JPS5857745A - Preparation of complementary semiconductor device - Google Patents

Preparation of complementary semiconductor device

Info

Publication number
JPS5857745A
JPS5857745A JP56156683A JP15668381A JPS5857745A JP S5857745 A JPS5857745 A JP S5857745A JP 56156683 A JP56156683 A JP 56156683A JP 15668381 A JP15668381 A JP 15668381A JP S5857745 A JPS5857745 A JP S5857745A
Authority
JP
Japan
Prior art keywords
silicon
region
substrate
oxide film
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56156683A
Other languages
Japanese (ja)
Inventor
Nobuhiro Endo
遠藤 伸裕
Yukinori Kuroki
黒木 幸令
Yukinobu Tanno
丹野 幸悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56156683A priority Critical patent/JPS5857745A/en
Priority to US06/395,110 priority patent/US4637127A/en
Priority to DE19823225398 priority patent/DE3225398A1/en
Publication of JPS5857745A publication Critical patent/JPS5857745A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76294Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using selective deposition of single crystal silicon, i.e. SEG techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a minute complementary metal oxide semiconductor (CMOS) device by forming isolatedly the epitaxial layers through self-alignment manner in the form of island in such a method as partly including the surface of amorphous dielectric material on the single crystal Si substrate. CONSTITUTION:The thermal oxide film 42 on the n type Si substrate 41 is selectively removed, and the smooth n type single crystal Si 43 is formed over the substrate at 950-1,100 deg.C with a pressure of 80Torr using H2 as the carrier and SiH2Cl2. After the oxide film 44 is formed, the p well 45 is formed selectively by the ordinary method, then the oxide film 46 is newly formed, the n well is then formed, and threshold voltages of these are respectively adjusted. Next, the phosphorus (P) additive poly-Si gate electrode 47 is formed and the n layer 49, p layer 50 are formed by the ion implantation selectively using the resist mask 48. After the appealing, such layers are covered with the phospho-silicate glass (PSG), the Al electrode 52 is provided and the Al-Si alloy is obtained under the H2 atmosphere, thus completing a device. According to this structure, a minute CMOS device can be obtained which remarkably reduces diffusion capacitance and moreover prevents existence of single- and poly-crystal transitional regions.

Description

【発明の詳細な説明】 本発明は、p型チャネル電界効果トランジスタとall
チャネル電界効果トランジスタを伴せ形成してなる相補
型半導体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to p-type channel field effect transistors and all
The present invention relates to a method of manufacturing a complementary semiconductor formed with a channel field effect transistor.

相補型半導体装置として、ゲルト絶縁物にシリコン酸化
膜を用いた絶縁ゲートかし曝≠キ=ネ電界効果型トラン
ジスタから成るCMC)B(阜tmp )−eXnen
tary Metal (Jid 8emicondu
ctor)がよく知られている。従来のCMO8は、シ
リコン単結晶基板上の一部にその基板の導電タイプとは
極性の異なる領域(所謂ウェル)を設け、基板領域又は
ウェル領域のbずれかにpiJlチャネルMUiSトラ
ンジスタを設は他方にG’jn型チャネルMO&トラン
ジスタをそれぞれ設けて形成していた・しかる和こうし
た従来構造では1次に示すような欠点を有して^た・第
1Vcp型チヤ、誹ルトツンジスタとnuチャネルトラ
ンジスタとの間にウェルを介してバイポーラトランジス
タが寄生的に形成されることがあげられる・これは、電
源の入力時にナージ電圧が加わると、多数キャリアが発
生しソース又はドレインのpn接合に順方向のバイヤス
が印加され、基体又はウェル中に電流が流れる現象(所
謂ラッチアップ)が生じ易いと込う欠点に結びつく・こ
の2ツチアツプ現象を防止するためKp鉦チャネルトラ
ンジスタおよびn型チャネルトランジスタOg成領域間
の距離を10μm以上離したシ、それぞれの領域の囲り
にガードリング層を設けた)する手法が従来採用されて
いたが、好まし1結果を得てはbな−、その理由は種々
あるが、總lは集積回路のチップ面積の増加を招き。
As a complementary semiconductor device, a CMC consisting of an insulated gate using a silicon oxide film as a gel insulator and a field effect transistor is used.
Tary Metal (Jid 8emicondu
ctor) is well known. In the conventional CMO8, a region (so-called well) with a polarity different from the conductivity type of the substrate is provided in a part of a silicon single crystal substrate, and a piJl channel MUiS transistor is provided in either the substrate region or the well region. However, this conventional structure has the following drawbacks: A bipolar transistor is formed parasitically through a well in between. This is because when a surge voltage is applied when power is input, majority carriers are generated and a forward bias is created in the pn junction of the source or drain. This leads to the disadvantage that a phenomenon in which a current flows in the substrate or well (so-called latch-up) is likely to occur.In order to prevent this double-up phenomenon, the distance between the Kp channel transistor and the n-type channel transistor Og formation region is increased. Conventionally, a method has been adopted in which a guard ring layer is provided around each region with a distance of 10 μm or more, but it is not possible to obtain favorable results.There are various reasons for this. This leads to an increase in the chip area of integrated circuits.

