 is a gate insulating film formed on the active region 1; Each of the transfer electrodes 4 to 7 is formed on the active region 1 with the gate insulating film 12 interposed therebetween.

13は移送電極4〜7の上を覆って半導体基体上面に形
成された保護絶縁膜である。
A protective insulating film 13 is formed on the upper surface of the semiconductor substrate to cover the transfer electrodes 4 to 7.

なお、第1図の平面図は保護絶縁膜13を、無視して描
いである。
Note that the plan view of FIG. 1 is drawn ignoring the protective insulating film 13.

このように構成された4チャネル電荷移送形シフトレジ
スタの動作は、入力拡散領域3からの電荷の注入、移送
電極4〜7による電荷の移送、および出力端(図示せず
)における電荷の検出の3段階に分けられる。
The operation of the 4-channel charge transfer type shift register configured as described above includes charge injection from the input diffusion region 3, charge transfer by the transfer electrodes 4 to 7, and charge detection at the output terminal (not shown). It can be divided into three stages.

第3図はこの駆動に必要な各パルスの波形図で、移送電
極4,5,6.7b。
FIG. 3 is a waveform diagram of each pulse necessary for this drive, and shows the transfer electrodes 4, 5, 6.7b.

7a+7b、7c、・・・・・・には順次4相の正の移
送パルスφ3.φb、φ。
7a+7b, 7c, . . . sequentially receive four-phase positive transfer pulses φ3. φb, φ.

、φdがそれぞれ印加され、入力拡散領域3には情報信
号入力りが供給される。
, φd are respectively applied, and the input diffusion region 3 is supplied with an information signal input.

第1チヤネル8について説明すると、第1番目の移送電
極4に印加される移送パルスφ8のみが高0レベルにあ
る期間THa に入力拡散領域3への情報人力pを低(
Vレベルにすることによって電荷の注入が行なわれ、こ
の期間THa に情報人力りが高レベルにあれば電荷の
注入は行なわれない。
To explain the first channel 8, the information power p to the input diffusion region 3 is low (
Charge is injected by setting it to V level, and if the information power is at a high level during this period THa, charge is not injected.

一方、移送電極4に印加される移送パルスφ8が低レベ
ルにある期間は入力拡散領域3への情報人力りの如何に
拘らず電荷の注入は行なわれない。
On the other hand, during the period when the transfer pulse φ8 applied to the transfer electrode 4 is at a low level, charge is not injected into the input diffusion region 3 regardless of the information input.

注入された電荷は順次互いに少しの重複をもつ4相移送
パルスφ8.φbIφcIφdによって・いわゆる4相
駆動されるが、この移送動作は周知であるので、詳述は
省略する。
The injected charges are sequentially transferred to four-phase transfer pulses φ8. The transfer operation is so-called four-phase driven by φbIφcIφd, but since this transfer operation is well known, detailed explanation will be omitted.

第2、第3および第4チャネル9.10および11の動
作も上記第1チヤネルの動作に準するものであるが、第
1番目の移送電極が第2チヤネル9では移送パルスφb
の供給される移送電極5であり、第3チヤネル10では
移送パルスφ。
The operations of the second, third and fourth channels 9, 10 and 11 are similar to the operation of the first channel, except that the first transfer electrode is connected to the transfer pulse φb in the second channel 9.
, and in the third channel 10 a transport pulse φ.

の供給される移送電極6であり、第4チヤネル11では
移送パルスφdの供給される移送電極7dである。
In the fourth channel 11, the transfer electrode 7d is supplied with the transfer pulse φd.

4チヤネル電荷移送形シフトレジスタでは上述のような
構成になっているので、1連の情報入力信号りを時分割
的に順次者チャネルに振り分けて入力でき、大変効率が
よい。
Since the four-channel charge transfer type shift register has the above-described configuration, a series of information input signals can be distributed and inputted to each channel sequentially in a time-division manner, which is very efficient.

