JPS5856675B2 - Electron beam welding method - Google Patents

Electron beam welding method

Info

Publication number
JPS5856675B2
JPS5856675B2 JP819779A JP819779A JPS5856675B2 JP S5856675 B2 JPS5856675 B2 JP S5856675B2 JP 819779 A JP819779 A JP 819779A JP 819779 A JP819779 A JP 819779A JP S5856675 B2 JPS5856675 B2 JP S5856675B2
Authority
JP
Japan
Prior art keywords
electron beam
welding
bead
penetration
beam welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP819779A
Other languages
Japanese (ja)
Other versions
JPS55100886A (en
Inventor
道夫 稲垣
達哉 橋本
進 塚本
宏定 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Original Assignee
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO filed Critical KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority to JP819779A priority Critical patent/JPS5856675B2/en
Priority to US06/022,498 priority patent/US4309589A/en
Priority to GB7910250A priority patent/GB2026732B/en
Publication of JPS55100886A publication Critical patent/JPS55100886A/en
Publication of JPS5856675B2 publication Critical patent/JPS5856675B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)

Description

【発明の詳細な説明】 本発明は、電子ビームの本質的な溶込み機構に基づく溶
込み先端部に発生する諸欠陥を防止する電子ビーム溶接
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electron beam welding method that prevents various defects occurring at the penetration tip based on the essential penetration mechanism of the electron beam.

本発明は、電子ビーム溶接機の高電圧電源回路に含まれ
るリップルのために生じる電子ビームの焦点位置の時間
的な上下振動を直接探知し、電子ビームの焦点が溶込み
先端部に近すいたとき、電子ビームを高い周波数で連続
振動し、電子ビームの電力密度すなわち穿孔作用を実質
的に弱めることにより、部分溶込み溶接時の溶込み先端
部に発生するスパイクなどの欠陥を防止あるいは完全溶
込み溶接時の裏波ビードの改善を図るものである。
The present invention directly detects temporal vertical vibrations in the focal position of the electron beam that occur due to ripples included in the high voltage power supply circuit of an electron beam welding machine. By continuously vibrating the electron beam at a high frequency and substantially weakening the power density of the electron beam, that is, the drilling effect, defects such as spikes that occur at the penetration tip during partial penetration welding can be prevented or complete welding can be achieved. This is intended to improve the back wave bead during welding.

電子ビーム溶接は電子ビームの、とくにその中心の高い
電力密度部分の穿孔作用を利用した溶接法である。
Electron beam welding is a welding method that utilizes the perforation effect of an electron beam, particularly in the high power density part at the center.

このため溶込みが深く、かつ溶融巾の非常に狭い溶接ビ
ードが得られる。
Therefore, a weld bead with deep penetration and a very narrow fusion width can be obtained.

反面この穿孔作用のために独特の溶接諸欠陥が発生しや
すい。
On the other hand, this perforation action tends to cause unique welding defects.

これらの欠陥の代表的なものが、部分溶込み溶接時の溶
込み先端部に発生するスパイク、コールドシャット、ポ
ロシティなどであり、あるいは完全溶込み溶接時の裏波
ビード不整である。
Typical of these defects are spikes, cold shuts, porosity, etc. that occur at the penetration tip during partial penetration welding, or irregularities in the underwave bead during full penetration welding.

従来これらの欠陥防止法として、部分溶込み溶接時には
電子ビーム径を拡げ穿孔力を弱める方法が採用されてき
たが、この方法では溶込みが浅くなり、溶融巾も広くな
るため電子ビーム溶接の特徴は相殺される。
Conventionally, the method used to prevent these defects was to widen the electron beam diameter and weaken the drilling force during partial penetration welding, but this method results in shallower penetration and wider fusion width, which is a characteristic of electron beam welding. are canceled out.

また完全溶込み溶接時には、電子ビーム電力を必要以上
に増大させ、電力密度分布のうち中心の高い部分を貫通
させ穿孔力の弱い周辺部による被溶接物の溶融現象を利
用して溶接を行う方法が用いられるが、この方法は多量
の電力を必要とし、とくに被溶接物の厚さが増大し、電
子ビーム電力の定格を越える場合は採用できない。
In addition, when performing full penetration welding, the electron beam power is increased more than necessary, and the welding is performed by penetrating the central high part of the power density distribution and utilizing the phenomenon of melting of the welded object due to the peripheral part where the piercing force is weak. However, this method requires a large amount of electric power and cannot be used particularly when the thickness of the workpiece increases and exceeds the electron beam power rating.

