JPS5858299B2 - Dehydration and sintering method for porous base material for low-loss optical fiber - Google Patents

Dehydration and sintering method for porous base material for low-loss optical fiber

Info

Publication number
JPS5858299B2
JPS5858299B2 JP6946780A JP6946780A JPS5858299B2 JP S5858299 B2 JPS5858299 B2 JP S5858299B2 JP 6946780 A JP6946780 A JP 6946780A JP 6946780 A JP6946780 A JP 6946780A JP S5858299 B2 JPS5858299 B2 JP S5858299B2
Authority
JP
Japan
Prior art keywords
base material
dehydration
optical fiber
porous base
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6946780A
Other languages
Japanese (ja)
Other versions
JPS5717433A (en
Inventor
隆夫 枝広
隆 森山
長 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6946780A priority Critical patent/JPS5858299B2/en
Publication of JPS5717433A publication Critical patent/JPS5717433A/en
Publication of JPS5858299B2 publication Critical patent/JPS5858299B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 この発明は、光フアイバ形成用のガラス原料ガスを酸水
素炎中で反応させてガラス微粉末を形成させ、これを棒
状基材の先端もしくは外周に堆積させてえられる多孔質
の母材を脱水焼結する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention can be obtained by reacting a frit gas for forming an optical fiber in an oxyhydrogen flame to form a fine glass powder, and depositing this on the tip or outer periphery of a rod-shaped base material. The present invention relates to a method for dehydrating and sintering a porous base material.

一般に、この種の多孔質母材を脱水焼結して透明ガラス
化するためには、カーボン炉を使用している。
Generally, a carbon furnace is used to dehydrate and sinter this type of porous base material to make it transparent vitrified.

このカーボン炉は、カーボンが発熱体のため焼結時の炉
内雰囲気を不活性に保つ必要がある。
Since carbon is a heating element in this carbon furnace, it is necessary to keep the atmosphere inside the furnace inert during sintering.

一方、長波長帯用光ファイバは、OH基混入量を極力減
らす必要から脱水処理を行なっている。
On the other hand, optical fibers for long wavelength bands are subjected to dehydration treatment because it is necessary to reduce the amount of OH groups mixed in as much as possible.

脱水剤として5OC12,CCl4等を用いた場合は、
酸素雰囲気であればその効果は犬である。
When using 5OC12, CCl4, etc. as a dehydrating agent,
If the atmosphere is oxygen, the effect is on dogs.

そこでカーボン炉を酸素雰囲気で使用できるようにする
ためにアルミナマツフルチューブによって焼結雰囲気と
カーボン発熱体とを隔離することが行われている。
Therefore, in order to make it possible to use a carbon furnace in an oxygen atmosphere, an alumina pine full tube is used to isolate the sintering atmosphere from the carbon heating element.

しかしながらアルミナは高純度化が難しく、また吸湿性
のために水分を含んでおり、焼結時に不純物や水分が光
フアイバ母材内に混入し光ファイバの伝送損失に悪影響
を与え、かつまたヒートショックに弱いという使用上の
問題もある。
However, it is difficult to make alumina highly pure, and it contains water due to its hygroscopic property, so impurities and water enter the optical fiber base material during sintering, adversely affecting the transmission loss of the optical fiber and causing heat shock. There is also a problem in its use that it is vulnerable to

この発明は、以上の観点からアルミナマツフルチューブ
にかえて高純度で、OH量の少ない製造が可能であり、
かつ焼結温度にも十分耐えうる石英製マツフルチューブ
を使用したもので、その特徴とするところは光フアイバ
用多孔質母材を石英製マツフルチューブが内装された加
熱炉内に導入し、前記加熱炉からの不純物を阻止した状
態で脱水焼結することにある。
From the above points of view, this invention can replace the alumina pine full tube with high purity and low OH content, and
It uses a quartz Matsufuru tube that can withstand sintering temperatures, and its unique feature is that the porous base material for optical fiber is introduced into a heating furnace containing a quartz Matsufuru tube. The purpose is to perform dehydration and sintering in a state where impurities from the heating furnace are blocked.

以下、この発明方法を図面に基づいて説明する。The method of this invention will be explained below based on the drawings.

第1図は、この発明方法を実施するのに使用される脱水
焼結炉の一例を示したもので、まずその構成について説
明すると、1はVAD (VapourPhase A
xial Deposition)法によってえられた
多孔質の光フアイバ母材で、棒状基材2の先端に堆積さ
れたもので、回転かつ上下動可能になされている。
FIG. 1 shows an example of a dehydration sintering furnace used to carry out the method of the present invention. First, its configuration will be explained. 1 is a VAD (VapourPhase A
It is a porous optical fiber base material obtained by a xial deposition method, and is deposited on the tip of a rod-shaped base material 2, and is made rotatable and movable up and down.

