JPS5856036B2 - Water splitting device using light energy - Google Patents

Water splitting device using light energy

Info

Publication number
JPS5856036B2
JPS5856036B2 JP51107032A JP10703276A JPS5856036B2 JP S5856036 B2 JPS5856036 B2 JP S5856036B2 JP 51107032 A JP51107032 A JP 51107032A JP 10703276 A JP10703276 A JP 10703276A JP S5856036 B2 JPS5856036 B2 JP S5856036B2
Authority
JP
Japan
Prior art keywords
type semiconductor
electrode
light
hydrogen
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51107032A
Other languages
Japanese (ja)
Other versions
JPS5331576A (en
Inventor
満紀 原
修三 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP51107032A priority Critical patent/JPS5856036B2/en
Publication of JPS5331576A publication Critical patent/JPS5331576A/en
Publication of JPS5856036B2 publication Critical patent/JPS5856036B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Hybrid Cells (AREA)

Description

【発明の詳細な説明】 本発明は光エネルギーを直接電気エネルギーに変換する
と共に電解液としての水溶液を分解する光電変換装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a photoelectric conversion device that directly converts light energy into electrical energy and decomposes an aqueous solution as an electrolyte.

この種装置は少くとも一方がP型半導体若しくはn型半
導体よりなる一対の電極を電解液としての硫酸水溶液或
いは力性カリ水溶液中に浸漬せる横取をなし、上記半導
体電極にその半導体の禁止帯幅以上のエネルギーを有す
る光を照射すれば光起電力効果により、例えば一対の電
極としてP型半導体とn型半導体とを用いればP型半導
体電極では正、n型半導体電極では負の電位が現われ、
又P型半導体と白金等の金属とを一対の電極に用いれば
P型半導体電極に正、金属電極に負の電位が、更にn型
半導体と金属とを組合せばn型半導体電極に負、金属電
極に正の電位が現われ、両極間に起電力を生じると共に
光励起によってもたらされる光電極反応により水の分解
を行い、次式の如く正極においては還元反応により水素
を発生すると共に負極においては酸化反応により酸素を
発生するものである。
This type of device has a pair of electrodes, at least one of which is made of a P-type semiconductor or an N-type semiconductor, which is immersed in an aqueous sulfuric acid solution or an aqueous potassium solution as an electrolyte, and the semiconductor electrode has a prohibited band of the semiconductor. If light with energy greater than the width is irradiated, due to the photovoltaic effect, for example, if a P-type semiconductor and an N-type semiconductor are used as a pair of electrodes, a positive potential will appear at the P-type semiconductor electrode and a negative potential at the n-type semiconductor electrode. ,
Also, if a P-type semiconductor and a metal such as platinum are used as a pair of electrodes, the P-type semiconductor electrode will have a positive potential and the metal electrode will have a negative potential, and if an n-type semiconductor and a metal are combined, the n-type semiconductor electrode will have a negative potential and a metal potential. A positive potential appears at the electrode, generating an electromotive force between the two electrodes, and water is decomposed by the photoelectrode reaction brought about by light excitation. Hydrogen is generated by a reduction reaction at the positive electrode, and an oxidation reaction occurs at the negative electrode, as shown in the following equation. This generates oxygen.

即ち、負極においては なる反応が起り酸素が発生すると共に、一方正極におい
ては、 (P型半導体電極 或い、よ金属電極)2H″+2°−−1・↑なる反応が
起り水素が発生するものである。
That is, at the negative electrode, the following reaction occurs and oxygen is generated, and at the positive electrode, (P-type semiconductor electrode or metal electrode), the following reaction occurs and hydrogen is generated. It is.

このように光の照射により光エネルギーを直接電気エネ
ルギーに変換すると共にその変換過程において水を分解
して水素と酸素を得ることができるものであり、従来の
ように適宜エネルギーを電気エネルギーに一旦変換した
のちこの電気エネルギーで水の電気分解を行うものに比
し工程の省略による経済性ははかり知れないほど大きい
In this way, light energy can be directly converted into electrical energy by irradiation with light, and in the conversion process, water can be decomposed to obtain hydrogen and oxygen. Compared to the method in which water is then electrolyzed using this electrical energy, the economical efficiency due to the omission of the process is immeasurably greater.

