JPS5858275A - Vapor deposition device - Google Patents

Vapor deposition device

Info

Publication number
JPS5858275A
JPS5858275A JP15618681A JP15618681A JPS5858275A JP S5858275 A JPS5858275 A JP S5858275A JP 15618681 A JP15618681 A JP 15618681A JP 15618681 A JP15618681 A JP 15618681A JP S5858275 A JPS5858275 A JP S5858275A
Authority
JP
Japan
Prior art keywords
vapor deposition
vapor
evaporation source
substrate
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15618681A
Other languages
Japanese (ja)
Inventor
Mario Fuse
マリオ 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP15618681A priority Critical patent/JPS5858275A/en
Publication of JPS5858275A publication Critical patent/JPS5858275A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide vapor-deposited films of a uniform thickness on many substrates with one time of vapor deposition treatment by providing a supporting body for a vapor source at the center of a vacuum vessel in the position equidistant from respective substrate holders, and moving the vapor source vertically along the supporting body. CONSTITUTION:Substrate holders 3 are mounted to the cryogenic panels 2 disposed in a bell-jar 1, and substrates 4 are fixed and held to the holders 3. A supporting body 5 for a vapor source is located on the centerline of the bell-jar 1, and a vapor source 6 contg. evaporating materials 7 is supported to said body. The source 6 is moved vertically along the body 5 according to adequate scanning parameters. Vapor-deposited films of a uniform thickness are obtained by such device, and the number of the large area substrates to be treated per batch is increased.

Description

【発明の詳細な説明】 本発明は蒸着装置の改良に関し、I¥fK大面積基板上
に均一な膜厚の蒸嵩膜を形成することができ、かつ1回
の蒸着工程で多数の基板圧着膜させることのできる蒸着
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a vapor deposition apparatus, which is capable of forming a vaporized film with a uniform thickness on a large-area I¥fK substrate, and which is capable of bonding a large number of substrates in a single vapor deposition process. The present invention relates to a vapor deposition apparatus that can form a film.

一般に大面積基板全面に均一な厚みの薄膜堆積を行なう
場合、従来は蒸発源を固定し、基板を自公転させる方法
をとっていた。
Generally, when depositing a thin film of uniform thickness over the entire surface of a large-area substrate, conventional methods have been used in which the evaporation source is fixed and the substrate is rotated around its axis.

この方法の主な欠点は以下の2つである。The two main drawbacks of this method are:

(1)自公転に必要な回転駆動系が大規模でかつ複雑に
なり、真空槽の空間を可成多く占有する。
(1) The rotation drive system required for rotation and revolution becomes large-scale and complicated, and occupies a considerable amount of space in the vacuum chamber.

その為、他の各種モニター装置(例えば、蒸着速度モニ
ター、膜厚モニター等)或いは各種分析装置1li(イ
オン・ガン、オージェ寛子分光用のエネルギー分析器等
)の設定位置にかなりの制限が課せられる。
Therefore, considerable restrictions are imposed on the setting positions of various other monitoring devices (e.g., evaporation rate monitor, film thickness monitor, etc.) or various analysis devices (ion gun, energy analyzer for Hiroko Auger spectroscopy, etc.). .

(11)被蒸着体をのせる基板ホルダーの位置は、通常
、真空槽の中央下方に配置された蒸着源の上方にある為
、大面積基板を装!jるホルダーの大きさは、おおよそ
真空槽の断面積(真空槽底面に平行な平面で切断した面
)になり、真空槽(ペルジャー)の内径でほぼ決まって
しまう。
(11) The position of the substrate holder on which the object to be evaporated is usually located above the evaporation source located below the center of the vacuum chamber, making it easy to mount large-area substrates! The size of the holder is approximately the cross-sectional area of the vacuum chamber (a plane cut along a plane parallel to the bottom of the vacuum chamber), and is approximately determined by the inner diameter of the vacuum chamber (Pelger).

従って 1 、、@ツチあたりの大面積基板の処理枚数
を大きくすることができない。
Therefore, it is not possible to increase the number of large-area substrates processed per unit.