3は電気炉でカーボンヒータ4を備えている。3 is an electric furnace equipped with a carbon heater 4.

5は炉3内に内装された石英製のマツフルチューブ、6
,7ばこの石英製マツフルチューブ5の上、下端にフラ
ンジ接続された石英管炉これらは一体のものでもよい。
5 is a quartz pine full tube installed inside the furnace 3, 6
, 7 quartz tube furnaces connected by flanges to the upper and lower ends of the quartz pine full tube 5 may be integrated.

8は石英製マツフルチューブ5内に脱水ガス(He 、
5OC4、C12など)を供給するために下部石英管7
下端に設けられた脱水ガス供給口、9はカーボン炉5内
を不活性雰囲気に保つためのArガス入口である。
8 is a dehydration gas (He,
5OC4, C12, etc.) lower quartz tube 7
A dehydration gas supply port 9 provided at the lower end is an Ar gas inlet for maintaining the inside of the carbon furnace 5 in an inert atmosphere.

以上の構成になる脱水焼結炉内に表1の条件下で *V
AD法によってえられた多孔質母材を導いて脱水・焼結
を行ない、しかる後ファイバ化した。
In the dehydration sintering furnace configured as above under the conditions shown in Table 1 *V
The porous base material obtained by the AD method was guided, dehydrated and sintered, and then made into a fiber.

なお比較のためにアルミナマツフルチューブを内装した
従来のカーボン炉を使用して表1と同一条件下で多孔質
母材の脱水焼結を行ない、しかる後ファイバ化してみた
For comparison, a conventional carbon furnace equipped with an alumina pine full tube was used to dehydrate and sinter the porous base material under the same conditions as shown in Table 1, and then it was made into a fiber.

第2図は、かくしてえられた本発明方法によるファイバ
(I)と従来法によるファイバ(I)との不純物による
影響を調べたものである。
FIG. 2 shows an investigation of the influence of impurities on the fiber (I) obtained by the method of the present invention and the fiber (I) obtained by the conventional method.

図から明らかなように本願発明方法によるファイバ(I
)はほとんど不純物の吸収による損失の増加がないが、
従来法によるファイバ(II)はアルミナマツフルおよ
び炉内雰囲気からの不純物の吸収によって損失が増加し
ていることがわかる。
As is clear from the figure, the fiber (I
) has almost no increase in loss due to absorption of impurities, but
It can be seen that the fiber (II) produced by the conventional method has an increased loss due to the absorption of impurities from the alumina pulp and the atmosphere in the furnace.

また第3図は、この発明方法によるファイバ(I)と従
来法によるファイバ(II)との脱水処理効果を比較し
たものである。
Further, FIG. 3 compares the dehydration treatment effects of the fiber (I) according to the method of the present invention and the fiber (II) according to the conventional method.

図から明らかなようにこの発明方法によるファイバ(I
)にはOH吸収ピークは表われておらずOH含有量は1
ppb以下と推定されるのに比し、従来法によるファ
イバ(II)は波長1.38μ付近にOH吸収による損
失がみられる。
As is clear from the figure, the fiber (I
), no OH absorption peak appears and the OH content is 1.
It is estimated that the loss is less than ppb, but the conventional fiber (II) shows a loss due to OH absorption near a wavelength of 1.38μ.

この発明方法は、以上のようにVAD法、外付は法など
によってえられる多孔質ガラスファイバ母材を、高純度
にしてOH量の少ない石英製マツフルチューブを内装し
てなる炉内に導いて脱水焼結を行うものであるから発熱
体からの不純物の混入や、石英マツフルチューブからの
不純物およびOHの混入がなく、以って低損失の光ファ
イバをえることができる。
In the method of this invention, a porous glass fiber base material obtained by the VAD method or the external method is introduced into a furnace equipped with a high-purity quartz pine full tube with a low OH content. Since dehydration and sintering is carried out in the process, there is no contamination of impurities from the heating element or contamination of impurities and OH from the quartz pine tube, thereby making it possible to obtain an optical fiber with low loss.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明方法を実施するために使用される脱
水焼結炉の概略図、第2図は、この発明方法と従来法に
よってえられた光ファイバの不純物波長特性を示す説明
図、第3図はこの発明方法と従来法によってえられた光
ファイバのOH波長特性を示す説明図、 図において3・・・・・・電気炉、5・・・・・・石英
製マツフルチューブ。
FIG. 1 is a schematic diagram of a dehydration sintering furnace used to carry out the method of the present invention, and FIG. 2 is an explanatory diagram showing impurity wavelength characteristics of optical fibers obtained by the method of the present invention and the conventional method. Fig. 3 is an explanatory diagram showing the OH wavelength characteristics of optical fibers obtained by the method of this invention and the conventional method.

