JPS5856532A - Optical logical operating element - Google Patents

Optical logical operating element

Info

Publication number
JPS5856532A
JPS5856532A JP15498081A JP15498081A JPS5856532A JP S5856532 A JPS5856532 A JP S5856532A JP 15498081 A JP15498081 A JP 15498081A JP 15498081 A JP15498081 A JP 15498081A JP S5856532 A JPS5856532 A JP S5856532A
Authority
JP
Japan
Prior art keywords
layer
region
light emitting
light
emitting region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15498081A
Other languages
Japanese (ja)
Inventor
Kazuo Kondo
和夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15498081A priority Critical patent/JPS5856532A/en
Publication of JPS5856532A publication Critical patent/JPS5856532A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F3/00Optical logic elements; Optical bistable devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To logically operate and process a plurality of optical signals and to output the result as the optical signals, by constituting the combination of electrical conductive and nonconductive states through the combinations of presence/absence of the optical signals in a semiconductor including a photodetecting, a light emitting and a light absorbing region. CONSTITUTION:In a semiconductor epitaxial crystal, an N-Ga1-xAlxAs layer 1, an N-Ga1-yAlyAs layer 2 and an N-Ga1zAlzAs layer 3 form a light emitting region, an N-Ga1-tAltAs layer 5, an N-Ga1-uAluAs layer 6, an N-Ga1-vAlvAs layer 7 and an N-Ga1-wAlwAs layer 8 constitute a photodetecting region and an N-GaAs layer 4 forms a photoabsorbing region. A P-region (crossed lines) 9 is formed in the layers 1, 2 with impurity diffusion and a high resistance region (oblique lines) 10 is formed to each layer through the injection of proton. An insulation film 11 and electrodes 12 are formed with SiO2. Photodetection regions X, Y are arranged in series with the high resistance region, and only when the two photodetecting regions receive an optical input signal and turn on, the light emitting region Z is conductive, allowing to operate logical product.

Description

【発明の詳細な説明】 本発明#′i複数光入力信号を演算処理し、光信号とし
て出力する光論理演算素子に関する0光フアイバ伝送の
実用化に向けて各種光素子の開発が進められておシ、発
光素子、受光素子或いは光回路素子等が種々提案されて
いるが、これらは概ね単一の機能を有する素子であって
、光信号について論理演算t″爽施ゐ場合には、光信号
を一旦電気信号に変換して所要の演算を行い、これを再
び光信号に変換するという方式がとられている。このた
めに光電変換回路と電子回路とを一つの素子に組込むな
ど構造や製作工程が複雑となりている0 本発明者が先に%願li854−081084によシ提
案した光制御半導体発光素子はこの問題解決に対する一
つの示唆を与えるものである。
Detailed Description of the Invention [Invention #'i] Development of various optical elements is progressing toward the practical application of optical fiber transmission, which relates to an optical logic operation element that arithmetic processes multiple optical input signals and outputs them as optical signals. Various types of light emitting devices, light receiving devices, optical circuit devices, etc. have been proposed, but these devices generally have a single function, and when a logical operation t'' is performed on an optical signal, The method used is to first convert the signal into an electrical signal, perform the necessary calculations, and then convert it back into an optical signal.For this purpose, structural changes such as incorporating a photoelectric conversion circuit and an electronic circuit into one element are used. The manufacturing process is complicated. The optically controlled semiconductor light emitting device previously proposed by the present inventor in Application No. 854-081084 provides one suggestion for solving this problem.