従って溶接諸欠陥の本質的な防止法は現在皆無であり、
電子ビーム溶接の優れた特徴である精密溶接性が発揮さ
れず、本溶接法の利用が大巾に制限されているのが現状
である。
Therefore, there is currently no method to essentially prevent welding defects.
At present, the precision weldability that is an excellent feature of electron beam welding is not exhibited, and the use of this welding method is currently severely limited.

本発明は、電子ビーム溶接の微視的な金属溶融機構に関
する研究に基づき、電子ビーム溶接中の金属溶融状態を
探知し、これをフィードバックして、適切な時間電子ビ
ームを振動させ、実質的にビームの電力密度を弱めるこ
とにより、溶接諸欠陥の発生を防止してビード形状を改
善することを目的とし、これにより電子ビーム溶接の精
密溶接時の信頼性の向上を図るものである。
The present invention is based on research on the microscopic metal melting mechanism during electron beam welding, detects the metal melting state during electron beam welding, feeds this back, vibrates the electron beam for an appropriate time, and substantially By weakening the power density of the beam, the purpose is to prevent the occurrence of various welding defects and improve the bead shape, thereby improving the reliability during precision welding of electron beam welding.

電子ビーム溶接機においては、高電圧電源回路に量の多
少はともかくリップルが含まれる。
In an electron beam welding machine, the high voltage power supply circuit contains ripple, regardless of the amount.

このリップル変動に従って電子ビームの焦点位置は時間
的に上下振動する。
According to this ripple variation, the focal position of the electron beam oscillates vertically over time.

スパイクなどの溶込み先端部に発生する欠陥は、電子ビ
ームの焦点が溶込み先端部に近いときに発生しやすい。
Defects such as spikes that occur at the penetration tip are likely to occur when the focus of the electron beam is close to the penetration tip.

同時に欠陥の発生は溶込み先端部での溶融金属の挙動と
も密接に関係しており両者の条件が重なったとき、電子
ビームの穿孔作用により、尖鋭なスパイクが発生し、そ
こにはコールドシャットやポロシティの欠陥が付随して
残る。
At the same time, the occurrence of defects is closely related to the behavior of the molten metal at the penetration tip, and when these two conditions overlap, sharp spikes are generated due to the drilling action of the electron beam, and there are cold shuts and An accompanying porosity defect remains.

また電子ビームが被溶接物を貫通したときは穿孔作用に
よる不連続かつ激しい溶融金属の移動により裏波ビード
が荒れやすい。
Furthermore, when the electron beam penetrates the object to be welded, the uranami bead tends to become rough due to the discontinuous and violent movement of the molten metal due to the perforation effect.

本発明は、高電圧電源回路に含まれるリップルを測定す
ることにより、電子ビーム焦点の上下移動を探知し、こ
の探知信号をフィードバックして、電子ビームの焦点が
溶込み先端部に近すいたとき、電子ビームを高い周波数
で偏向振動させ、実質的にビームの電力密度を弱めるこ
とにより、電子ビームの余分の穿孔力を抑えることを特
徴としている。
The present invention detects vertical movement of the electron beam focus by measuring ripples included in a high voltage power supply circuit, feeds back this detection signal, and detects when the electron beam focus approaches the penetration tip. , the electron beam is deflected and oscillated at a high frequency to substantially weaken the power density of the beam, thereby suppressing the extra puncturing force of the electron beam.

次に本発明の詳細を図面により具体的に説明する。Next, details of the present invention will be specifically explained with reference to the drawings.

第1図は、電子ビーム溶接機および本発明の高電圧リッ
プルの探知方法の実施例を示す。
FIG. 1 shows an embodiment of an electron beam welding machine and a high voltage ripple detection method of the present invention.

また第2図は制御回路の実施例を示す。FIG. 2 also shows an embodiment of the control circuit.

高電圧電源5と電子銃1により作られた電子ビーム2は
収束レンズ3により絞られて被溶接物9に衝突し、これ
を溶融する。
An electron beam 2 produced by a high voltage power supply 5 and an electron gun 1 is focused by a converging lens 3 and collides with a workpiece 9 to melt it.

この溶融金属は被溶接物9の移動(図では左へ)に伴な
い移動、凝固して溶接ビード9Aとなる。
This molten metal moves and solidifies as the object to be welded 9 moves (toward the left in the figure) and becomes a weld bead 9A.

電子ビーム2の焦点は高電圧電源5に含まれるリップル
により時間的に上下振動する。
The focal point of the electron beam 2 oscillates vertically over time due to ripples included in the high voltage power supply 5.