高集積化中島密度化が困難となることであ)、第2はp
tmおよびn型の拡散領域が多く存在するために、寄生
のpn接合が増え、高速化の障害となること、であろう
The second is that p
Since there are many tm and n-type diffusion regions, the number of parasitic pn junctions increases, which becomes an obstacle to increasing the speed.

こうした従来構造の欠点を改善する方法としてS08 
(旦i11con on qapphire) My板
を使用したCMOBが提案されている。しかしこのよう
な異種基板の上に成長させたエピタキシャルシリコン膜
には、高密度の欠陥が存在し、欠陥を起因とした接合リ
ークが発生し易いことがあJ)、 I!tcFi80S
基板の高価格化等々の問題もあるので、特殊な用途のみ
(使用されて匹るに過ぎなかった。
S08 is a method to improve these drawbacks of the conventional structure.
(Dan i11con on qapphire) A CMOB using the My board has been proposed. However, epitaxial silicon films grown on such heterogeneous substrates have a high density of defects, and junction leakage due to defects is likely to occur.J), I! tcFi80S
Due to problems such as the rising cost of substrates, they were only used for special purposes.

これらの問題点のいくつかを解決するために、さらに部
分的に形成した非晶質誘電体膜を有するシリコン基板を
用いて、非晶質誘電体膜上に堆積した多結晶シリコンを
電界効果トランジスタのソース・ドレイン領域としたC
MO8構造が提案されル[到った。これは、 BO−C
MOS (BuriedQxide CMO8)と称さ
れておシ%例えばジャパニーズ・ジャーナル・オプ・ア
ゲライド・フィシ(ックス(Japanese Jou
rnal of AppliedPhysics)誌、
 1979年、第18巻、45頁〜50頁に報告されて
いる。しかしこうした従来の所謂HO−CM U S構
成では、誘電体表面に堆積されたシリコンは多結晶型に
なってしまうために、スイッチング速度を決めるトラン
ジスタのチャネル領域又はその一部に使用することは困
難であシ。
In order to solve some of these problems, a silicon substrate with a partially formed amorphous dielectric film is used to form a field effect transistor using polycrystalline silicon deposited on the amorphous dielectric film. C as the source/drain region of
The MO8 structure was proposed and arrived at. This is BO-C
MOS (BuriedQxide CMO8)
rnal of Applied Physics) magazine,
Reported in 1979, Vol. 18, pp. 45-50. However, in such conventional so-called HO-CMUS configurations, the silicon deposited on the dielectric surface becomes polycrystalline, making it difficult to use it for the channel region of a transistor or a part thereof, which determines the switching speed. Adashi.

また単結晶と多結晶シリコンとの間に、遷移領域が存在
するので、素子設計時に余裕を見込む必要が生じ、素子
の微細化に対して欠点となってbた。
Furthermore, since there is a transition region between the single crystal and polycrystalline silicon, it is necessary to allow for a margin when designing the device, which is a disadvantage in terms of miniaturization of the device.

本発明は@ p’!lチャネル電界効果トランジスタお
よびnfiチャネル電界効果トランジスタを伴せ形成し
てなる相補型半導体装置の製造方法において、単結晶シ
リコン基板上に部分的に非晶質誘電体を設け4工程、前
記非晶質誘電体の換厚よシも少くと4厚くなるように不
純物の種類および濃度を制御してエピタキシャルシリコ
ンを少くとも一層以上堆積する工程、前記エピタキシャ
ルシリコン膜上にゲート絶縁膜を形成する工程、*記非
晶質1WWL体上に堆積した前記エピタキシャルシリコ
ンI[に前記pWlチャネルトランジスタのンース拡散
領域、ドレイン拡散1[1tIR,ゲート領域の少くと
吃いずれか1つもしくは前記nmチャネルトランジスタ
のソース拡散領域、ドレイン拡散額板、ゲート領域の少
くともbずれか1)を設ける工程。
The present invention is @p'! In a method of manufacturing a complementary semiconductor device formed with an L-channel field effect transistor and an NFI-channel field effect transistor, an amorphous dielectric is partially formed on a single crystal silicon substrate, and four steps are performed to form the amorphous dielectric. a step of depositing at least one layer of epitaxial silicon by controlling the type and concentration of impurities so that the thickness of the dielectric becomes at least 4 thick; a step of forming a gate insulating film on the epitaxial silicon film; * The epitaxial silicon I deposited on the amorphous WWL body includes at least one of the source diffusion region of the pWl channel transistor, the drain diffusion region of the pWl channel transistor, and at least one of the gate regions or the source diffusion region of the nm channel transistor. , drain diffusion plate, and gate region.