前記提案による光制御半導体発光素子は、基本的には、
入力光照射側に入力光の照射、非照射に応じて電気的に
導通状態、非導通状態となるーの光スイツチ領域を配設
し、出力側に半導体pn接合を含む発光領域を設け、内
領域に直列にかつ前記pn接合に対して順方向にバイア
ス電圧を印加したときに、前記光スイツチ領域の導通、
非導通の状態に応じて所定波長の光を前記発光領域から
発生成いは停止するようにした発光素子であって、前記
光スイツチ領域と前記発光領域との間に両者を光学的に
遮断する光吸収領域を設けたこと全特徴とするものであ
る。
The optically controlled semiconductor light emitting device according to the above proposal basically has the following features:
An optical switch region is provided on the input light irradiation side, which becomes electrically conductive or non-conductive depending on whether the input light is irradiated or not, and a light emitting region including a semiconductor pn junction is provided on the output side. When a bias voltage is applied in series to the region and in the forward direction to the pn junction, the optical switch region becomes conductive;
A light emitting element configured to emit or stop light of a predetermined wavelength from the light emitting region depending on a non-conducting state, the light switch region and the light emitting region being optically isolated between the light switch region and the light emitting region. The main feature is that a light absorption region is provided.

本発明は、前記提案を一つの基礎として前記問題点を解
決すべく、複数光入力信号を論理演算処理し、光信号と
して出力するモノリシック光論理演算素子を得ることを
目的とする0 本発明の前記目的は、所要数の受光領域及び発光領域並
びに該受光領域と該発光領域とを光学的に遮断する光吸
収領域を含むエピタキシャル結晶半導体内において、高
抵抗化された区域及び/もしくはpn反転された区域を
形成することにより、該受光領域と該光吸収領域と該発
光領域の三領域の少くとも−を含む回路全直列及び/も
しくは並列に配設して、該受光領域への光入力信号の有
無の組合せに対応する該回路の電気的導通状態と非導通
状態との組合せ全構成することにより、該発光領域から
光出力信号を発光し、屯しくけ停止することを特徴とす
る光論理演算素子により達成される。
The present invention is based on the above proposal and aims to solve the above problems by providing a monolithic optical logic operation element that performs logic operation processing on a plurality of optical input signals and outputs them as optical signals. The purpose is to provide a highly resistive area and/or a pn-inverted region in an epitaxial crystal semiconductor that includes a required number of light-receiving regions and light-emitting regions and a light-absorbing region that optically blocks the light-receiving region and the light-emitting region. A circuit including at least three regions, the light receiving region, the light absorbing region, and the light emitting region, is arranged in series and/or in parallel, and a light input signal to the light receiving region is formed. An optical logic device characterized in that an optical output signal is emitted from the light emitting region and the circuit is then stopped by configuring all the combinations of electrically conductive states and non-conductive states of the circuit corresponding to the combination of presence and absence of the circuit. This is accomplished by an arithmetic element.

特に、前記受光領域が一導電型低抵抗層と、光入力化も
の有無に応じて電気的に導通状態もしくは非導通状態と
なる該低抵抗層に比較して禁止帯幅が小なる一導電型低
抵抗層と、咳高抵抗層に比較して禁止帯幅が犬なる一導
電型低抵抗層とを含み、かつ該発光領域が半導体pn接
合を含んで、該素子に該pn接合に対して順方向にバイ
アス電圧を印加する構逍とするときに前記目的が容易に
達成される。
In particular, the light-receiving region has a one-conductivity type low-resistance layer and a one-conductivity type that has a smaller forbidden band width than the low-resistance layer that is electrically conductive or non-conductive depending on the presence or absence of optical input. a low-resistance layer, and a low-resistance layer of one conductivity type having a bandgap narrower than that of the high-resistance layer, and the light emitting region includes a semiconductor pn junction, and The above object can be easily achieved when using a structure in which a bias voltage is applied in the forward direction.

以下、本発明を実施例により図面を参照して具体的に説
明する。
Hereinafter, the present invention will be specifically described by way of examples with reference to the drawings.

第1図に本発明の実施例に用いた半導体エピタキシャル
結晶の断面図を示す。図において、1はn−Ga1−x
A1xA+層12はn−Ga1−yAlyA8層、3は
n−Ga1−z Alz As M k示し、y < 
x 。
FIG. 1 shows a cross-sectional view of a semiconductor epitaxial crystal used in an example of the present invention. In the figure, 1 is n-Ga1-x
A1xA+ layer 12 is n-Ga1-yAlyA8 layer, 3 is n-Ga1-z Alz As Mk, and y<
x.