本発明は前述せる有意性に着目し、特に半導体電極の光
電極反応による水素或いは酸素発生の過電圧を考慮して
水素及び酸素の発生効率を向上せしめることを目的とす
るものである。
The present invention focuses on the above-mentioned significance and aims to improve the efficiency of hydrogen and oxygen generation, particularly taking into account the overvoltage of hydrogen or oxygen generation due to the photoelectrode reaction of a semiconductor electrode.

以下本発明の一実施例を図面に基づき説明する。An embodiment of the present invention will be described below based on the drawings.

第1図は本発明装置の構成図を示し、一対の電極として
P型半導体とn型半導体とを用いた場合を例にとり説明
するに1は酸化チタン(n T102)、チタン酸ス
トロンチウム(n 5rTi03 )、チタン酸バリ
ウム(n−BaTi03)等のn型半導体よりなる負極
、2はリン化ガリウム(P GaP)、ガリウム砒素
(P −GaAs )等のP型半導体よりなる正極であ
り、これら各電極は夫々ガラス管3,4の端面に封着さ
れている。
FIG. 1 shows a configuration diagram of the device of the present invention, and will be explained by taking as an example a case where a P-type semiconductor and an n-type semiconductor are used as a pair of electrodes. 1 is titanium oxide (n T102), strontium titanate (n 5rTi03 ), 2 is a negative electrode made of an n-type semiconductor such as barium titanate (n-BaTi03), and 2 is a positive electrode made of a p-type semiconductor such as gallium phosphide (PGaP) or gallium arsenide (P-GaAs). are sealed to the end faces of the glass tubes 3 and 4, respectively.

5はH状のガラス容器よりなる電槽でありガラスフィル
ター6により負極室7と正極室8とに区画されている。
Reference numeral 5 denotes a battery case made of an H-shaped glass container, which is divided into a negative electrode chamber 7 and a positive electrode chamber 8 by a glass filter 6.

9は硫酸水溶液或いは力性カリ水溶液よりなる電解液、
10゜11は石英板よりなる受光窓、12は酸素ガス捕
集管、13は水素ガス捕集管、14は前記ガラス管3,
4及びガス捕集管12.13を支持する封目板、15は
各電極より導出せるリード線16゜17間に介挿された
外部負荷抵抗、18は電圧計である。
9 is an electrolytic solution consisting of a sulfuric acid aqueous solution or a potassium aqueous solution;
10° 11 is a light receiving window made of a quartz plate, 12 is an oxygen gas collection tube, 13 is a hydrogen gas collection tube, 14 is the glass tube 3,
4 and a sealing plate supporting the gas collection tubes 12 and 13, 15 an external load resistor inserted between lead wires 16 and 17 led out from each electrode, and 18 a voltmeter.

第2図は本発明による改良された半導体電極の部分拡大
断面図を示し、イはn型半導体電極の場合であり、1a
はn型半導体薄板、1bはその受光面に形成された酸素
過電圧の小なる金属酸化物層である。
FIG. 2 shows a partially enlarged cross-sectional view of the improved semiconductor electrode according to the present invention, where A is an n-type semiconductor electrode, and 1a is the case of an n-type semiconductor electrode;
is an n-type semiconductor thin plate, and 1b is a metal oxide layer with low oxygen overvoltage formed on its light-receiving surface.