すなわち、第3図の1周期Tの間の4ビツトの情報入力
信号りの移送パルスφ8が高レベルの時のピッ)値(t
t 1// )は第1チヤネルへ、移送パルスφbが高
レベルの時のビット値(// Q// )は第2チヤネ
ルへ、以下同様に次のビット値(// l// )は第
3チヤネルへ、次のビット値(〃0〃)は第4チヤネル
へ入る。
That is, the pitch value (t) when the transfer pulse φ8 of the 4-bit information input signal during one cycle T in FIG. 3 is at a high level.
t 1// ) goes to the first channel, the bit value (// Q// ) when the transfer pulse φb is at high level goes to the second channel, and the next bit value (// l// ) goes to the second channel. To the third channel, the next bit value (〃0〃) goes into the fourth channel.

このようにして情報人力りの高速処理が可能である。In this way, high-speed, manual processing of information is possible.

しかし、このようなマルチチャネル電荷移送形シフトレ
ジスタでは、図面と上記説明から判るように、移送電極
の配置の面積効率が少し低下し、高密度集積の面からや
!制約がある。
However, in such a multi-channel charge transfer type shift register, as can be seen from the drawings and the above description, the area efficiency of the arrangement of the transfer electrodes is slightly reduced, which is difficult to achieve in terms of high-density integration. There are restrictions.

そこで、更◆ にチャネル数の多いマルチチャネル電荷移送形シフトレ
ジスタを得るのに第4図に示すような構造が用いられて
いる。
Therefore, a structure as shown in FIG. 4 is used to obtain a multi-channel charge transfer type shift register with an even larger number of channels.

第4図aはその上面図、同図すはそのIVB−IVB線
での断面図を示す。
FIG. 4a shows a top view of the same, and a sectional view taken along the line IVB--IVB.

すなわち、第1図に示したものと同じパターンを複数個
1つの半導体チップ内に形成し、相隣接したマルチチャ
ネル(図では4チヤネル 電荷移送形シフトレジスタ間
で、移送電極4,4′・・・・・・間、移送電極5,5
′・・・・・・間、および6.6′・・・・・・間をそ
れぞれ電気的に接続することによって、情報人力りによ
る第1〜第4チヤネル8〜11の他に、情報入力D′に
よる第5〜第8チヤネル16〜19が得られる。
That is, a plurality of the same patterns as shown in FIG. 1 are formed in one semiconductor chip, and transfer electrodes 4, 4', . . . ... between, transfer electrodes 5, 5
By electrically connecting between ′... and 6.6′..., information can be input in addition to the first to fourth channels 8 to 11 by manual input. The fifth to eighth channels 16 to 19 by D' are obtained.

しかし、このためには厚さの大きい保護絶縁膜13にコ
ンタクト孔14を設け、これギ通して導電体膜15をも
って接続している。
However, for this purpose, a contact hole 14 is provided in the thick protective insulating film 13, and a connection is made through the contact hole 14 with a conductor film 15.

この従来の構造は工作上極めて厄介であり、その工作の
複雑さはパターンの集積度の向上とともにますます増大
する。
This conventional structure is extremely difficult to work with, and the complexity of the work increases as the degree of pattern integration increases.

この発明は以上の点に鑑みてなされたもので、チャネル
数を増す場合にも、特別の工作法を必要とせず、従って
高密度集積化を可能ならしめるマルチチャネル電荷移送
形半導体装置を提供することを目的とするものである。
The present invention has been made in view of the above points, and an object of the present invention is to provide a multi-channel charge transport type semiconductor device that does not require special manufacturing methods even when the number of channels is increased, and therefore enables high-density integration. The purpose is to

第5図はこの発明の一実施例を示す平面図で、第6図a
はそのIV−IV線での断面図、第6図すはこの部分の
動作説明のための表面ポテンシャル曲線図、第7図aは
第5図の帽−■線での断面図、第7図すはこの部分の動
作説明のための表面ポテンシャル曲線図である。
FIG. 5 is a plan view showing one embodiment of the present invention, and FIG.
6 is a surface potential curve diagram for explaining the operation of this part, FIG. 7a is a sectional view taken along the line IV-IV of FIG. This is a surface potential curve diagram for explaining the operation of this part.

この実施例では図示のように第1の入力ゲート電極20
および第2の入力ゲート電極21がゲート絶縁膜12の
中に埋込まれた下層ゲート電極の形で構成され、移送電
極78〜1dはゲート絶縁膜12上に上層ゲート電極の
形で構成されている。
In this embodiment, as shown, the first input gate electrode 20
The second input gate electrode 21 is configured as a lower layer gate electrode embedded in the gate insulating film 12, and the transfer electrodes 78 to 1d are configured as upper layer gate electrodes on the gate insulating film 12. There is.