2であって、以上三層から発光領域全構成するもので、
n−Gah−yAlyAs層2に発光領域の活性層を構
成し、光出力信号の波長はこの層の組成yによって決定
される。又、n −Gal−xAlxAi N 1及び
n −GILI−zAlzAs層3Fi光及び少数キャ
リア閉じ込めmt樽成する0なお1中小文字n、pで示
した層は大文字N、 Pで示した層に比較して禁止帯幅
が小なることを示す。
2, the entire light emitting area is composed of the above three layers,
The n-Gah-yAlyAs layer 2 constitutes the active layer of the light emitting region, and the wavelength of the optical output signal is determined by the composition y of this layer. In addition, the n -Gal-x Al This shows that the forbidden band width is small.

また、5tln−Gal−tAA’tAs層、6tj:
n−Ga1−u AJu As @ 、 7は1(n)
−Gax −v Alv As層、8はH−Ga1−w
 A7w As N k示し、v(t、 u、 wであ
って、以上四層から受光領域を構成する。t(又はn 
) −GILI−vAJvAs層7は元入力信号に1シ
篭子・正孔対を生成し、光伝導を与える活性層を構成す
る高抵抗層でおる。またn −Gal −wAj!wA
s層8は電極コンタクト層兼少数キャリア閉じ込め層で
あって、電極のオーミックコンタクl確実化する充分高
い不純物濃度を有し、低抵抗であると共に、光入力信号
の光学窓とする場合には光入力信号に対して透明となる
ようにその組成Wが設定されている。更にn −Gat
 −tAJ tAsAs層びn−Ga1−uAluAs
−6はn −Gax−wA1wAs層8と同様に、前記
1(n)−Ga1−vAlvAs層7とへテロ接合をな
し、元入力信号により発生した少数キャリア(本実施例
では正孔)を前記1(n) Gax −vAlvAs層
7内に閉じ込める役割をはたす0従って層5゜6及び8
の禁止帯幅は層7の禁止帯幅より大きく設定されており
、前述の如<、v<t、  u、 wとなっている。な
お層7は選択成長法や層6に設けた溝に理め込む方法等
によシ形成される。更に第1図中4はn  GaAs層
であって、光吸収領域を桐成し、前記層1乃至3よりな
る発光領域と、前記層5乃至8よすなる受光領域と全光
学的に遮断する役割をはたす。従って、このn −Ga
As層4の厚さは光の侵入長よシ充分大きくなければな
らないが、この目的のためには通常数μmの厚さで充分
である。
Also, 5tln-Gal-tAA'tAs layer, 6tj:
n-Ga1-u AJu As @, 7 is 1(n)
-Gax -v Alv As layer, 8 is H-Ga1-w
A7w As N k, v(t, u, w, the light receiving area is composed of the above four layers. t(or n
) -GILI-vAJvAs layer 7 is a high-resistance layer forming an active layer that generates one cage/hole pair in the original input signal and provides photoconduction. Also n-Gal-wAj! wA
The S layer 8 serves as an electrode contact layer and a minority carrier confinement layer, and has a sufficiently high impurity concentration to ensure ohmic contact of the electrode, has low resistance, and is optically transparent when used as an optical window for optical input signals. Its composition W is set so that it is transparent to input signals. Furthermore, n-Gat
-tAJ tAsAs layer n-Ga1-uAluAs
-6 forms a heterojunction with the 1(n)-Ga1-vAlvAs layer 7, similar to the n-Gax-wA1wAs layer 8, and transfers the minority carriers (holes in this example) generated by the original input signal to the 1(n)-Ga1-vAlvAs layer 7. 1(n) Gax -vAlvAs 0 which serves to confine within layer 7 and thus layers 5°6 and 8
The forbidden band width of is set to be larger than that of layer 7, and as described above, <, v<t, u, w. Note that the layer 7 is formed by a selective growth method, a method of inserting it into a groove provided in the layer 6, or the like. Furthermore, 4 in FIG. 1 is an n GaAs layer, which forms a light absorption region and completely optically blocks the light emitting region made up of the layers 1 to 3 and the light receiving region made up of the layers 5 to 8. fulfill one's role. Therefore, this n-Ga
Although the thickness of the As layer 4 must be sufficiently larger than the light penetration length, a thickness of several μm is usually sufficient for this purpose.