Claims (1)

【特許請求の範囲】[Claims] 1 光フアイバ用多孔質母材を、石英製マツフルチュー
ブが内装された加熱炉内に導入し、前記加熱炉からの不
純物を阻止した状態で脱水焼結することを特徴とする低
損失光ファイバ用多孔質母材の脱水焼結方法。
1. A low-loss optical fiber characterized in that a porous base material for optical fiber is introduced into a heating furnace equipped with a quartz pine full tube, and dehydrated and sintered in a state where impurities from the heating furnace are blocked. Dehydration and sintering method for porous base materials.
JP6946780A 1980-05-24 1980-05-24 Dehydration and sintering method for porous base material for low-loss optical fiber Expired JPS5858299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6946780A JPS5858299B2 (en) 1980-05-24 1980-05-24 Dehydration and sintering method for porous base material for low-loss optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6946780A JPS5858299B2 (en) 1980-05-24 1980-05-24 Dehydration and sintering method for porous base material for low-loss optical fiber

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP16847684A Division JPS6071536A (en) 1984-08-10 1984-08-10 Dehydrating and sintering process of porous parent material for optical fiber of low transmission loss

Publications (2)

Publication Number Publication Date
JPS5717433A JPS5717433A (en) 1982-01-29
JPS5858299B2 true JPS5858299B2 (en) 1983-12-24

Family

ID=13403489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6946780A Expired JPS5858299B2 (en) 1980-05-24 1980-05-24 Dehydration and sintering method for porous base material for low-loss optical fiber

Country Status (1)

Country Link
JP (1) JPS5858299B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140336A (en) * 1982-02-12 1983-08-20 Shin Etsu Chem Co Ltd Manufacture of base material for optical fiber
JPS59137334A (en) * 1983-01-22 1984-08-07 Sumitomo Electric Ind Ltd Manufacturing apparatus of base material for optical fiber
US4629485A (en) * 1983-09-26 1986-12-16 Corning Glass Works Method of making fluorine doped optical preform and fiber and resultant articles
JPS60210541A (en) * 1984-04-05 1985-10-23 Hitachi Cable Ltd Production of base material for optical fiber
JPS60239337A (en) * 1984-05-15 1985-11-28 Sumitomo Electric Ind Ltd Preparation of parent glass material for optical fiber
US5221309A (en) * 1984-05-15 1993-06-22 Sumitomo Electric Industries, Ltd. Method for producing glass preform for optical fiber
JP2549615B2 (en) * 1984-06-18 1996-10-30 住友電気工業株式会社 Sintering method of glass preform for optical fiber
US6904772B2 (en) 2000-12-22 2005-06-14 Corning Incorporated Method of making a glass preform for low water peak optical fiber
JP4463605B2 (en) 2003-05-09 2010-05-19 株式会社フジクラ Optical fiber preform and manufacturing method thereof
EP1650171A4 (en) * 2003-06-25 2011-08-10 Fujikura Ltd Method and apparatus for producing base material of optical fiber
KR100713460B1 (en) * 2005-12-20 2007-04-30 삼성전자주식회사 Apparatus for sintering optical fiber preform

Also Published As

Publication number Publication date
JPS5717433A (en) 1982-01-29

Similar Documents

Publication Publication Date Title
CA1123684A (en) Method of making dry optical waveguides
KR910000730B1 (en) Method for producing glass preform for optical fiber
JPS5858299B2 (en) Dehydration and sintering method for porous base material for low-loss optical fiber
JPS5688836A (en) Preparation of glass stock for optical fiber
KR910009177B1 (en) Method for producing glass preform for optical fiber
US4295869A (en) Process for producing optical transmission fiber
EP0170249B1 (en) Method for producing glass preform for optical fiber
CA1238247A (en) Method for producing glass preform for optical fiber
JPS6071536A (en) Dehydrating and sintering process of porous parent material for optical fiber of low transmission loss
GB2171691A (en) Method of treating preform for optical fiber
JPS54134128A (en) Manufacture of basic material for light transmitting fiber
JP2565712B2 (en) Optical fiber manufacturing method
JPS591219B2 (en) Dehydration treatment method for porous base material for optical fiber
JPS5915093B2 (en) Manufacturing equipment for anhydrous silica optical fiber base material
JP4565221B2 (en) Optical fiber preform
JPH01145346A (en) Production of optical fiber preform
JPS6476927A (en) Heating oven for optical fiber parent glass and its production
JP2640745B2 (en) Method for manufacturing opaque glass preform
JPS649831A (en) Production of preform for optical fiber
JPH0218333A (en) Heat treatment of porous base material
JPS5767032A (en) Manufacture of base material for rod lens
JPH04260630A (en) Production of preform optical fiber
JPS63315531A (en) Production of optical fiber preform
JPS6437429A (en) Production of intermediate product for optical fiber
JPH0469569B2 (en)