そして、第1の入力ゲート電極20は第1チヤネル8に
対しては第1番目の移送電極7aと入力拡散領域3との
間にあり、第2チヤネル9に対しては同じ位置から第1
、第2番目の移送電極7aと7bとの間まで延び、第3
チヤネル10に対しては同じく第2、第3番目の移送電
極7bとICとの間まで、第4チヤネル11に対しては
同じく第3、第4番目の移送電極ICと7dとの間まで
延びている。
The first input gate electrode 20 is located between the first transfer electrode 7a and the input diffusion region 3 for the first channel 8, and the first input gate electrode 20 is located between the first transfer electrode 7a and the input diffusion region 3 for the second channel 9.
, extending between the second transfer electrodes 7a and 7b;
For the channel 10, it extends between the second and third transfer electrodes 7b and the IC, and for the fourth channel 11, it extends between the third and fourth transfer electrodes IC and 7d. ing.

また、第2の入力ゲート電極21は第1チヤネル8に対
してはすべての相続く移送電極7a t 7b + 7
c t 7d +・・・・・・の相互間にあり、第2の
チャネル9に対しては第1、第2番目の移送電極7aと
7bとの間には存在せず、第3チヤネル10に対しては
更に第2、第3番目の移送電極7bと70との間にも存
在せず、第4チヤネル11に対してはなお更に第3、第
4番目の移送電極7cと7dとの間にも存在しないよう
に構成されている。
The second input gate electrode 21 is also connected to all successive transfer electrodes 7a t 7b + 7 for the first channel 8.
c t 7d +... for the second channel 9, not between the first and second transfer electrodes 7a and 7b, but for the third channel For the fourth channel 11, there is no gap between the second and third transfer electrodes 7b and 70, and even more so between the third and fourth transfer electrodes 7c and 7d. It is structured so that there is no in-between.

第8図はこの実施例装置を駆動するための各部パルス波
形図で、移送パルスφ8.φb、φ。
FIG. 8 is a diagram of pulse waveforms at various parts for driving this embodiment device, in which the transfer pulse φ8. φb, φ.

。φdおよび情報信号入力りは第3図に示した従来装置
の場合と同一である。
. φd and information signal input are the same as in the conventional device shown in FIG.

第1の入力ゲート20には入力拡散領域3かも移送電極
7a、7b、7cもしくは7 の下へ信号電荷を移送す
るためのゲート信号パルスφ。
The first input gate 20 receives a gate signal pulse φ for transferring the signal charge to the input diffusion region 3 or below the transfer electrode 7a, 7b, 7c or 7.

が印加され、第2の入力ゲート21には当該ゲート電極
下にチャネルが形式されるに必要な最小の電圧(閾値電
圧)より数ボルト高い値の直流電圧E(3〜5ボルト程
度)が印加される。
is applied, and a DC voltage E (about 3 to 5 volts), which is several volts higher than the minimum voltage (threshold voltage) required to form a channel under the gate electrode, is applied to the second input gate 21. be done.

第8図に示した各時刻t1.t2.t3およびt4にお
ける第1チヤネル8および第2チヤネル9の表面ポテン
シャル曲線をそれぞれ第6図すおよび第7図すに各図a
に示した断面図の断面位置に対応させて示しである。
Each time t1. shown in FIG. t2. The surface potential curves of the first channel 8 and the second channel 9 at t3 and t4 are shown in Figures 6 and 7, respectively.
This figure corresponds to the cross-sectional position of the cross-sectional view shown in FIG.

時刻t1 においては、情報入力信号りが低レベルにあ
り、第1チヤネル8では、第1の入力ゲート20および
第1番目の移送電極7aが高レベルにあるので電荷が入
力ゲート20および第1番目の移送電極7aの下へ注入
される。
At time t1, the information input signal is at a low level, and in the first channel 8, the first input gate 20 and the first transfer electrode 7a are at a high level, so that the charge is transferred to the input gate 20 and the first transfer electrode 7a. is injected under the transfer electrode 7a.

第2チヤネル9では第1の入力ゲート20の下へ電荷が
注入される。
In the second channel 9 charge is injected under the first input gate 20 .