しかし、とのn−GaAs層4に素子全体の機械的強度
を支持させると好都合であシ、この点を考慮すると50
乃至100μm程度の厚さとすることが望ましい。特に
この場合においては、このn−GaAs層における寄生
抵抗が大きくならないよう、比較的高濃度にn型不純物
を含有させる。
However, it is convenient to have the n-GaAs layer 4 support the mechanical strength of the entire device, and considering this point,
The thickness is preferably about 100 μm to 100 μm. Particularly in this case, the n-type impurity is contained at a relatively high concentration so as not to increase the parasitic resistance in the n-GaAs layer.

H−QaAs基板を前記n−GaAs層4として用いて
、その表孤面に層3,2及び1並びに層5,6゜7及び
8′ft夫々多層成長させる2段階の成長による方法も
有効である0各層の成長方法としては液相成長、気相成
長9分子線ビームエピタキシー等何れの方法によっても
よい。
A two-step growth method is also effective, using an H-QaAs substrate as the n-GaAs layer 4 and growing layers 3, 2, and 1 and layers 5, 6, 7, and 8'ft, respectively, on the top surface of the substrate. The growth method for each layer may be any method such as liquid phase growth, vapor phase growth, or molecular beam epitaxy.

第2図乃至第6図に、第1図に示した千尋体エピタキシ
ャル結晶を用いて製作した光論J!1i素子の断面図を
示す0 第2−乃至第6図において、交叉する斜線で示された領
域9は不純物拡散又は注入によって形成されたp型領域
、斜線で示された領域10はプロトン注入又はイオン注
入等によって形成された高抵抗領域、11は8101.
5isN4又はAJtol等よりなる絶縁膜、12は電
極を示す。
Figures 2 to 6 show the photonic J! In Figures 2 to 6, which show cross-sectional views of the 1i element, a region 9 indicated by intersecting diagonal lines is a p-type region formed by impurity diffusion or implantation, and a region 10 indicated by diagonal lines is a p-type region formed by proton implantation or implantation. A high resistance region 11 formed by ion implantation or the like is 8101.
5 is an insulating film made of N4 or AJtol, and 12 represents an electrode.

なお、以下の各実施例において、1. 2’及び3はス
トライプ構造のレーザで発光領域2を構成し、ストライ
ブは紙面に垂直な方向に延びている。
In addition, in each of the following examples, 1. Lasers 2' and 3 constitute a light emitting region 2 with a striped structure, and the stripes extend in a direction perpendicular to the plane of the paper.

また5、7’、6及び8と5,7“、6及び8がそれぞ
れ独立な受光領域X及びYを構成する二受光領域の場合
を示し、pn接合に順方向にバイアス電圧が印加され、
7及び7′に入射する光入力信号及び2′よシ発光され
る光出力信号は何れも紙面に垂直な方向である。
In addition, a case is shown in which two light receiving regions 5, 7', 6, and 8 and 5,7", 6, and 8 constitute independent light receiving regions X and Y, respectively, and a forward bias voltage is applied to the pn junction,
The optical input signals incident on 7 and 7' and the optical output signal emitted from 2' are both in the direction perpendicular to the plane of the paper.

第2図は論理積(AND)素子の断面図を示す。FIG. 2 shows a cross-sectional view of an AND element.