本発明は、上記の欠点を排除てるためになされたもので
あって、その目的は一回の蒸着工程により多数の基板に
均一な膜厚の蒸着膜を与えるような蒸着装置を提供する
ことである。
The present invention has been made to eliminate the above-mentioned drawbacks, and its purpose is to provide a vapor deposition apparatus that can provide a deposited film of uniform thickness to a large number of substrates through a single vapor deposition process. be.

上記の目的は真空槽の中に蒸布源、蒸着源支持体および
複数個の基板ホルダーを収容してなる蒸溜装置において
、該蒸発源支持体は真空槽の中央でかつ各基板ホルダー
から等距離になるように設けられており、該蒸着源が前
記蒸着源支持体に沿ってE下に移動するようになってい
ることを特徴とする蒸着装置によって達成される。
The above purpose is to provide a distillation apparatus comprising an evaporation source, an evaporation source support, and a plurality of substrate holders housed in a vacuum chamber, with the evaporation source support located at the center of the vacuum chamber and equidistant from each substrate holder. This is achieved by a vapor deposition apparatus characterized in that the vapor deposition source is moved downward along the vapor deposition source support.

本発明の蒸着装置においては基板を固定し、蒸発源を蒸
発源支持体に沿って上下に移動することにより、大面積
基板全面に均一な膜厚の膜の堆積が可能である。又、移
動物が小さい蒸発源であるので、上下移動装置は小型佳
しコンパクトにすることができて、真空槽内での占有空
間は、従来の方法の場合よりも減少し、他のモニター絞
直或いは分析装置の配置に充分に余裕が生じる。又、蒸
発源は軽量であり、従ってその移動に際し発生する振動
は小さい。
In the vapor deposition apparatus of the present invention, by fixing the substrate and moving the evaporation source up and down along the evaporation source support, it is possible to deposit a film with a uniform thickness over the entire surface of a large-area substrate. In addition, since the moving object is a small evaporation source, the vertical moving device can be made small and compact, and the space occupied in the vacuum chamber is reduced compared to the conventional method. There is sufficient leeway in the arrangement of direct or analytical equipment. Furthermore, the evaporation source is lightweight, and therefore the vibrations generated during its movement are small.

これに対し、従来の方法では、大面積基板を複数枚装着
した基板ホルダーを回転するので、回転の際に無視でき
ない振動を生じ、作製した薄膜テバイスに悪影響を及ぼ
丁。しかも、この振動は回転駆動系の故障の原因の一つ
であることが多い。
In contrast, in conventional methods, a substrate holder with multiple large-area substrates mounted thereon is rotated, which generates non-negligible vibrations that adversely affect the fabricated thin-film devices. Moreover, this vibration is often one of the causes of failures in the rotary drive system.

第1図および第2図に示すとおり、真空槽[壁と平行に
なるように設置するため、基板ホルダーの寸法は真空槽
の@璧の表面績に依存している。例えば、内径3001
111.高さ600關の真空槽で、240o+X80m
の大きさの大面積基板を蒸着する場合に、有効断面積は
〜1800 cm”  になり、従来方法では1バツチ
あたり筒48枚しか着脱できないが、本装置を用いると
、有効側壁表面績は、〜500 cat”  になり、
16枚程度になり1バツチあたりの処理枚数は、従来方
法の2倍になる。
As shown in FIGS. 1 and 2, since the substrate holder is installed parallel to the wall of the vacuum chamber, the dimensions of the substrate holder depend on the surface roughness of the vacuum chamber. For example, inner diameter 3001
111. 240o+X80m in a vacuum chamber with a height of 600m
When depositing a large-area substrate with a size of , the effective cross-sectional area is ~1800 cm'', and with the conventional method, only 48 tubes can be attached and detached per batch, but with this device, the effective sidewall surface area is ~500 cat”
The number of sheets processed per batch is approximately 16, which is twice as many as in the conventional method.