次に時刻t2 では第1の入力ゲート20が低レベルに
なるので、第1チヤネル8では注入電荷は第1番目の移
送電極7aの下に蓄積されるが、第2チヤネル9では入
力拡散領域3へはき戻される。
Next, at time t2, the first input gate 20 becomes low level, so in the first channel 8, the injected charge is accumulated under the first transfer electrode 7a, but in the second channel 9, the injected charge is accumulated under the input diffusion region 3. be sent back to

時刻t3では第2番目の移送電極7bが高レベルになり
、同電極7bの下の表面ポテンシャルが深くなる。
At time t3, the second transfer electrode 7b becomes high level, and the surface potential under the second transfer electrode 7b becomes deep.

つgいて、第1番目の移送電極7aが低レベルになる時
刻t4 では、第1チヤネル8では第2のゲート21に
閾値電匡以上の直流電圧が印加されこの第2のゲート2
1の下にチャネルが形成されているので、第1番目の移
送電極7aの下に蓄積されていた電荷は第2番目の移送
電極7bの下へ移送される。
Then, at time t4 when the first transfer electrode 7a becomes a low level, a DC voltage higher than the threshold voltage is applied to the second gate 21 in the first channel 8, and the second gate 2
Since a channel is formed under the first transfer electrode 7a, the charges accumulated under the first transfer electrode 7a are transferred to the second transfer electrode 7b.

以上説明したように、第1チヤネル8への電荷の注入は
移送パルスφ8が高レベルになっている間に、ゲート信
号パルスφ7が存在する期間を含めて情報入力信号りを
〃1〃 にすることによって達成される。
As explained above, the charge injection into the first channel 8 causes the information input signal to become 1 while the transfer pulse φ8 is at a high level, including the period when the gate signal pulse φ7 exists. This is achieved by

同様にして、第2チヤネル9、第3チヤネル10、第4
チヤネル11への電荷の注入は、それぞれ移送パルスφ
b、φcIφdが高レベルになっている間に可能である
ことは容易に理解できるであろう。
Similarly, the second channel 9, the third channel 10, the fourth channel
The charge injection into the channel 11 is carried out by a transfer pulse φ
It will be easy to understand that this is possible while φcIφd is at a high level.

このようにして、この装置も移送パルス1周期Tの間に
4ビツトの入力情報を各チャネル8〜11に時分割的に
振り分けて記憶できる4チヤネル電荷移送形シフトレジ
スタとして動作する。
In this way, this device also operates as a 4-channel charge transfer type shift register that can time-divisionally distribute and store 4-bit input information to each channel 8 to 11 during one period T of transfer pulses.

さて、この装置を第5図に示した平面パターンについて
見るに、移送電極7a〜7d、第1の入力ゲート20、
および第2の入力ゲート21ともに第1〜第4チヤネル
8〜11にまたがる部分を有するので、従来例について
第4図に示したように、更にチャネル数の多いマルチチ
ャネル電荷移送形シフトレジスタを構成する際に、従来
例のような架橋配線の要がなく、従ってコンタクトホー
ルの作成など厄介な工作を必要とせず、相隣る単位マル
チチャンネル電荷移送形シフトレジスタの移送電極、第
1の入力ゲートおよび第2の入力ゲートをそれぞれ電気
的に接続するのみでよいから、余分な工程を要すること
なく大容量高密度集積化が可能である。
Now, looking at this device in terms of the planar pattern shown in FIG. 5, the transfer electrodes 7a to 7d, the first input gate 20,
Since both the input gate 21 and the second input gate 21 have a portion extending over the first to fourth channels 8 to 11, a multi-channel charge transfer type shift register with a larger number of channels is constructed, as shown in FIG. 4 for the conventional example. There is no need for bridging wiring as in the conventional example, and therefore there is no need for troublesome work such as creating contact holes. Since it is only necessary to electrically connect the second input gate and the second input gate, large-capacity and high-density integration is possible without requiring any extra steps.

更に集積化0マターンの自由度も太きい。上記実施例で
は、4チヤネル4相駆動の電荷移送形シフトレジスタに
ついて述べたが、チャネル数、駆動形式はこれに限られ
るものではなく、また、ディジタル電荷移送形シフトレ
ジスタのみならず、アナログ電荷移送形シフトレジスタ
など一般の電荷移送形半導体装置にも適用できることは
いうまでもない。
Furthermore, the degree of freedom of the integrated 0 pattern is large. In the above embodiment, a four-channel four-phase drive charge transfer type shift register is described, but the number of channels and drive type are not limited to this. Needless to say, the present invention can also be applied to general charge transfer type semiconductor devices such as type shift registers.