とt−aんで成ることを特徴とする相補型半導体装置の
製造方法を提供するものであふ。
The present invention provides a method for manufacturing a complementary semiconductor device characterized by comprising: and t-a.

以下1本発明の詳細な説明する準備として、従来のB 
O−CMυSTg成と本発明によって製造しようとして
いる新規構成とを比較しながら図を用いて説明する。第
1図は、従来のBO−chtos構成の特徴を説明する
ために示したcmosインバータの模式的断面図である
0通常、1がn型シリコン基体、2がpウェル、3が誘
電体@、列えばシリコンの酸化膜、4がエピタキシャル
シリコンI!、  5がエピタキシャル成長時に堆積さ
れた多結晶シリコン膜、6がフィールド酸化1lli!
、7がゲート酸化膜、8および9がn型チャネルMO8
)ランジスタのそれぞれゲート用多結晶シリコンとソー
ス・ドレイン拡散領域で、10および11がp!!チャ
ネルPm0Sトランジスタのそれぞれゲート用多結晶シ
リコンとソース・ドレイン拡fBt領域で、12が層間
絶縁楔、例えばCVD法によるPS u@、そして13
がコンタクト穴の上に配線されるアルミニウムという構
成が多用されている。
Below, as a preparation for detailed explanation of the present invention, the conventional B
The O-CMυSTg configuration and the new configuration to be manufactured by the present invention will be explained using the drawings while comparing them. FIG. 1 is a schematic cross-sectional view of a cmos inverter shown to explain the features of a conventional BO-chtos configuration. Normally, 1 is an n-type silicon substrate, 2 is a p-well, 3 is a dielectric @, In the row, silicon oxide film, 4 is epitaxial silicon I! , 5 is the polycrystalline silicon film deposited during epitaxial growth, and 6 is the field oxidation 1lli!
, 7 is a gate oxide film, 8 and 9 are n-type channel MO8
) 10 and 11 are p! polycrystalline silicon for gate and source/drain diffusion regions of transistor, respectively. ! The polycrystalline silicon for the gate and the enlarged fBt region for the source and drain of the channel Pm0S transistor, respectively, 12 is an interlayer insulation wedge, for example, PS u@ by CVD method, and 13 is
An aluminum configuration is often used in which the contact hole is wired over the contact hole.

こうした従来構成はトランジスタのソース・ドレインの
大部分が#S亀框体ある酸化膜を介して基板と接続され
ていることが特徴的であシ、このため接合容量が低減さ
れ、高速動作が期待される。しかる#C1l電体上に堆
積され九シリコン膜は多結晶であるが故に、スイッチン
グ特性に著しい影響を及ぼすキャリヤ移動度が小さく、
チャネル領域もしくはその一部に使用することは困難で
ある・それに対して第2図は本発明の特徴的な構成を第
1図に対比して示した模式的断面図であ)、通常101
がII!Iシリコン基板、102がpウェル、103が
非晶質誘電体、91えはシリコンの酸化膜、104がエ
ピタキシャルシリコン@、tOSがゲート酸化IK、 
106および107がn型チャネルMO8トランジスタ
のそれぞれゲート用多結晶シリコンとソース・ドレイン
拡散領域で、108および109がpIIチャネルMO
8ト’)ンジスタのそれぞれゲート用多結晶シリコンと
ソース・ト°レイン拡散領域で、110が層間絶縁1[
,111がアル(=クムという構成が使用される。ここ
で誘電体103の上にはエピタキシャルシリコンが堆積
されていることが特徴的で、ll電体膜厚よりも厚くエ
ピタキシャルシリコンを堆積することにより、ある距離
だけ誘電体端から単結晶性シリコン膜が形成され。
A characteristic of this conventional configuration is that most of the source and drain of the transistor are connected to the substrate via an oxide film with #S framework, which reduces the junction capacitance and is expected to achieve high-speed operation. be done. However, since the silicon film deposited on the #C1l conductor is polycrystalline, its carrier mobility, which significantly affects the switching characteristics, is small.
It is difficult to use it in the channel region or a part thereof (Fig. 2 is a schematic cross-sectional view showing the characteristic configuration of the present invention in comparison with Fig. 1), and normally 101
II! I silicon substrate, 102 is p-well, 103 is amorphous dielectric, 91 is silicon oxide film, 104 is epitaxial silicon@, tOS is gate oxide IK,
106 and 107 are the gate polycrystalline silicon and source/drain diffusion regions of the n-type channel MO8 transistor, and 108 and 109 are the pII channel MO8 transistors.
110 is the polycrystalline silicon for the gate and the source/train diffusion region of each transistor, and 110 is the interlayer insulation 1[
, 111 is Al(=Kum).The feature here is that epitaxial silicon is deposited on the dielectric 103, and the epitaxial silicon is deposited thicker than the thickness of the dielectric 103. As a result, a single crystal silicon film is formed a certain distance from the dielectric edge.

