JPS58516B2 - Koden Henkansu Isohatsu Seisouchi - Google Patents

Koden Henkansu Isohatsu Seisouchi

Info

Publication number
JPS58516B2
JPS58516B2 JP50041610A JP4161075A JPS58516B2 JP S58516 B2 JPS58516 B2 JP S58516B2 JP 50041610 A JP50041610 A JP 50041610A JP 4161075 A JP4161075 A JP 4161075A JP S58516 B2 JPS58516 B2 JP S58516B2
Authority
JP
Japan
Prior art keywords
electrode
anode
hydrogen
cathode
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50041610A
Other languages
Japanese (ja)
Other versions
JPS51116181A (en
Inventor
原満紀
村上修三
池田宏之助
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP50041610A priority Critical patent/JPS58516B2/en
Publication of JPS51116181A publication Critical patent/JPS51116181A/en
Publication of JPS58516B2 publication Critical patent/JPS58516B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Hybrid Cells (AREA)

Description

【発明の詳細な説明】 本発明は光エネルギーを直接電気エネルギーに変換する
と共に電解液としての水溶液を分解し、水素を生成せし
める光電変換水素発生装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a photoelectric conversion hydrogen generation device that directly converts light energy into electrical energy and decomposes an aqueous solution as an electrolyte to generate hydrogen.

この種装置はアノードにn型半導体、カソードにn型半
導体よりなる一対の電極(一方に対極として白金電極を
用いる場合もある)を水溶性電解液中に浸漬し、前記半
導体電極にその半導体の禁止帯幅以上のエネルギーを有
する光を照射すると、光起電力効果により電極電位がn
型半導体では貴に、n型半導体では卑に移行しその電極
電位の推移は照射した光の強度に依存する値を示す。
In this type of device, a pair of electrodes (one of which may use a platinum electrode as a counter electrode), consisting of an n-type semiconductor as an anode and an n-type semiconductor as a cathode, is immersed in an aqueous electrolyte, and the semiconductor is attached to the semiconductor electrode. When irradiated with light having energy greater than the forbidden band width, the electrode potential increases to n due to the photovoltaic effect.
The electrode potential shifts to noble in type semiconductors and to base in n-type semiconductors, and the transition of the electrode potential shows a value that depends on the intensity of the irradiated light.

それゆえn型半導体電極と白金のような導電性電極とを
一対の電極に用いれば、光照射によりn型半導体極に負
、導電極に正の各電位が現れ、n型半導体極と導電極を
用いればn型半導体極に正、導電極に負の電位が現われ
る。
Therefore, if an n-type semiconductor electrode and a conductive electrode such as platinum are used as a pair of electrodes, a negative potential appears on the n-type semiconductor electrode and a positive potential appears on the conductive electrode due to light irradiation. If , a positive potential appears on the n-type semiconductor electrode and a negative potential appears on the conductive electrode.

又n型半導体極とn型半導体極との組合せでは前者に正
、後者に負の電位が現われる現象を利用して光エネルギ
ーを直接電気エネルギーに変換するものである。
Furthermore, in a combination of an n-type semiconductor electrode and an n-type semiconductor electrode, the phenomenon in which a positive potential appears on the former and a negative potential appears on the latter is used to directly convert light energy into electrical energy.

又、この変換過程において電解液としての水溶液を分解
しカソードにおいてカソード反応により水素の発生、一
方アノードにおいてアノード反応により酸素の発生が生
じる。
Also, in this conversion process, the aqueous solution as the electrolyte is decomposed, and hydrogen is generated at the cathode by a cathode reaction, while oxygen is generated at the anode by an anodic reaction.

而して、近年においてはエネルギー不足が大きな社会問
題となり、石油等に替わる燃料として水素が有力視され
その製造方法について種々検討されている。
In recent years, energy shortages have become a major social problem, and hydrogen is seen as a promising alternative fuel to petroleum and the like, and various methods of producing it are being studied.