このn型半導体電極の製法の一例について述べるにn型
半導体薄板(n TlO2、n−8rTiO3等)の
受光面をサイドペーパー等で粗面化した後、その面に酸
素過電圧の小さい金属、例えばコバルト、ニッケルの希
薄硝酸塩水溶液(10−2〜10−3モル濃度)を50
■/誕塗布し、ついで100〜110℃で熱分解処理し
て極板受光面に酸素過電圧の小なる金属酸化物層を形成
せるn型半導体電極を得る。
To describe an example of the method for manufacturing this n-type semiconductor electrode, the light-receiving surface of an n-type semiconductor thin plate (nTlO2, n-8rTiO3, etc.) is roughened with side paper, and then a metal with low oxygen overvoltage, such as cobalt, is applied to the surface. , a dilute aqueous solution of nickel nitrate (10-2 to 10-3 molar concentration) at 50%
(2) The n-type semiconductor electrode is coated and then thermally decomposed at 100 to 110 DEG C. to form a metal oxide layer with low oxygen overvoltage on the light-receiving surface of the electrode plate.

又、口はP型半導体電極の場合であり2aはP型半導体
薄板、2bはその受光面に形成された水素過電圧の小な
る金属層である。
In addition, the opening is a P-type semiconductor electrode, 2a is a P-type semiconductor thin plate, and 2b is a metal layer with low hydrogen overvoltage formed on the light receiving surface.

このP型半導体電極の製法の一例について述べるにP型
半導体薄板(P−Gap、 P−GaAs等)の受光面
をサイドペーパーで粗面化した後、該薄板を水素過電圧
の小さい金属、例えば白金、パラジウムの弱酸性塩化物
水溶液(0,5〜1.0モル濃度)中に10分間浸漬し
、ついで前記受光面に白金或いはパラジウム金属を無電
解メッキにより析出せしめ水素過電圧の小なる金属層を
形成せるP型半導体電極を得る。
To describe an example of the method for manufacturing this P-type semiconductor electrode, the light-receiving surface of a P-type semiconductor thin plate (P-Gap, P-GaAs, etc.) is roughened with side paper, and then the thin plate is coated with a metal having a low hydrogen overvoltage, such as platinum. , immersed in a weakly acidic chloride aqueous solution of palladium (0.5 to 1.0 molar concentration) for 10 minutes, and then depositing platinum or palladium metal on the light-receiving surface by electroless plating to form a metal layer with low hydrogen overvoltage. A P-type semiconductor electrode is obtained.

本発明によれば光電変換過程において同時に水分解し水
素・酸素を発生するに際して、カソード反応により水素
を発生するP型半導体電極の受光面に水素過電圧の小さ
い金属層を形成したので水素発生を容易にならしめると
共にアノード反応により酸素を発生するn型半導体電極
の受光面に酸素過電圧の小さい金属酸化物層を形成した
ので酸素発生を容易にならしめたものであり、水素及び
酸素の発生効率を向上せしめうる。
According to the present invention, when simultaneously decomposing water and generating hydrogen and oxygen in the photoelectric conversion process, a metal layer with low hydrogen overvoltage is formed on the light-receiving surface of the P-type semiconductor electrode that generates hydrogen through a cathode reaction, making it easy to generate hydrogen. At the same time, a metal oxide layer with low oxygen overvoltage is formed on the light-receiving surface of the n-type semiconductor electrode that generates oxygen through an anode reaction, making it easier to generate oxygen and increasing the efficiency of hydrogen and oxygen generation. It can be improved.

第3図は本発明により表面処理したP型リン化ガリウム
及びn型酸化チタンを夫々正極及び負極に用いた場合a
と表面未処理のP型リン化ガリウム及びn型酸化チタン
を夫々正極及び負極に用いた場合すにおける水素(実線
)及び酸素(破線)の発生量比較特性図である。
Figure 3 shows a case where P-type gallium phosphide and n-type titanium oxide, which have been surface-treated according to the present invention, are used for the positive and negative electrodes, respectively.
FIG. 3 is a characteristic diagram comparing the amounts of hydrogen (solid line) and oxygen (broken line) generated in cases where surface-untreated P-type gallium phosphide and n-type titanium oxide are used for the positive and negative electrodes, respectively.