以上詳述したように、この発明では単位マルチチャネル
電荷移送形半導体装置において、第1および第2の入力
ゲート電極を設ける構成としたため、上記各入力ゲート
電極も各移送電極もその平面パターンにおいて全チャネ
ルにまたがる部分を有スるようになり、この単位マルチ
チャネル電荷移送形半導体装置を複数個用いて、更にチ
ャネル数の多いマルチチャネル電荷移送形半導体装置を
構成する際に、その接続が極めて容易となり、余分な工
程を要することがないので、大容量高密度集積化が可能
となり、更に集積化の際のパターンの自由度も大きくな
る。
As described in detail above, in the present invention, since the unit multi-channel charge transfer type semiconductor device is configured to have the first and second input gate electrodes, each input gate electrode and each transfer electrode are completely This makes it extremely easy to connect multiple unit multi-channel charge transfer semiconductor devices when configuring a multi-channel charge transfer semiconductor device with a large number of channels. Since no extra steps are required, large-capacity, high-density integration is possible, and the degree of freedom in patterning during integration is also increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の4チヤネル電荷移送形シフトレジスタの
一例を示す平面図、第2図a、bはそれぞれ第1図II
A−HA線およびIIB−IIB線での断面図、第3図
はその駆動に必要な各パルスの波形図、第4図にこの従
来装置を用いて更にチャネル数の多いマルチチャネル電
荷移送形シフトレジスタを構成する時の接続部の一例を
示し、第4図aはその千葡図、第4図すはその■B−W
B@での断面図である。 第5図はこの発明の一実施例を示す平面図、第6図aは
そのVI−IV線での断面図、第6図すはこの部分の動
作説明のための表面ポテンシャル曲線図、第7図aは第
5図の■−■線での断面図、第7図すはこの部分の動作
説明のための表面ポテンシャル曲線図、第8図はこの実
施例装置を駆動するための各部パルス波形図である。 図において、1は半導体基体の活性領域、2は不活性領
域、3は入力拡散領域、4,5.6゜γa、7b、7c
、7dは移送電極、8,9,10゜11および16.1
7.’f8.19はチャネル、12はゲート絶縁膜、2
0は第1の入力ゲート電極、21は第2の入力ゲート電
極である。 なお、図中同一符号は同一または相当部分を示す。
Fig. 1 is a plan view showing an example of a conventional 4-channel charge transfer type shift register, and Fig. 2 a and b are respectively Fig. 1 II.
A cross-sectional view taken along the A-HA line and the IIB-IIB line, Fig. 3 is a waveform diagram of each pulse necessary for driving, and Fig. 4 shows a multi-channel charge transfer type shift using this conventional device with a larger number of channels. An example of the connection part when configuring a register is shown.
It is a sectional view at B@. FIG. 5 is a plan view showing one embodiment of the present invention, FIG. 6a is a sectional view taken along line VI-IV, FIG. Figure a is a sectional view taken along the line ■-■ in Figure 5, Figure 7 is a surface potential curve diagram for explaining the operation of this part, and Figure 8 is a pulse waveform of various parts for driving this embodiment device. It is a diagram. In the figure, 1 is an active region of the semiconductor substrate, 2 is an inactive region, 3 is an input diffusion region, 4, 5.6° γa, 7b, 7c
, 7d are transfer electrodes, 8, 9, 10° 11 and 16.1
7. 'f8.19 is the channel, 12 is the gate insulating film, 2
0 is a first input gate electrode, and 21 is a second input gate electrode. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 第1の伝導形を有し不活性領域を介して互いに分離
された複数個のチャネル領域が設けられた半導体基体、
第2の伝導形を有しこの半導体基体の一端部に上記各チ
ャンネルに共通に設けられるとともに情報入力信号に対
応する信号電荷を供給する入力拡散領域、上記チャネル
領域の半導体基体上に絶縁膜を介してそれぞれ上記複数
個のチャネルに共通に且つ上記チャネルに沿う方向に配
列して設けられた電荷移送用の移送電極、上記チャネル
領域の半導体基体上に絶縁膜を介して設けられるととも
に上記移送電極とも絶縁して配設され第n(nは1以上
の正整数)番目のチャネルにおいては上記入力拡散領域
と第n番目の上記移送電極との間の部分に第1から第n
−1番目までの上記移送電極の下をくぐって広がるよう
に一体に構成された第1の入力ゲート電極、並びに相隣
る上記各移送電極相互間の部分の上記半導体基体上に絶
縁膜を介して設けられるとともに上記移送電極および上
記第1の入力ゲート電極とも絶縁して配設され第n番目
の上記移相電極と第n+1番目の上記移送電極との間に
おいては第1番目の上記チャネル領域から第n番目の上
記チャネル領域にわたって延びるように一体に構成され
た第2の入力ゲート電極を備えたことを特徴とする電荷
移送形半導体装置。
1 a semiconductor substrate provided with a plurality of channel regions having a first conductivity type and separated from each other via an inactive region;
an input diffusion region having a second conductivity type and provided at one end of the semiconductor substrate in common to each of the channels and supplying signal charges corresponding to the information input signal; an insulating film on the semiconductor substrate in the channel region; a transfer electrode for charge transfer provided in common with the plurality of channels and arranged in a direction along the channel; a transfer electrode provided on the semiconductor substrate in the channel region with an insulating film interposed therebetween; In the nth (n is a positive integer of 1 or more) channel, the first to nth transfer electrodes are disposed insulated from each other in a portion between the input diffusion region and the nth transfer electrode.
- a first input gate electrode formed integrally so as to pass under and spread under the first transfer electrode, and a portion between the adjacent transfer electrodes on the semiconductor substrate with an insulating film interposed therebetween; a first channel region between the n-th phase shift electrode and the n+1-th transfer electrode; A charge transport type semiconductor device comprising a second input gate electrode integrally configured to extend over the n-th channel region.
JP3063977A 1977-03-18 1977-03-18 Charge transfer type semiconductor device Expired JPS5858813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3063977A JPS5858813B2 (en) 1977-03-18 1977-03-18 Charge transfer type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3063977A JPS5858813B2 (en) 1977-03-18 1977-03-18 Charge transfer type semiconductor device