このような現況下において前述の如き光電変換水素発生
装置により、自然エネルギーである太陽光を有効に利用
して水の分解を生起し水素を生成することは工業的に極
めて興味深いものである。
Under these current circumstances, it is industrially extremely interesting to effectively utilize sunlight, which is natural energy, to cause water decomposition and to produce hydrogen using the photoelectric conversion hydrogen generator as described above.

本発明者はこのような観点からこの種装置の低廉化、発
生起電力の増大化及び発生水素量の増量化を目的とし電
極及び電解液の組成について種々研究を重ね本発明装置
を見い出したものである。
From this point of view, the present inventor has conducted various studies on the composition of electrodes and electrolyte solution with the aim of reducing the cost of this type of device, increasing the generated electromotive force, and increasing the amount of hydrogen generated, and has discovered the device of the present invention. It is.

即ち、本発明装置はカソードとして太陽光の有効利用を
はかるため太陽光スペトル領域に対応する禁止帯幅1〜
3evの特性を有するn型半導体材料のうち特に良好な
単極特性を示すp型Gap或いはp型GaAsなどp型
のGa系化合物半導体を用い、又アノードとして水溶性
の電解液と反応し水素を発生するZn、Li−A1合金
など卑な電位を示す金属電極を用いることを特徴とし、
これら一対の電極の組合せにより光電池としてより高い
放電々圧が得られると共にカソードからの水素発生とア
ノードからの水素発生が相俟って多量の水素を得ること
ができるものである。
That is, in order to effectively utilize sunlight as a cathode, the device of the present invention has a forbidden band width of 1 to 100 which corresponds to the sunlight spectrum region.
Among n-type semiconductor materials with 3ev characteristics, p-type Ga-based compound semiconductors such as p-type Gap or p-type GaAs, which have particularly good unipolar characteristics, are used, and as an anode, they react with a water-soluble electrolyte to release hydrogen. It is characterized by the use of metal electrodes that exhibit a base potential, such as generated Zn and Li-A1 alloys,
By combining these pair of electrodes, a higher discharge pressure can be obtained as a photovoltaic cell, and a large amount of hydrogen can be obtained through the combination of hydrogen generation from the cathode and hydrogen generation from the anode.

以下本発明装置の構成を示す。The configuration of the device of the present invention will be shown below.

実施例1 第1図に示す構成図において、1はp型のGaP単結晶
薄板(表面積15cm、厚み0.4mm)でその背面に
蒸着された亜鉛インジウム合金に銅リード線3が接続さ
れ、この電極1はH状ガラス容器4のカソード室に配設
されている。
Example 1 In the configuration diagram shown in FIG. 1, 1 is a p-type GaP single crystal thin plate (surface area 15 cm, thickness 0.4 mm), and a copper lead wire 3 is connected to a zinc-indium alloy deposited on the back side of the plate. The electrode 1 is arranged in the cathode chamber of the H-shaped glass container 4.

2は対極に用いたZn極(反応表面積5cm2)で銅リ
ード線3がスポット溶接され、前記H状ガラス容器4の
アノード室に配設されている。
2 is a Zn electrode (reactive surface area: 5 cm 2 ) used as a counter electrode, to which a copper lead wire 3 is spot-welded and placed in the anode chamber of the H-shaped glass container 4 .

5は規定の硫酸水溶液よりなる電解液、6は前記ガラス
容器4をカソード室とアノード室に区割するアスベスト
隔膜、7は受光窓口に設けた石英板、8,9は水素導出
口、10は前記ガラス容器4の開口部を閉塞する封口板
である。
5 is an electrolytic solution made of a specified aqueous sulfuric acid solution; 6 is an asbestos diaphragm that divides the glass container 4 into a cathode chamber and an anode chamber; 7 is a quartz plate provided at the light receiving window; 8 and 9 are hydrogen outlet ports; This is a sealing plate that closes the opening of the glass container 4.

光照射は太陽光を利用し、フレネルレンズで400倍(
40W/cm2)に集光して行った。
Light irradiation uses sunlight and uses a Fresnel lens to magnify it 400 times (
The light was focused at 40 W/cm2).