図より明白なるように本発明による半導体電極を用いれ
ば各半導体電極の反応(正極での水素発生、負極での酸
素発生)の過電圧を減少せしめたので光による水分解を
より効率よく行うことができるものであり、この種装置
の利用率に資するところ極めて犬なるものである。
As is clear from the figure, by using the semiconductor electrode according to the present invention, the overvoltage of each semiconductor electrode reaction (hydrogen generation at the positive electrode, oxygen generation at the negative electrode) is reduced, so water splitting by light can be performed more efficiently. It is possible to do this, and it is extremely important that this type of device contributes to the utilization rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明半導体電極を用いた光エネルギー利用の
水分解装置の構成国、第2図は本発明半導体電極の受光
面における部分拡大断面図を示し、イはn型半導体電極
、口はP型半導体電極を夫々示す。 第3図は本発明半導体電極を用いた場合と従来の半導体
電極を用いた場合における水素及び酸素発生量一時間特
性比較図である。 1・・・・・・n型半導体電極、1a・・・・・・n型
半導体薄板、1b・・・・・・酸素過電圧の小さい金属
酸化物層、2・・・・・・P型半導体電極、2a・・・
・・・P型半導体薄板、2b・・・・・・水素過電圧の
小さい金属層、5・・・・・・電槽、9・・・・・・電
解液、10,11・・・・・・受光窓、12・・・・・
・酸素ガス捕集管、13・・・・・・水素ガス捕集管、
15・・・・・・外部負荷。
Figure 1 shows the constituent countries of a water splitting device using light energy using the semiconductor electrode of the present invention, and Figure 2 shows a partially enlarged cross-sectional view of the light receiving surface of the semiconductor electrode of the present invention, where A is an n-type semiconductor electrode and the mouth is an n-type semiconductor electrode. P-type semiconductor electrodes are shown respectively. FIG. 3 is a comparison diagram of the hourly characteristics of the amounts of hydrogen and oxygen generated when the semiconductor electrode of the present invention is used and when a conventional semiconductor electrode is used. 1... N-type semiconductor electrode, 1a... N-type semiconductor thin plate, 1b... Metal oxide layer with low oxygen overvoltage, 2... P-type semiconductor Electrode, 2a...
... P-type semiconductor thin plate, 2b ... Metal layer with low hydrogen overvoltage, 5 ... Battery container, 9 ... Electrolyte, 10, 11 ...・Light receiving window, 12...
・Oxygen gas collection tube, 13...Hydrogen gas collection tube,
15...External load.

Claims (1)

【特許請求の範囲】[Claims] 1 少くとも一方がP型半導体若しくはn型半導体より
なる一対の電極を水溶性電解液中に浸漬し、これら半導
体電極にその半導体の禁止帯幅以上のエネルギーを有す
る光を照射せしめ、その光励起反応により水分解するも
のにおいて、前記P型半導体電極の受光面に水素過電圧
の小なる金属層を形成すると共に前記n型半導体電極の
受光面に酸素過電圧の小なる金属酸化物層を形成せしめ
ることを特徴とする光エネルギー利用の水分解装置。
1. A pair of electrodes, at least one of which is made of a P-type semiconductor or an N-type semiconductor, is immersed in an aqueous electrolyte, and these semiconductor electrodes are irradiated with light having an energy greater than the forbidden band width of the semiconductor to induce a photoexcitation reaction. In a device that decomposes water by A water splitting device that uses light energy.
JP51107032A 1976-09-06 1976-09-06 Water splitting device using light energy Expired JPS5856036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51107032A JPS5856036B2 (en) 1976-09-06 1976-09-06 Water splitting device using light energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51107032A JPS5856036B2 (en) 1976-09-06 1976-09-06 Water splitting device using light energy

Publications (2)

Publication Number Publication Date
JPS5331576A JPS5331576A (en) 1978-03-24
JPS5856036B2 true JPS5856036B2 (en) 1983-12-13

Family

ID=14448778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51107032A Expired JPS5856036B2 (en) 1976-09-06 1976-09-06 Water splitting device using light energy