このAND素子は受光領域X及びYが直列に配列されて
いるために、二受光領域が同時に光入力信号を受けてO
N状態となるときに限って発光領域ZがONとなシ、論
理積の演算を行う0第3図は論理和(OR)素子の断面
図を示すOこの08票子は受光領域X及びYが発光領域
2に対して並列に配列されているために、二受光領域X
或いはYの少くとも何れか一つがON状態になるとき発
光領域ZFiONとなシ論理和の演算を行うO 絽4図は否定(INVER8ION )素子の断面図を
示し、前記バイアスは定電流源によ〕与えられる。この
INVER8ION素子の受光領域はXのみであり、受
光領域XがOFF状態のとき発光領域2はON状態にあ
るが、受光領域XがON状態となるとき、電流は抵抗の
低いX側に多く流れて発光領域ZはOFF状態となる0
これは否定の演算である0 第5図は否定論理積(NAND)素子の断面図を示し、
前記バイアス社定電流源によシ与えられる0このNAN
D素子は受光領域X及びYの双方が同時にON状態にな
るときに限って発光領域2がOFFとなり、否定論理積
の演算を行う0 第6図は否定論理和(NOR’)素子の断面図を示し、
前記バイアスは定電流源によシ与えられる0このNOR
素子は受光領域X或いはYの少くとも何れか一つがON
状態になるとき発光領域2はOFF状態となシ否定論理
和の演算を行う。
In this AND element, since the light receiving areas X and Y are arranged in series, the two light receiving areas receive the optical input signal at the same time.
The light-emitting region Z is ON only when the N state is reached, and the logical product operation is performed.0 Figure 3 shows a cross-sectional view of the logical sum (OR) element. Since it is arranged in parallel to the light emitting region 2, the two light receiving regions
Alternatively, when at least one of Y is in the ON state, a logical OR operation is performed with the light emitting region ZFiON. 〕Given. The light receiving area of this INVER8ION element is only X, and when the light receiving area X is OFF, the light emitting area 2 is in the ON state, but when the light receiving area 0, the light emitting region Z is in the OFF state.
This is a negative operation.0 Figure 5 shows a cross-sectional view of a negative logical product (NAND) element.
0 this NAN given by the bias constant current source
In the D element, the light-emitting region 2 turns OFF only when both light-receiving regions shows,
The bias is given by a constant current source.
In the element, at least one of the light-receiving areas X or Y is ON.
When this state is reached, the light emitting region 2 is in the OFF state and a NOR operation is performed.

以上第2図乃至第6図によって説明した実施例は、第1
図に示した一種類の半導体エピタキシャル結晶からAN
D、OR,INVER8ION、NAND及びNORの
光信号論理演算素子を形成したものである。
The embodiment described above with reference to FIGS. 2 to 6 is based on the first embodiment.
AN from one type of semiconductor epitaxial crystal shown in the figure.
D, OR, INVER8ION, NAND, and NOR optical signal logic operation elements are formed.

前記実施例においては、p型領域を結晶成長後に不純物
拡散又は注入によって形成したが、結晶成長時にp型領
域とする庵を選択成長する方法によって形成することも
可能である。
In the embodiments described above, the p-type region was formed by impurity diffusion or implantation after crystal growth, but it is also possible to form it by a method of selectively growing a p-type region during crystal growth.

更に、前記実施例においては、発光領域としてP−?−
Nヘテロ接合ストライプ構造のレーザダイオードを用い
たが、分布帰還型レーザ或いは発光ダイオード等を用い
ることも可能であり、又、光出力信号の波長は光入力信
号の波長に対し独立して自由に選択することが可能でお
る。
Furthermore, in the above embodiment, the light emitting region is P-? −
Although a laser diode with an N-heterojunction stripe structure was used, it is also possible to use a distributed feedback laser, a light emitting diode, etc., and the wavelength of the optical output signal can be freely selected independently of the wavelength of the optical input signal. It is possible to do so.