それ以上離れた誘電体表面には堆積されないことで6る
・この距離はエピタキシャルシリコン膜厚と#框体馳厚
との差や用いられた基板の方位に依存している・したが
って、基板方位とエピタキシャルシリコン層厚と誘電体
の中寸法を設定すればマスク9合わせ工程なしに92図
に示された島状形状に選択的なエピタキシャルシリコン
基体を任意の場所に堆積させることができる利点がある
6 - This distance depends on the difference between the epitaxial silicon film thickness and the frame thickness and the orientation of the substrate used. By setting the thickness of the epitaxial silicon layer and the medium dimensions of the dielectric, there is an advantage that a selective epitaxial silicon substrate can be deposited at any location in the island shape shown in FIG. 92 without a mask 9 alignment step.

このような選択的なエピタキシャル成長1j、主にジク
ロルシラン(Si鴇C1りのように塩累原子を含むがス
と水素をキャリアガスとして用いて行われ、熱分解反応
によって生成された塩化水素がシリコンのエツチングに
寄与するという本発明者等が発見した惨「規な現象を活
用することKよって初めて実用化し得たものである・今
、単結晶シリコンと非晶質#電体とが共存する基板上に
上記反応を用いてシリコン層を堆積させてh〈と、単結
晶シリコン上には半結晶として、また非晶質誘電体上に
は多結晶として成長をはじめる・しかし、非晶質誘電体
上に形成される多結晶シリコンのエツチング速度がその
堆積速度を上まわ〕、一方率結晶シリコン上ではエツチ
ング速度が堆積速度より下まわる結果となるため、単結
晶上にのみならず単結晶シリコンが堆積し、この単結晶
シリコンを椎結晶として非晶質5IlC体上にも一方向
に単結晶層が成長するのである。このよpな選択的なエ
ピタキシャル成長を、単結晶シリコン上にノ</−7化
した非晶is誘電体設けた基板上で行えば、単結晶シリ
コン層はまず非晶質誘電体層の穴を埋めしかる後その層
厚を増すと共和横方向へ伸びて非晶質誘電体層上にまで
拡大していくのである。ζうした成長は、出発点におい
て単結晶シリコン表面と非晶質誘電体表面が同一平面上
に並んでいても勿論可能である・ 本発明を用いるととによシ、非晶質#電体表面を一部含
むようにエピタキシャルシリコン良を自己整合的に島状
に分離して形成することができ。
Such selective epitaxial growth 1j is mainly carried out using dichlorosilane (a gas containing salt atoms such as silicon chloride) and hydrogen as a carrier gas, and hydrogen chloride produced by a thermal decomposition reaction is used as a carrier gas for silicon. It was possible to put this into practical use for the first time by making use of the tragic phenomenon discovered by the present inventors that contributes to etching.Currently, it is possible to put this into practical use for the first time on a substrate where single crystal silicon and amorphous #electronic material coexist. When a silicon layer is deposited using the above reaction, it begins to grow as a semi-crystal on monocrystalline silicon and as a polycrystal on an amorphous dielectric. The etching rate of the polycrystalline silicon formed on the polycrystalline silicon exceeds the deposition rate], whereas the etching rate on the polycrystalline silicon is lower than the deposition rate, so the monocrystalline silicon is deposited not only on the single crystal. Then, a single crystal layer grows in one direction on the amorphous 5ILC body using this single crystal silicon as a vertebral crystal.Such selective epitaxial growth is performed on single crystal silicon. When carried out on a substrate provided with an amorphous dielectric, the single crystal silicon layer first fills the holes in the amorphous dielectric layer, and then increases its layer thickness, extending in the co-lateral direction and forming the amorphous dielectric. Of course, such growth is possible even if the single crystal silicon surface and the amorphous dielectric surface are aligned on the same plane at the starting point. Furthermore, it is possible to separate and form epitaxial silicon into islands in a self-aligned manner so as to include a portion of the amorphous #electrode surface.