Country Status (1)

Country Link
JP (1) JPS5856036B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350274Y2 (en) * 1983-11-10 1988-12-23
JPH0127033B2 (en) * 1984-03-09 1989-05-26 Kunio Suzuki

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55146486A (en) * 1979-05-01 1980-11-14 Victor Company Of Japan Drive circuit for dynamic drive type fluorescent indicator lamp
JPS5638380U (en) * 1979-08-31 1981-04-11
DE3119034C1 (en) * 1981-05-13 1983-03-10 Kraftwerk Union AG, 4330 Mülheim Electromagnetic filter
JPS5978393A (en) * 1982-10-27 1984-05-07 ロ−ム株式会社 Driver for fluorescent indicator tube
WO2013031063A1 (en) * 2011-08-31 2013-03-07 パナソニック株式会社 Method for reducing carbon dioxide
WO2013031062A1 (en) * 2011-08-31 2013-03-07 パナソニック株式会社 Method for reducing carbon dioxide
WO2015159348A1 (en) * 2014-04-14 2015-10-22 富士通株式会社 Photosynthetic apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350274Y2 (en) * 1983-11-10 1988-12-23
JPH0127033B2 (en) * 1984-03-09 1989-05-26 Kunio Suzuki

Also Published As

Publication number Publication date
JPS5331576A (en) 1978-03-24

Similar Documents

Publication Publication Date Title
Tomkiewicz et al. Photoelectrolysis of water with semiconductors
Mavroides et al. Photoelectrolysis of water in cells with SrTiO3 anodes
Ohnishi et al. The quantum yield of photolysis of water on TiO2 electrodes
Cattarin Electrochemical reduction of nitrogen oxyanions in 1 M sodium hydroxide solutions at silver, copper and CuInSe2 electrodes
Fujishima et al. Competitive photoelectrochemical oxidation of reducing agents at the titanium dioxide photoanode
US4793910A (en) Multielectrode photoelectrochemical cell for unassisted photocatalysis and photosynthesis
US7481914B2 (en) Photoelectrolysis cells, and related devices and processes
CN106894024B (en) Accumulation energy type tungstic acid/strontium titanates/nano titania composite film photo-anode preparation method
JP2003238104A (en) Apparatus for generating hydrogen by light
US4181593A (en) Modified titanium dioxide photoactive electrodes
US4310405A (en) Device for the photoelectrochemical generation of hydrogen at p-type semiconductor electrodes
US4501804A (en) Photo-assisted electrolysis cell with p-silicon and n-silicon electrodes
JPS5856036B2 (en) Water splitting device using light energy
Yin et al. A n-Si/CoO x/Ni: CoOOH photoanode producing 600 mV photovoltage for efficient photoelectrochemical water splitting
US4734168A (en) Method of making n-silicon electrodes
JPS5927391B2 (en) Water splitting device using light energy
JPS58516B2 (en) Koden Henkansu Isohatsu Seisouchi
Inoue et al. Photoelectrochemical cell using SiC for water splitting
US20060100100A1 (en) Tetrahedrally-bonded oxide semiconductors for photoelectrochemical hydrogen production
Calabrese et al. Photoelectrochemical Reduction of 2‐t‐Butyl‐9, 10‐Anthraquinone at Illuminated P‐Type Si: An Approach to the Photochemical Synthesis of Hydrogen Peroxide
Yoneyama et al. Heterogeneous reactions of nitrogen monoxide on titanium dioxide photocatalysts in solutions
Caramori et al. Hydrogen production with nanostructured and sensitized metal oxides
Ueda et al. Efficient and stable solar to chemical conversion with n+− p junction crystalline silicon electrodes having textured surfaces
Li et al. Photoelectrochemical characteristics of metal-modified epitaxial n-Si anodes: Part I. NiO (OH)-coated n+/p-Si and n+/n-Si electrodes for catalytic oxygen evolution
JPS5953354B2 (en) Method for producing hydrogen by photolysis of water