高1電圧回路の負側と正(接地)側に高抵抗6及び低抵
抗7を直列に挿入し、低抵抗7の両端の電圧7Bを検出
し、これを帯域フィルター10iIc印加して主リップ
ル成分10Bを分離する。
A high resistance 6 and a low resistance 7 are inserted in series on the negative side and positive (ground) side of the high 1 voltage circuit, the voltage 7B across the low resistance 7 is detected, and this is applied to a bandpass filter 10iIc to generate the main ripple component. Separate 10B.

電子ビームの焦点は一般に高電圧が低下したとき、すな
わち出力10Bが負値になったとき、遠方にすなわち被
溶接物の裏面側へ移動する。
Generally, when the high voltage decreases, that is, when the output 10B becomes a negative value, the focus of the electron beam moves far away, that is, toward the back side of the object to be welded.

深溶込み溶接を行うときは、一般に焦点(平均値)は被
溶接物表面近傍に結ばせるので、波形10Bの負値は電
子ビームが主として溶込み先端部を溶融していることを
意味する。
When performing deep penetration welding, the focal point (average value) is generally set near the surface of the workpiece, so a negative value of waveform 10B means that the electron beam mainly melts the penetration tip.

出力10Bをコンパレータ11に印加し、電圧が所定の
負値以下となったときコンパレータ11は一定電圧を発
生するようにする。
The output 10B is applied to the comparator 11, and when the voltage becomes less than a predetermined negative value, the comparator 11 generates a constant voltage.

この出力11Bを発振器12のゲート回路に印加し、コ
ンパレータ11が電圧を発生しているとき、発振器12
は発振し、交流電圧を発生する。
This output 11B is applied to the gate circuit of the oscillator 12, and when the comparator 11 is generating a voltage, the oscillator 12
oscillates and generates an alternating current voltage.

この出力12Bを電力増巾器8に印加し、これにより電
子ビーム偏向レンズ4を励磁して電子ビームを偏向する
と、電子ビームの焦点が溶込み先端部に近すいたとき電
子ビームが振動し、電子ビームの電力密度は実質的に低
下する。
This output 12B is applied to the power amplifier 8, which excites the electron beam deflection lens 4 and deflects the electron beam. When the focus of the electron beam approaches the penetration tip, the electron beam oscillates. The power density of the electron beam is substantially reduced.

本発明は、上記に図示した例に限らず本発明の趣旨を害
さない種々の変形が可能である。
The present invention is not limited to the example illustrated above, and various modifications can be made without departing from the spirit of the present invention.

本発明の方法で得られる電子ビーム溶接のビード形状は
、電子ビームを間欠的に、かつ電子ビームが溶込み先端
部を主として溶融し、溶込み深さに直接関与しない時点
で振動させるため、溶込み深さはほとんど減少せず、か
つビード巾も大きく増加することはない。
The bead shape of electron beam welding obtained by the method of the present invention is achieved by oscillating the electron beam intermittently and at a time when the electron beam mainly melts the penetration tip and does not directly affect the penetration depth. The penetration depth hardly decreases, and the bead width also does not increase significantly.

また振動時の被溶接表面での電子ビームの電力密度は弱
いので化粧盛りのような表ビードの改善効果も期待でき
る。
Furthermore, since the power density of the electron beam on the surface to be welded during vibration is weak, it can be expected to have an effect of improving surface beads such as decorative embellishments.

従って電子ビーム溶接の特徴である深溶込み性と精密溶
接性を損うことなく信頼できる溶接結果を得ることがで
き、電子ビーム溶接の適用範囲を拡大できる。
Therefore, reliable welding results can be obtained without impairing the deep penetration and precision weldability that are the characteristics of electron beam welding, and the range of application of electron beam welding can be expanded.

本発明の実施例を示す。An example of the present invention is shown.

第1図及び第2図に示す制御方式を有する電子ビーム溶
接装置を用いて部分溶込み溶接を行った結果の例を表1
に示す。
Table 1 shows an example of the results of partial penetration welding using an electron beam welding device having the control system shown in Figures 1 and 2.
Shown below.

加速電圧40KV、ビーム電流270mA。Acceleration voltage 40KV, beam current 270mA.