本発明の蒸着装置を図面によって説明する。第1図は本
発明の装置の縦断[ilI図であり、縞2図は横断面図
である。これらの図において1は通常ステンレス製の4
ルジヤーで、その中にクライオ・パネル2が配置されて
いる。クライオ・/Rネル中には液体窒素または冷却水
を0ルして冷却面を作り、真空空間の放出される蒸着粒
子または残留ガス分子をこの冷却面で捕獲し、蒸着粒子
の拡散によるペルジャー内壁の汚染を防ぐようになって
いる。
The vapor deposition apparatus of the present invention will be explained with reference to the drawings. FIG. 1 is a longitudinal cross-sectional view of the device of the present invention, and FIG. 2 is a cross-sectional view. In these figures, 1 is usually made of stainless steel.
It is Luzier, and Cryo Panel 2 is placed inside it. In the cryo/R channel, liquid nitrogen or cooling water is added to create a cooling surface, and the vapor deposited particles or residual gas molecules released in the vacuum space are captured on this cooling surface, and the diffusion of the vapor deposited particles causes the inner walls of the Pelger to cool. is designed to prevent contamination.

3はクライオ・、eネルに取付けられている基板ホルダ
ーであり、蒸Nするための基板4を固定保持するだめの
ものである。5は蒸着源6を支持するだめの支持体であ
ってペルジャー中心線上に位置し、蒸発源はこの支持体
に沿って上下に移動することができる。蒸発源6は蒸着
物別7を収納する容器であって耐熱性物別で形成されて
いる。8は基板4を加熱するだめのヒーターである。第
6図は蒸発源と基板との位t#L関係を示す図であり、
Z軸を蒸発源支持棒の回きにとり、z=0の点を蒸発源
の最下端位置とし、ZmaXを最上端位置とし、真空槽
内の任意の点を円筒座標で表わすものとする。従って蒸
発源は真空槽内壁に配置された高さLの複数個の基板の
中心線(z軸)上を座標(0゜k止X)の範囲内で上下
に移動することになる。
Reference numeral 3 denotes a substrate holder attached to the cryo-channel, and is used to securely hold the substrate 4 for evaporation. Reference numeral 5 denotes a support body for supporting the evaporation source 6, which is located on the Pelger center line, and the evaporation source can move up and down along this support body. The evaporation source 6 is a container for storing a vapor deposited material 7 and is made of heat-resistant material. 8 is a heater for heating the substrate 4. FIG. 6 is a diagram showing the position t#L relationship between the evaporation source and the substrate,
Let the Z-axis revolve around the evaporation source support rod, the point Z=0 is the lowest position of the evaporation source, ZmaX is the highest position, and any point in the vacuum chamber is expressed in cylindrical coordinates. Therefore, the evaporation source moves up and down within the range of coordinates (from 0°k to

第1図及び第6図を用いて本発明の詳細な説明する。The present invention will be explained in detail using FIGS. 1 and 6.

第1図において、蒸発源6の位置を固定すると、以下で
説明される通り、大面積基板4上に形成される膜厚分布
巾は大きくなり、本発明の目的の一つである均な膜厚を
有する蒸着膜の形成は達成されない。
In FIG. 1, when the position of the evaporation source 6 is fixed, the thickness distribution width of the film formed on the large-area substrate 4 increases, as will be explained below. The formation of a deposited film with a thickness is not achieved.

蒸発源が仮に、z=0の位置に静止しているとすると、
膜厚は、蒸発源から基板上の任意の点までの距離の2乗
に逆比例するから断面が第4図に示したような上方が薄
くて下方に行(に従って厚く片寄った膜厚分布1を示す
Assuming that the evaporation source is stationary at the position of z = 0,
Since the film thickness is inversely proportional to the square of the distance from the evaporation source to any point on the substrate, the film thickness distribution 1 is thinner at the top and thicker at the bottom, as shown in Figure 4. shows.

しかしながら本発明によれは、蒸発源の位置を真空槽中
心線上に位置する支持体5に沿って移動させることによ
り、大面積基板上に均一膜厚を有てる薄膜を堆積する。
However, according to the present invention, a thin film having a uniform thickness is deposited on a large area substrate by moving the position of the evaporation source along the support 5 located on the center line of the vacuum chamber.