加えて、非晶質S電体上OエピタキシャルシリコンII
Kソース・ドレイン領域のみならず、チャネル領域もし
くはその一部をも形成しであることになるため、従来の
BO−−0MO8と比較してソース・F°レイン領竣の
接合面積は少〈なシ、拡散容量の低下がよ〕以上に可能
とな)、さらに単結晶シリコンと多結晶シリコンとの遷
移領域がなく。
In addition, O epitaxial silicon II on amorphous S electric body
Since not only the K source/drain region but also the channel region or a part thereof is formed, the junction area of the source/F° drain region is smaller compared to the conventional BO--0MO8. Furthermore, there is no transition region between monocrystalline silicon and polycrystalline silicon.

素子の微細化をも同時に実現できる利点を得る・次に本
発明の実施例を図を用い工詳細に説明する。#I3図は
本発明を実現するためのCMOSインバータ回路の製造
プロセスを願に従って示したものでI mWシリコン基
板41に熱酸化法で約5000A4fり酸化1[42を
形成し1通常の写真蝕刻技術とエツチング法によりトラ
ンジスタのゲート領域となすべき領域のシリコン酸化膜
を除去する。
Obtaining the advantage of simultaneously achieving miniaturization of elements. Next, embodiments of the present invention will be described in detail with reference to the drawings. Figure #I3 shows the manufacturing process of a CMOS inverter circuit to realize the present invention in accordance with the request, in which approximately 5000A4f oxide 1[42] is formed on an I mW silicon substrate 41 by a thermal oxidation method, and then 1 is processed using normal photo-etching technology. Then, the silicon oxide film in the region to be the gate region of the transistor is removed by etching.

ソノ後ジクロルシラン(8iH,CI、)をソースガス
After sonication, dichlorosilane (8iH, CI,) was used as a source gas.

水嵩をキャリアガスとして反応系内に導入し、80to
rrf1MKの減圧下、950℃から1100℃までの
基板温度で熱分解によってシリコンのエピタキシャル成
長を行うとシリコン基板表面および酸化膜42上の一部
を含むように平滑なるnfJIlの単結晶シリコン@4
3が堆積でき−11311(a)を得る。
A volume of water is introduced into the reaction system as a carrier gas, and 80 to
When silicon is epitaxially grown by thermal decomposition under the reduced pressure of rrf1MK at a substrate temperature of 950°C to 1100°C, the single crystal silicon of nfJIl becomes smooth to include the silicon substrate surface and a part of the oxide film 42.
3 can be deposited to obtain -11311(a).