溶接速度76.2 cm/m i n *Y偏向(溶接線と直角方向) 表中ビード1はビーム偏向を行わない通常の溶接結果、
ビード2は10KHzのビーム連続振動を有する溶接結
果、ビード3は本発明によるフィードバック制御した溶
接結果である。
Welding speed 76.2 cm/min *Y deflection (direction perpendicular to the welding line) Bead 1 in the table is the result of normal welding without beam deflection;
Bead 2 is the result of welding with continuous beam vibration of 10 KHz, and bead 3 is the result of welding with feedback control according to the present invention.

表1に示されるように本発明による溶接結果では、溶込
み深さを維持したまへ気孔の発生を大巾に減少できる。
As shown in Table 1, in the welding results according to the present invention, the generation of pores can be greatly reduced while maintaining the penetration depth.

これは各スパイクの鋭さが柔らいたことを意味し、当然
コールドシャットのような欠陥は発生していない。
This means that the sharpness of each spike has become softer, and of course defects such as cold shut have not occurred.

嚢☆
次に厚板の完全溶込み溶接の結果例を第3図及び表2に
示す。
Sac☆
Next, an example of the results of full penetration welding of a thick plate is shown in FIG. 3 and Table 2.

5M50鋼30艷 *Y偏向 第3図は表2に示される条件下での典型的な完全溶造溶
接ビードの側面図および断面図である。
30 lengths of 5M50 steel *Y deflection Figure 3 is a side view and cross-sectional view of a typical fully fused weld bead under the conditions shown in Table 2.

表3中、ビードL 2,3は通常の溶接で得られる結果
、ビード4は10KHzのビーム連続振動時の溶接結果
、ビード5は本発明の制御方式による溶接結果である。
In Table 3, beads L 2 and 3 are the results obtained by normal welding, bead 4 is the result of welding with continuous beam vibration of 10 KHz, and bead 5 is the result of welding by the control method of the present invention.

厚さ30mmの5M50鋼板なビード1の条件で溶接す
ると第3図aのような溶融金属が周期的に滴状に固った
裏波ビードとなる。
When a 5M50 steel plate with a thickness of 30 mm is welded under the conditions of bead 1, it becomes an uranami bead in which molten metal periodically hardens in the form of droplets, as shown in Figure 3a.

さらにビード2のようにビーム電流を増加すると滴はな
(なるが、裏波ビードは大きく盛上る(第3図b)。
Furthermore, as shown in bead 2, when the beam current is increased, the droplets become smaller (but the Uranami bead becomes larger (Fig. 3b)).

さらにビード3のように電流を増加すると、電子ビーム
の電力密度の高い中心部は貫通し、穿孔力の弱い周辺部
で溶接するため第3図Cのような良好な裏波ビードが得
られる。
Furthermore, when the current is increased as in bead 3, the electron beam penetrates through the center where the power density is high and welds at the periphery where the punching force is weak, resulting in a good underwave bead as shown in FIG. 3C.

しかしこのときはかなり余分の電力を必要とする。However, this requires considerably more power.

電子ビームを連続的に振動させるとビード4のように良
好な結果が得られるが、余分の電力を必要とし、かつ第
3図Cに示されるように表ビード巾もかなり広くなる。
Continuously vibrating the electron beam produces good results as in bead 4, but requires extra power and also increases the front bead width considerably, as shown in FIG. 3C.

−万事発明の方法を採用するとビード1と同じ最低電力
で良好な結果が得られ、かつビード巾もあまり広くなら
ない。
- If the method of the invention is adopted, good results can be obtained with the same minimum power as bead 1, and the bead width does not become too wide.

このように厚板の溶接では、必要以上の電力を必要とし
ないため、実際に定格に上限のある溶接機では特に有効
である。
In this way, welding thick plates does not require more power than necessary, so it is particularly effective for welding machines that actually have an upper limit on their rating.