第2図は上記構成における本発明装置の電池系(実線)
とカソードにP型GaP、アノードにn型GaP2用い
た電池系(破線)との特性比較図であり、曲線I及び■
は夫々電池として組込んだ状態におけるカソード極及び
アノード極の単極特性対飽和カロメル電極)、曲線■は
電池電圧を示し図より本発明装置においては極めて高い
放電々圧が得られることがわかる。
Figure 2 shows the battery system (solid line) of the device of the present invention with the above configuration.
This is a characteristic comparison diagram of the battery system (broken line) using P-type GaP for the cathode and n-type GaP2 for the anode, and curves I and ■
The curve (2) shows the monopolar characteristics of the cathode and anode versus the saturated calomel electrode when assembled as a battery, and the curve (2) shows the battery voltage. It can be seen from the figure that an extremely high discharge pressure can be obtained in the device of the present invention.

尚、光エネルギーを電気エネルギーに変換する過程で水
の分解を行い、Zn極においてはアノード反応 Zn十H2O−+ZnO+2H++2e であり、P型GaP極においてはカソード反応2e+2
H+→H2 であり、全体として Zn+H20→ZnO+H2 となり、カソードより水素が発生すると共にアノードで
はZn(亜鉛)がZn0(酸化亜鉛)に酸化される。
In addition, water is decomposed in the process of converting light energy into electrical energy, and at the Zn electrode, the anode reaction is Zn+H2O- + ZnO + 2H++2e, and at the P-type GaP electrode, the cathode reaction is 2e+2.
H+→H2, and overall Zn+H20→ZnO+H2, hydrogen is generated from the cathode, and Zn (zinc) is oxidized to Zn0 (zinc oxide) at the anode.

この不活性なZnOはZn極の溶解により順次除去され
Zn極表面は常に活性状態に維持される3又アノードに
おいては光電変換過程に無量%にZn極が電解液(硫酸
水溶液)と下記の如く反応し水素が発生する。
This inactive ZnO is sequentially removed by dissolving the Zn electrode, and the Zn electrode surface is always maintained in an active state.In the three-pronged anode, an infinite percent of the Zn electrode is mixed with an electrolyte (sulfuric acid aqueous solution) during the photoelectric conversion process, as shown below. Reacts and generates hydrogen.

Zn十H2SO4→ZnSO4+H2 実施例2 第1図の構成図においてアノードのZn板をAI板(反
応表面積5crit)に変えると共にカソード室及びア
ノード室の電解液を1規定のNaOHに置換した。
Zn+H2SO4→ZnSO4+H2 Example 2 In the block diagram of FIG. 1, the Zn plate of the anode was replaced with an AI plate (reaction surface area: 5 crit), and the electrolyte in the cathode chamber and anode chamber was replaced with 1N NaOH.

カソードその他は実施例1と同様である。本実施例の場
合、AI極においてはアノード反応 2Al+60H−)2Al(OH)3.+6eであり、
P型GaP極においてはカソード反応6H20+6e→
3H2+60H であり、全体として 2Al+6H20→2AI(OH)s+3H2となり、
カソードより水素が発生すると共にアノードではAI(
アルミニウム)がAI(OH)3(水酸化アルミニウム
)に変換される。
The cathode and other components are the same as in Example 1. In the case of this example, the anode reaction 2Al+60H-)2Al(OH)3. +6e,
In the P-type GaP electrode, the cathode reaction 6H20+6e→
3H2+60H, and the overall result is 2Al+6H20→2AI(OH)s+3H2,
Hydrogen is generated from the cathode and AI (
aluminum) is converted to AI(OH)3 (aluminum hydroxide).

このAl(OH)3もAI極の溶解により順次除去され
る。
This Al(OH)3 is also sequentially removed by dissolving the AI electrode.

又、アノードにおいてはAI極が電解液(水酸化ナトリ
ウム水溶液)と下記の如く反応し水素が発生する。
Further, at the anode, the AI electrode reacts with the electrolytic solution (sodium hydroxide aqueous solution) as described below, and hydrogen is generated.