Publications (2)

Publication Number Publication Date
JPS53116081A JPS53116081A (en) 1978-10-11
JPS5858813B2 true JPS5858813B2 (en) 1983-12-27

Family

ID=12309398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3063977A Expired JPS5858813B2 (en) 1977-03-18 1977-03-18 Charge transfer type semiconductor device

Country Status (1)

Country Link
JP (1) JPS5858813B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240666Y2 (en) * 1983-07-05 1987-10-17

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240666Y2 (en) * 1983-07-05 1987-10-17

Also Published As

Publication number Publication date
JPS53116081A (en) 1978-10-11

Similar Documents

Publication Publication Date Title
US3983573A (en) Charge-coupled linear image sensing device
US4092734A (en) Analogue memory
JPS6236399B2 (en)
US4236830A (en) CCD Parallel-serial and serial-parallel charge transfer method and apparatus
GB1457253A (en) Semiconductor charge transfer devices
JPH01166561A (en) Charge transfer device
IE54240B1 (en) Charge-coupled device
US6111279A (en) CCD type solid state image pick-up device
JP3259573B2 (en) Charge transfer device and driving method thereof
JPS5858813B2 (en) Charge transfer type semiconductor device
US4090095A (en) Charge coupled device with diode reset for floating gate output
JPS5813999B2 (en) Denkaketsugososhinokudohou
JPH0556864B2 (en)
US3961352A (en) Multi-ripple charge coupled device
US4103109A (en) Ccd multiplexer
US4574295A (en) Charge coupled device having meandering channels
JP2509740B2 (en) Charge transfer device
US4216386A (en) Charge coupled device with reduced power consumption upon charge transfer
JP3128338B2 (en) Charge transfer element
JPH0669048B2 (en) Charge transfer device
CA1039405A (en) Multi-ripple charge coupled device
JPS5853861A (en) Charge coupled element
JPS597226B2 (en) Charge injection method into charge-coupled devices
JPH0123880B2 (en)
JPS6045519B2 (en) electronic equipment