こむではエピタキシャルシリコンWI厚と酸化膜厚との
差に対して酸化I[形成領域パターン寸法の半分が同程
度の場合で、酸化膜上のシリコンは単蹄晶状態で両側か
ら接続され、酸化膜領域は埋込まれる。酸化I[44を
形成後、通常の写真蝕刻技術とイオン注入法等の手段に
よj%Il型チャネルトランジスタを形成すべき領域の
み0***画に不純物を制御して導入し、適当な熱処理
後、イオン注入忙よって所望のS度を有するPgウェル
i!ii斌4Sを形成し、そのvk、酸化8I44を除
去し、改めてゲート酸化l[46を熱漬化法を用すて形
成しイオン注入法によってnチャネルおよびpチャネル
の両トランジスタのしきい値電圧値を所望値に調節し、
厘3図(b)を得る1次にリン等のn型導電性を生ぜし
める不純物がドーグされてbる多結晶シリコン47をた
とえばCVD法で堆積し、写真蝕刻技術およびエツチン
グ技術とを用めて多結晶シリコン47をエツチングして
トランジスタのゲート電極を形成すると183図(C)
を得る0次にp型チャネルトランジスタ形成領域をレジ
スト48で被覆し、レジストをマスクとしてヒ素又はリ
ン等のn型導電性を生ぜしめる不純物を10cm  以
上のドーズ量でイオン注入してn5チヤネルトランジス
タのソース・ドレインm域49を形成し、第3図(d)
を得る。イオン注入時に基板i1度が300℃程度まで
上昇する六め、イオン注入マスクとして用いるレジスト
Fi耐熱性の強い環化ブタジェン系レジストを使用する
と都合がよめ・続いてn型チャネルトランジスタ形成S
t琥をレジスト48で同様に被覆し、レジストをイオン
注入マスクとしてボロン等のp型厚IE性を生ぜしめる
不純物を10  cm  程度のドーズ蓄で注入してp
型チャネルトランジスタのソース・ドレインmV50を
形成すると第3図(e)を得る・適当な熱処理を行うこ
とにょシイオン注入による損障を回復させた後、層間絶
縁膜としてPSG![51をたとえばCVD法で堆積し
、表面のXfL滑化を計る・次にコンタクトホールのパ
ターンf?、 !(行い、導1IC性材料たとえばアル
ミニウム52を破着させ配1IIIE極のパターン化を
行−1水素中でアルミニウムとシリコンの合金化を繍す
本発明による構成の仕上り図の第3図(f)を得る・そ
して必要に応じてCVD法で保護膜を堆積させ、電極パ
ッド上の保護膜を写真蝕刻法とエツチング法によ)除去
する・こうして得られた本発明のトランジスタ特性は極
めて良好で、岡えばドレインリーク電流はドレイン電圧
5■の時lO入/−以下とな夛、!1チャネルML)8
)9ンジスタと同程度の値を示したー 以上説明したよう虻1本発明の構成によれば、電圧の加
わるドレイン拡散領域が基板および従来構成における所
簡チャネルストッパー拡散領域から誘電的に分離される
丸め、従来のシリコン基板を用すたCMOf9)ランジ
スタで成し得なかった高速化を計ることができ、従来8
08トランジスタで成し得なかった高信頼性、低価格化
を実現可能とし、しかも微細化と高集積化を容易に行う
ことができる利点をもたらすことが明らかとなった・さ
らに本発明049#請求の範囲に記載されているよう(
非晶質誘電体上に堆積された奉結晶性シリ:zンfi、
j’ −)領域やソース・ドレイ784@(Dlhずれ
にも用することが可能であ夛、@3図に列として示した
実施−の構成に限定されるものではない。
In this case, the difference between the epitaxial silicon WI thickness and the oxide film thickness is determined by the oxidation I [when half of the pattern size of the formation area is about the same, the silicon on the oxide film is connected from both sides in a monophonic state, and the oxide film The region is filled. After forming the oxide I[44], impurities are controlled and introduced into the 0*** area only in the area where the j%Il type channel transistor is to be formed by means such as ordinary photolithography and ion implantation. After heat treatment, the Pg well i! has the desired S degree due to ion implantation. ii 4S is formed, its vk and oxide 8I 44 are removed, and a gate oxide 1[46 is formed again using a thermal dipping method, and the threshold voltages of both n-channel and p-channel transistors are adjusted by ion implantation. Adjust the value to the desired value,
To obtain Figure 3(b), polycrystalline silicon 47 doped with an impurity such as phosphorus that causes n-type conductivity is deposited by, for example, CVD, and then photolithographic and etching techniques are used. When the polycrystalline silicon 47 is etched to form the gate electrode of the transistor, Figure 183 (C)
The 0-order p-type channel transistor forming region is covered with a resist 48, and using the resist as a mask, impurities that produce n-type conductivity such as arsenic or phosphorus are ion-implanted at a dose of 10 cm or more to form an n5 channel transistor. A source/drain m region 49 is formed, as shown in FIG. 3(d).
get. Sixth, when the substrate temperature rises to about 300 degrees Celsius during ion implantation, it is convenient to use a cyclized butadiene resist with strong heat resistance for the resist Fi used as an ion implantation mask.Subsequently, n-type channel transistor formation S
Similarly, the t-hole is covered with a resist 48, and using the resist as an ion implantation mask, an impurity such as boron that causes p-type thickness IE characteristics is implanted at a dose of about 10 cm.
Figure 3(e) is obtained by forming the source/drain mV50 type channel transistor. After recovering the damage caused by ion implantation by performing appropriate heat treatment, PSG! is used as an interlayer insulating film. [51 is deposited, for example, by the CVD method, and the surface is smoothed by XfL.Next, the contact hole pattern f? , ! (FIG. 3(f) is a finished view of the structure according to the present invention, in which the conductive IC material, e.g., aluminum 52, is broken and the patterned electrode is patterned.) Then, if necessary, deposit a protective film using the CVD method, and remove the protective film on the electrode pad (using photolithography and etching methods).The transistor characteristics of the thus obtained transistor of the present invention are extremely good. For example, when the drain voltage is 5, the drain leakage current is less than 10/-! 1 channel ML) 8
) As explained above, according to the configuration of the present invention, the drain diffusion region to which voltage is applied is dielectrically separated from the substrate and the channel stopper diffusion region, which is the same as in the conventional configuration. It is possible to achieve high speeds that could not be achieved with conventional CMOf9) transistors using silicon substrates.
It has become clear that it is possible to achieve high reliability and low cost that could not be achieved with 08 transistors, and also brings the advantage that miniaturization and high integration can be easily achieved. As stated in the range (
Crystalline silicon deposited on an amorphous dielectric:
It can also be used for the source/drain 784 (Dlh) region and the source/drain 784 (Dlh shift), and is not limited to the implementation shown as a column in Figure 3.