前V!実施例では半導体材料としてGaAJ As系結
晶を用いたが、InGaAsP系、 GaAlAsSb
系等の他の半導体材料を用いても同様な光論理演算素子
を構成することが可能であシ、また、前記実施例として
は光入力信号数が二以下の場合全庁したが、前記実施例
の基本的演算機能の重畳9組合せ等によって三以上の光
入力信号を処理する光論理演算素子を構成し、更に複合
した論理を演算することが可能である。
Previous V! In the example, GaAJAs-based crystal was used as the semiconductor material, but InGaAsP-based, GaAlAsSb
It is also possible to construct a similar optical logic operation element using other semiconductor materials such as the It is possible to configure an optical logic operation element that processes three or more optical input signals by combining nine superimposed basic operation functions, as in the example, and to further operate complex logic.

本発明は以上1明した如く、所賛数の受光領域。As explained above, the present invention has a number of light receiving areas.

発光領域及び光吸収領域を含むエピタキシャル結晶半導
体内に前記三領域の少くとも−を含む回路を配設して、
受光領域への光入力信号の有無の組合せに対応する該回
路の電気的導通状態と非導通状態との組合せを構成する
ことによシ発光領域か発光領域のpn接合に順方向のバ
イアスを該素子に印加する構造とするとき容易に冥現す
ることが可能であって、光論理演算素子の実用化に大き
い効果を有する。
A circuit including at least - of the three regions is arranged in an epitaxial crystal semiconductor including a light emitting region and a light absorption region,
A forward bias is applied to the light emitting region or the pn junction of the light emitting region by configuring a combination of an electrically conductive state and a non-conductive state of the circuit corresponding to the combination of the presence and absence of an optical input signal to the light receiving region. This can be easily realized when creating a structure for applying voltage to an element, and has a great effect on the practical application of optical logic operation elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に用いた半導体エピタキシャル
結晶の断面図、第2図乃至第6図は本発明の実施例を丞
す断面図である。 図において、1はn −Gal−xAlxAs層、2及
び2′はn−Ga1−yAJyAs層、3はn −Ga
+ −zAlzAs層、4はn−GaAg層、5はn 
−Gal−tAJtAs層、  6 Fin−Gal−
uAluAm層、  7. 7’及び7“は1(n)−
Gal−vAJvAa層、 8 Fin−Gal −W
AA”WAI層、9はp型領域、10は高抵抗領域、I
I#−1絶縁膜、12は電極を示す。 第1図
FIG. 1 is a cross-sectional view of a semiconductor epitaxial crystal used in an embodiment of the present invention, and FIGS. 2 to 6 are cross-sectional views of the embodiments of the present invention. In the figure, 1 is an n-Gal-xAlxAs layer, 2 and 2' are n-Ga1-yAJyAs layers, and 3 is an n-Ga
+ -zAlzAs layer, 4 is n-GaAg layer, 5 is n
-Gal-tAJtAs layer, 6 Fin-Gal-
uAluAm layer, 7. 7' and 7" are 1(n)-
Gal-vAJvAa layer, 8 Fin-Gal-W
AA''WAI layer, 9 is a p-type region, 10 is a high resistance region, I
I#-1 insulating film, 12 indicates an electrode. Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)受光領域及び発光領域並びに該受光領域と該発光
領域とを光学的に遮断する光吸収領域を含むエビタ午シ
ャル結晶半導体内において、高抵抗化された区域及び/
もしくはpn反転された区域【形成することによシ、該
受光領域と該光吸収領域と骸発光領域の三領域の少くと
も−を含む回路を直列及び/もしくは蓬列に配設して、
該受光領域への光入力信号の有無の組合せに対応する該
回路の電気的導通状態と非導通状態との組合せを構成す
る仁とにより、該発光領域から光出力信号を発光し、も
しくは停止することt−特徴とする光論理演算素子0
(1) Highly resistive areas and/or areas within the virtual crystal semiconductor including a light receiving region, a light emitting region, and a light absorbing region that optically blocks the light receiving region and the light emitting region.
or by forming a pn inverted area, a circuit including at least three areas of the light receiving area, the light absorbing area, and the skeleton light emitting area is arranged in series and/or in a row,
A light output signal is emitted from the light emitting region or stopped depending on a combination of an electrically conductive state and a non-conductive state of the circuit corresponding to the combination of presence and absence of an optical input signal to the light receiving region. Kotot-Featured optical logic operation element 0
(2)前記受光領域が、−導電型低抵抗層と、光入力信
号の有無に応じて電気的に導通状態もしくは非導通状態
となる該低抵抗層に比較して禁止帯幅が小なる一導電型
低抵抗層と、訳高抵抗層に比較して禁止帯幅が大なる一
導電型低抵抗層とを含み、かつ、前記発光領域が半導体
pn接合を含んで、骸累子に#pn接合に対して順方向
にバイアス電圧を印加することを特徴とする特許請求の
範囲第1項記載の光論理演算素子。
(2) The light-receiving region has a negative bandgap width that is smaller than that of the -conductivity type low-resistance layer, which becomes electrically conductive or non-conductive depending on the presence or absence of an optical input signal. The light emitting region includes a conductivity type low resistance layer and a conductivity type low resistance layer having a larger bandgap width than a high resistance layer, and the light emitting region includes a semiconductor pn junction, and #pn is formed in the shell layer. 2. The optical logic operation element according to claim 1, wherein a forward bias voltage is applied to the junction.
JP15498081A 1981-09-30 1981-09-30 Optical logical operating element Pending JPS5856532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15498081A JPS5856532A (en) 1981-09-30 1981-09-30 Optical logical operating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15498081A JPS5856532A (en) 1981-09-30 1981-09-30 Optical logical operating element