蒸発源の走査パラメータは蒸発源の走査距離周期T2か
ら成る。上記パラメータは要求される膜厚、要求される
膜厚のばらつきをはじめとして、基板の長さし、蒸発源
形状及び寸法、蒸発源から基板までの距離γ8(第3図
参照)に依存するから、これらのパラメータを固定した
上で、走査、Rラメータの最適化を行なうことによって
大面積基板上に任意所望の均一な厚さを有する蒸有膜を
得ることができる。
The scanning parameters of the evaporation source consist of the scanning distance period T2 of the evaporation source. The above parameters depend on the required film thickness, variations in the required film thickness, the length of the substrate, the shape and dimensions of the evaporation source, and the distance γ8 from the evaporation source to the substrate (see Figure 3). By fixing these parameters and optimizing the scanning and R parameters, a deposited film having any desired uniform thickness can be obtained on a large-area substrate.

本発明の装置は、10−6〜10−5Torr  台の
高真空における蒸★の4ならず、1O−8Torr以下
の超高真空における薄膜の蒸着(例えば分子線エピタキ
シー、分子−惑M)において、多数の大面積基板上への
均−Illネ厚の堆積を可能にするものでこれらの技術
分野において極めて有用である。
The apparatus of the present invention can perform thin film deposition (e.g., molecular beam epitaxy, molecular epitaxy) not only in a high vacuum of 10-6 to 10-5 Torr, but also in an ultra-high vacuum of 10-8 Torr or less. It is extremely useful in these technical fields as it allows for deposition of uniform thickness on a large number of large area substrates.

例えば、大面積ディスプレイ、大面積読取装置等への応
用として、大面積基板上に薄膜トランジスターを形成す
る場合、或いは光電素子の形成において特に可動である
For example, it is particularly useful in the formation of thin film transistors on large area substrates, or in the formation of optoelectronic devices, for applications in large area displays, large area reading devices, etc.

特に、超高真空におけるエピタキシーでは通常各穐モニ
ター装憤及び分析装置が真空槽内に導入されるので、本
発明装−〇1つ大きな利点である省スペース性は、1バ
ツチあたりの処理枚数を増加させるために檜めて有利な
特徴点である。
In particular, in epitaxy in an ultra-high vacuum, each monitor mounting and analysis device is usually introduced into a vacuum chamber, so the space saving, which is one of the major advantages of the present invention, reduces the number of wafers processed per batch. This is an advantageous feature to increase.

以下の実施例によって本発明を更に具体的に説明する。The present invention will be explained in more detail with reference to the following examples.

実施例 At虻#51i&叡のA4蒸層に進用した例な次に示内
径30 Q wxΦ、高さ600−のステンレス族にル
ジャー内に設置された、250flΦ、高さ30010
1のAt製基板ホルダー上に、240WX801111
のガラス基板を10枚装着する。
Example: The following is an example of the A4 steam layer of At #51i&A.The following is an example of the case where the inner diameter is 30 Q w x Φ, the height is 600 -, and it is installed in a stainless steel Luger, 250 fl Φ, height 30010
240WX801111 on the At substrate holder of 1.
Attach 10 glass substrates.

次にこのペルジャーを10−6Torr台まで排気した
後、基板ホルダーを200Cに加熱して、At蒸着を開
始する。
Next, after evacuating this Pelger to a level of 10 −6 Torr, the substrate holder is heated to 200 C and At vapor deposition is started.

あらかじめ均一な膜厚を得ように最適化した蒸発源の走
査l!ラメータにより、蒸発源支持棒に沿って蒸発源の
位置を同期的に変化させ最終膜厚1μmに対し、±5%
以内の膜厚の均一性を得た。
Scanning of the evaporation source optimized to obtain a uniform film thickness in advance! The position of the evaporation source is changed synchronously along the evaporation source support rod using a ray meter, and ±5% is applied to the final film thickness of 1 μm.
The uniformity of the film thickness was obtained within