なお、上記の各実施列として非晶質誘電体としてシリコ
ン酸化膜を用いたものを説明してきたがシリコン窒化膜
やP 8 G等を用いても良く、その上に成長したエピ
タキシャルシリコンの結晶性やその効果についてみても
同様に有効であった・r!jlArtno簡単txta
q 第1図は、従来のに30MO8構ゝ造の列を示す多結晶
シリコンゲート型CMOSインバータの模式的IIfr
面図で、第2図は本発明構造を第1図に対比して示した
模式的I!?面図である1図中の番号は、1.101−
7リコ7jk板、2,102−p型りエル、3.103
・・・非晶′iIt誘電体膜、4,104・−エピタキ
シャルシリコン膜、5−・・多結晶シリコン、6・・・
フィールド酸化膜、7,105−・・グー)#化膜、8
.106−1111チヤネルトランジスタのゲート多結
晶シリコン、9,107−・・n麺チャネルトランジス
タのノース・ドレイン接散領域、10,108−pa!
!チャネルトランジスタのゲート多結晶シリコン、11
,109−pfjlチャネルトランジスタのソース・ド
レイン拡散領域、12,110一層間絶縁膜、13.1
11−・アルミニウム配線、をそれぞれ示す。
Although the above embodiments have been described using a silicon oxide film as the amorphous dielectric, a silicon nitride film, P 8 G, etc. may also be used, and the crystallinity of the epitaxial silicon grown thereon may vary. It was equally effective when looking at the effect of ・r! jlArtno easy txta
q FIG. 1 is a schematic IIfr of a conventional polycrystalline silicon gate type CMOS inverter showing a row of 30 MO8 structures.
In the top view, FIG. 2 is a schematic diagram showing the structure of the present invention in comparison with FIG. 1! ? The numbers in Figure 1, which is a front view, are 1.101-
7 Rico 7jk board, 2,102-p type Riel, 3.103
... Amorphous 'iIt dielectric film, 4,104 - epitaxial silicon film, 5 - Polycrystalline silicon, 6...
Field oxide film, 7,105-...Goo) # conversion film, 8
.. 106-1111 Channel transistor gate polycrystalline silicon, 9,107-...N-noodle channel transistor north drain dispersion region, 10,108-pa!
! Channel transistor gate polycrystalline silicon, 11
, 109-pfjl channel transistor source/drain diffusion region, 12, 110 interlayer insulating film, 13.1
11-.Aluminum wiring is shown, respectively.

第3図は本発明を実現するための製造工程を工程A11
VC示した断面図であシ、図中の番号は。
Figure 3 shows the manufacturing process for realizing the present invention at step A11.
This is a cross-sectional view showing VC, and the numbers in the figure are.

41−シリコン基板、42−非晶質紡電体艇、晶シリコ
ン、48−イオン注入マスクとなるレジスト、49−・
n型チャネルトランジスタのソースドレイン領域、50
−p型チャネルトランジスタのソース・ドレイン領域、
51一層間絶縁膜、51−・金属配線、をそれぞれ示す
41-Silicon substrate, 42-Amorphous spindle, crystalline silicon, 48-Resist serving as ion implantation mask, 49-.
source drain region of n-type channel transistor, 50
- source/drain regions of p-type channel transistors;
An interlayer insulating film 51 and a metal wiring 51 are shown, respectively.

第 l 図 第3図Figure l Figure 3

Claims (1)