Publications (1)

Publication Number Publication Date
JPS5856532A true JPS5856532A (en) 1983-04-04

Family

ID=15596073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15498081A Pending JPS5856532A (en) 1981-09-30 1981-09-30 Optical logical operating element

Country Status (1)

Country Link
JP (1) JPS5856532A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494489A (en) * 1972-03-14 1974-01-16
JPS5618486A (en) * 1979-07-18 1981-02-21 Western Electric Co Optical circuit device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494489A (en) * 1972-03-14 1974-01-16
JPS5618486A (en) * 1979-07-18 1981-02-21 Western Electric Co Optical circuit device

Similar Documents

Publication Publication Date Title
US5451767A (en) Optical modulator gate array including multi-quantum well photodetector
US4218692A (en) Light-emitting and light-receiving diode particularly for optical telecommunications
US5136353A (en) Optical switch
JPS5856532A (en) Optical logical operating element
US4571729A (en) Semiconductor laser having an inverted layer in a plurality of stepped offset portions
JPS6285477A (en) Photosemiconductor device
JP2675574B2 (en) Semiconductor light receiving element
JPS6244714B2 (en)
JPS6133275B2 (en)
JP3286034B2 (en) Semiconductor light receiving element
JP2001007378A (en) Semiconductor light receiving device, and manufacture thereof
JPS5994887A (en) Light emitting device
JPS63152180A (en) Photo thyristor
JPH0226082A (en) Photodiode
JPS5892287A (en) Light rs flip flop circuit device
JPH067630B2 (en) Three-terminal semiconductor laser device
JP3341296B2 (en) Optical semiconductor device
JPH05275741A (en) Semiconductor element
JPS594161A (en) Optical integrated circuit device
JPH0666453B2 (en) Optoelectronic integrated circuit
JPH04348085A (en) Semiconductor optical device
JPS61276389A (en) Semiconductor optical element
JPH0563105B2 (en)
JPH0513550B2 (en)
JPH06123908A (en) Shift register having optical bistable element