以上の説明においては便宜上真空槽としてペルジャーを
用いた例について述べたが、断面が正角角形の任意の角
柱状真空槽も同様にして使用することができることはい
うまでもない。
In the above description, an example in which a Pelger was used as the vacuum chamber was described for convenience, but it goes without saying that any prismatic vacuum chamber with a square cross section can be used in the same manner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の縦断面図であり、第2図は横断面
図であり、第6図は蒸発源と基板との位置関係を示す図
であり、第4図は静止した蒸発源を使用したときの基板
への蒸着膜厚分布を示す図である。 図中相対:1−一一ベルジャー、2−m−クライオ・ノ
ミネル、6−−−基板ホ′ルダー、4−−一基板、5−
m−支持体、6一 −−蒸発源、7一−−蒸発物債、8− (ほか6名) Is 1 図 II 2 図
FIG. 1 is a longitudinal cross-sectional view of the apparatus of the present invention, FIG. 2 is a cross-sectional view, FIG. 6 is a diagram showing the positional relationship between the evaporation source and the substrate, and FIG. 4 is a stationary evaporation source. FIG. 2 is a diagram showing the distribution of the thickness of the vapor deposited film on the substrate when using the method. Relatives in the diagram: 1-11 bell jar, 2-m-cryo-nominal, 6--substrate holder, 4--1 substrate, 5-
m-support, 6--evaporation source, 7--evaporation bond, 8- (and 6 others) Is 1 Figure II 2 Figure

Claims (1)

【特許請求の範囲】[Claims] 真空槽の中に蒸着源、蒸着源支持体および複数個の基板
ホルダーを収容してなる蒸着装置において、該蒸着源支
持体は真空槽の中央でかつ各基板ホルダーから等U離に
なるように設けられており、該蒸着源が前記蒸着源支持
体に沿って上下に移動するようになっていることを特徴
とする蒸着装置。
In a vapor deposition apparatus in which a vapor deposition source, a vapor deposition source support, and a plurality of substrate holders are housed in a vacuum chamber, the vapor deposition source support is located at the center of the vacuum chamber and at an equal U distance from each substrate holder. A vapor deposition apparatus, characterized in that the vapor deposition source is provided in such a way that the vapor deposition source moves up and down along the vapor deposition source support.
JP15618681A 1981-10-02 1981-10-02 Vapor deposition device Pending JPS5858275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15618681A JPS5858275A (en) 1981-10-02 1981-10-02 Vapor deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15618681A JPS5858275A (en) 1981-10-02 1981-10-02 Vapor deposition device

Publications (1)

Publication Number Publication Date
JPS5858275A true JPS5858275A (en) 1983-04-06

Family

ID=15622240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15618681A Pending JPS5858275A (en) 1981-10-02 1981-10-02 Vapor deposition device

Country Status (1)

Country Link
JP (1) JPS5858275A (en)

Similar Documents

Publication Publication Date Title
US4798165A (en) Apparatus for chemical vapor deposition using an axially symmetric gas flow
US5587019A (en) Apparatus for use in epitaxial crystal growth
JPS6289871A (en) Method and apparatus for constituting chemical vapor deposition reaction apparatus having axial symmetry
US3608519A (en) Deposition reactor
US5759634A (en) Jet vapor deposition of nanocluster embedded thin films
JPH07145477A (en) Apparatus for forming ceramic coating
US4058638A (en) Method of optical thin film coating
CN219603663U (en) Vacuum coating device
US3417733A (en) Apparatus for vacuum coating
JPH07100861B2 (en) Method and apparatus for performing chemical vapor deposition using an axisymmetric flow of gas
RU169200U1 (en) The device is a vacuum-plasma homogeneous surface modification of parts
JPS63246814A (en) Thin film formation apparatus
JPS5858275A (en) Vapor deposition device
EP0969120B1 (en) Method for plasma deposition
KR100661912B1 (en) Apparatus for thin film deposition and method of the same
KR20210074343A (en) Evaporation apparatus for evaporating material and method for evaporating material using the evaporation apparatus
TW201840876A (en) Deposition source and deposition apparatus having the same
JP2001234335A (en) Vapor deposition system
US3675624A (en) Apparatus for rotating work for thin film deposition
JPH09202965A (en) Electron beam vapor deposition apparatus
KR100358760B1 (en) In-situ Physical Vapor Deposition Equipment
JPH0532468B2 (en)
JPH01291421A (en) Vapor growth apparatus
JPH04202773A (en) Film forming method and corrector used therefor
JPH06116715A (en) Vacuum vapor deposition device