【特許請求の範囲】 2mチャネル電界効果トランジスタおよびn型チャネル
電界効果トランジスタを斧せ形成してなる相補m半導体
装置の製造方法において、単結晶クリコン基板上に部分
的に非晶質n框体を般ける工程、前記非晶′lK#域体
の膜厚よりも少くとも厚くなるように不純物の種類およ
び濃度をltllmLでエピタキシャルシリコンを少く
と4一層以上堆積する工、1!、 *記エピメキシャル
シリコン喚上にゲート絶縁属を形成する工11h前記非
晶質誇蝋体上に堆積し友前記シリコンWIKtll記p
微チャネルトランジスタのソース拡散−城、ドレイン拡
l&領域。 ゲート領域の少くともめずれか1つもしくFi前記mW
チャネルトクンジスタOソース拡散領域、ドレイン拡散
領域、ゲート領域の少くと4いずれか1つを設ける工l
!、とを含んで成ることを′4#績とする相補型半導体
装置の製造方法。
[Claims] A method for manufacturing a complementary m-semiconductor device in which a 2m-channel field effect transistor and an n-type channel field-effect transistor are formed side by side, in which an amorphous n-frame is partially formed on a single-crystal crystalline substrate. The general process is to deposit at least 4 or more layers of epitaxial silicon with the type and concentration of impurities set to ltllmL so that the film thickness is at least thicker than the amorphous 'lK# region body, 1! * Step 11 of forming a gate insulating layer on the epimexial silicon layer Depositing the gate insulating layer on the amorphous wax body
Source diffusion of fine channel transistors, drain expansion l&region. At least one of the gate regions is Fi above mW.
A process for providing at least one of the following: channel transistor O source diffusion region, drain diffusion region, and gate region.
! , and a method for manufacturing a complementary semiconductor device.
JP56156683A 1981-07-07 1981-10-01 Preparation of complementary semiconductor device Pending JPS5857745A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP56156683A JPS5857745A (en) 1981-10-01 1981-10-01 Preparation of complementary semiconductor device
US06/395,110 US4637127A (en) 1981-07-07 1982-07-06 Method for manufacturing a semiconductor device
DE19823225398 DE3225398A1 (en) 1981-07-07 1982-07-07 SEMICONDUCTOR DEVICE AND METHOD FOR THEIR PRODUCTION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56156683A JPS5857745A (en) 1981-10-01 1981-10-01 Preparation of complementary semiconductor device

Publications (1)

Publication Number Publication Date
JPS5857745A true JPS5857745A (en) 1983-04-06

Family

ID=15633038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56156683A Pending JPS5857745A (en) 1981-07-07 1981-10-01 Preparation of complementary semiconductor device

Country Status (1)

Country Link
JP (1) JPS5857745A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221109A (en) * 1986-03-24 1987-09-29 Semiconductor Energy Lab Co Ltd Film forming method
JPS6367779A (en) * 1986-09-09 1988-03-26 Toshiba Corp Insulated-gate transistor and manufacture of same
US6503799B2 (en) * 2001-03-08 2003-01-07 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944554A (en) * 1972-09-04 1974-04-26
JPS556831A (en) * 1978-06-29 1980-01-18 Fujitsu Ltd Complementary mis integrated circuit device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944554A (en) * 1972-09-04 1974-04-26
JPS556831A (en) * 1978-06-29 1980-01-18 Fujitsu Ltd Complementary mis integrated circuit device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221109A (en) * 1986-03-24 1987-09-29 Semiconductor Energy Lab Co Ltd Film forming method
JPS6367779A (en) * 1986-09-09 1988-03-26 Toshiba Corp Insulated-gate transistor and manufacture of same
US6503799B2 (en) * 2001-03-08 2003-01-07 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US4651408A (en) Fabrication of stacked MOS devices utilizing lateral seeding and a plurality of separate implants at different energies
US4700464A (en) Method of forming trench isolation in an integrated circuit
US4609407A (en) Method of making three dimensional semiconductor devices in selectively laser regrown polysilicon or amorphous silicon layers
US4476475A (en) Stacked MOS transistor
JPH055372B2 (en)
JPS6252963A (en) Manufacture of bipolar transistor
US5409843A (en) Method of producing a semiconductor device by forming contacts after flowing a glass layer
US5485028A (en) Semiconductor device having a single crystal semiconductor layer formed on an insulating film
JPH0241170B2 (en)
US5389561A (en) Method for making SOI type bipolar transistor
JPH06318676A (en) Manufacture of semiconductor device
US4283235A (en) Dielectric isolation using shallow oxide and polycrystalline silicon utilizing selective oxidation
US4231819A (en) Dielectric isolation method using shallow oxide and polycrystalline silicon utilizing a preliminary etching step
JPS5857745A (en) Preparation of complementary semiconductor device
US4512074A (en) Method for manufacturing a semiconductor device utilizing selective oxidation and diffusion from a polycrystalline source
JPS6227744B2 (en)
JP2741393B2 (en) Semiconductor device
JPH01251635A (en) Dielectric isolation type semiconductor device
EP0117339A1 (en) Stacked MOS transistor
JPS6095969A (en) Manufacture of semiconductor integrated circuit
JPS60103671A (en) Semiconductor device
US5008724A (en) Semiconductor device
JPS6159818A (en) Manufacture of semiconductor device
JPS5856460A (en) Semiconductor device
JP3189387B2 (en) Method for manufacturing semiconductor device