またこの条件下で多少ビーム径を拡げて溶落ちビードと
なる場合でも、前述の化粧盛りの効果のため、本発明の
方法て溶接すれば溶落ちを防ぐことができる。
Further, even if the beam diameter is expanded to some extent under these conditions and a burn-through bead is formed, burn-through can be prevented by welding according to the method of the present invention due to the effect of the above-mentioned embellishment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電子ビーム溶接装置と電子ビーム焦点位置の検
出方法の概略図、第2図は本発明の制御法の原理図、第
3図は完全溶込み溶接時のビード形状、を示す。 1は電子銃、2は電子ビーム、3は収束レンズ、4は偏
向レンズ、5は高電圧電源、6は高抵抗、7は低抵抗、
8は偏向レンズ用電力増巾器、8Aは増巾器8の入力端
子、9は被溶接物、9Aは溶接ビード、7Bは抵抗7で
の電圧波形、10は帯域フィルター、10Bはフィルタ
ー10の出力、11はコンパレーター、11Bはコンパ
レーター出力、12は発振器、12Bは発振器出力、a
。 bs cとC′はビード形状。
FIG. 1 is a schematic diagram of an electron beam welding device and a method for detecting the electron beam focal position, FIG. 2 is a diagram showing the principle of the control method of the present invention, and FIG. 3 is a bead shape during full penetration welding. 1 is an electron gun, 2 is an electron beam, 3 is a converging lens, 4 is a deflection lens, 5 is a high voltage power supply, 6 is a high resistance, 7 is a low resistance,
8 is a power amplifier for the polarizing lens, 8A is the input terminal of the amplifier 8, 9 is the object to be welded, 9A is the welding bead, 7B is the voltage waveform at the resistor 7, 10 is the bandpass filter, and 10B is the filter 10's input terminal. Output, 11 is comparator, 11B is comparator output, 12 is oscillator, 12B is oscillator output, a
. bs c and C' are bead shapes.

Claims (1)

【特許請求の範囲】[Claims] 1 電子ビーム溶接において、高電圧電源回路に含まれ
るリップル成分のうち主成分を検出し、当リップル成分
の位相のうち電子ビームの焦点が被溶接物の溶込む先端
部に近ずくときの適切な位相において、当電流成分の半
周期以下の持続時間で、かつ全体の溶融形態を変化させ
ない範囲で、電子ビームを振動偏向させることを特徴と
した電子ビーム溶接法。
1. In electron beam welding, the main component of the ripple components included in the high voltage power supply circuit is detected, and the appropriate phase of the ripple component is determined when the focus of the electron beam approaches the tip of the welded object. An electron beam welding method characterized by vibrationally deflecting an electron beam in phase for a duration of half a cycle or less of the current component and within a range that does not change the overall melting form.
JP819779A 1978-07-25 1979-01-29 Electron beam welding method Expired JPS5856675B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP819779A JPS5856675B2 (en) 1979-01-29 1979-01-29 Electron beam welding method
US06/022,498 US4309589A (en) 1978-07-25 1979-03-21 Method and apparatus for electron beam welding
GB7910250A GB2026732B (en) 1978-07-25 1979-03-23 Electron beam welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP819779A JPS5856675B2 (en) 1979-01-29 1979-01-29 Electron beam welding method

Publications (2)

Publication Number Publication Date
JPS55100886A JPS55100886A (en) 1980-08-01
JPS5856675B2 true JPS5856675B2 (en) 1983-12-16

Family

ID=11686538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP819779A Expired JPS5856675B2 (en) 1978-07-25 1979-01-29 Electron beam welding method

Country Status (1)

Country Link
JP (1) JPS5856675B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2519155C2 (en) * 2012-08-24 2014-06-10 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пермский национальный исследовательский политехнический университет" Operative control method for electron-beam welding

Also Published As

Publication number Publication date
JPS55100886A (en) 1980-08-01

Similar Documents

Publication Publication Date Title
CN107949453B (en) Method for remote laser welding by means of superimposed vibration movements of a laser beam
US4366362A (en) All position TIG welding process
JP5934890B2 (en) Arc welding control method
US8941031B2 (en) Systems and methods for dual-weave welding
US20040074885A1 (en) Welding method, welding device, welded joint, and welded structure
US4095085A (en) High efficiency arc welding process and apparatus
JP4420863B2 (en) Control method of laser arc composite welding
JP2001047233A (en) Welding method of railroad rail and equipment therefor
JPS5856675B2 (en) Electron beam welding method
JP2004330299A (en) Laser welding method excellent in weld strength
KR102199238B1 (en) Arc welding method
JP2017225999A (en) Welding method
JP4873588B2 (en) Laser welding method
US4673794A (en) Electron beam welding method
JP4224196B2 (en) Multi-electrode submerged arc welding method with excellent weld bead shape
JP6658992B1 (en) Resistance spot welding method and method for manufacturing welded member
JPS5839037B2 (en) Electron beam welding method
Harris Transfer of heat and mass to the base metal in gas metal arc welding
JPS6219267B2 (en)
JP6296641B2 (en) Arc welding method
JPH048146B2 (en)
JP6658993B1 (en) Resistance spot welding method and method for manufacturing welded member
JPH11342474A (en) Welding of flat plate member
JPH08243747A (en) Wire filling mig welding method
JPH0740050A (en) Tig welding method for galvanized steel sheet