2Al+2NaOH→2NaA102+3H2実施例3 第1図の構成図においてアノードのZn板をLi−Al
合金板(反応表面積5i)に置換えると共にアノード室
の電解液のみ3%のNaC1(食塩水)を利用した。
2Al+2NaOH → 2NaA102+3H2 Example 3 In the configuration diagram of Fig. 1, the Zn plate of the anode is replaced with Li-Al.
It was replaced with an alloy plate (reaction surface area 5i), and 3% NaCl (saline solution) was used only as the electrolyte in the anode chamber.

その他は実施例1と同様である。本実施例の場合、Lt
A1合金極においてはアノード反応 2Li+2H!20→2LtOH+2H++2eであり
、P型GaP極においては上記実施例1と同様カソード
反応 2e+2H+→H2 であり、全体として 2Li+2H20→2LiOH+H2 となる。
The rest is the same as in Example 1. In the case of this example, Lt
In the A1 alloy electrode, the anode reaction 2Li+2H! 20→2LtOH+2H++2e, and in the P-type GaP electrode, the cathode reaction is 2e+2H+→H2 as in Example 1, and the overall reaction is 2Li+2H20→2LiOH+H2.

又、アノードにおいてLi−AI極が電解液(食塩水)
と下記の如く反応し水素が発生する。
In addition, at the anode, the Li-AI electrode is connected to an electrolyte (saline solution).
reacts with hydrogen as shown below and generates hydrogen.

2Li+2H20→2LiOH+H2 実施例4 実施例3において、アノードのLi−Al合金板をMg
−Al合金板(反応表面積5cm2)に置換え、その他
は実施例3と同様である。
2Li+2H20→2LiOH+H2 Example 4 In Example 3, the Li-Al alloy plate of the anode was
-Al alloy plate (reaction surface area: 5 cm2) was used, and the rest was the same as in Example 3.

本実施例の場合、Mg−Al合金極においてはアノード
反応 Mg+2H20→Mg(OH)2+2H++2eであり
、P型GaP極においてはカソード反応2e+2H+→
H2 であり、全体として Mg+2H20→Mg(OH)2+H2 となる。
In the case of this example, in the Mg-Al alloy electrode, the anode reaction is Mg+2H20→Mg(OH)2+2H++2e, and in the P-type GaP electrode, the cathode reaction is 2e+2H+→
H2, and the total becomes Mg+2H20→Mg(OH)2+H2.

又、アノードにおいてMg−Al合金極が電解液(食塩
水)と下記の如く反応し水素を発生する。
Further, the Mg-Al alloy electrode reacts with the electrolytic solution (saline solution) in the anode as described below to generate hydrogen.

Mg+2H20→Mg(OH)2+H2 第3図及び第4図は上記種々の実施例で示した如くアノ
ードに水溶性電解液と反応して水素を発生する卑な電位
を有した金属電極を利用した本発明装置と、n型GaP
半導体をアノードに用いた従来装置とのP型GaPをカ
ソードとした場合の電池電圧の特性比較図及び水素生成
量の比較図を示し、本発明装置の特性が優れていること
が認められる。
Mg+2H20→Mg(OH)2+H2 Figures 3 and 4 show an example in which a metal electrode with a base potential that reacts with an aqueous electrolyte to generate hydrogen is used as an anode, as shown in the various examples above. Inventive device and n-type GaP
A comparison diagram of battery voltage characteristics and hydrogen production amount when P-type GaP is used as a cathode and a conventional device using a semiconductor as an anode is shown, and it is recognized that the characteristics of the device of the present invention are excellent.

上述した如く、本発明装置は光エネルギーを電気エネル
ギーに変換すると共にこの変換過程で水溶性電解液中の
水を分解する光電変換水素発生装置に係り、カソードに
太陽光スペクトル領域に対応する禁止帯幅の特性を有す
るP型半導体のうち特に良好な単極特性を有するP型G
aP或いはP型GaAsなどのP型Ga系化合物半導体
を用いると共にアノードに卑な電位を示すと共に半導体
電極に比べ分極が小さく、且つ水溶性電解液と反応して
水素を発生する金属電極を用いるものであり、高い放電
々圧が得られると共にカソードにおける水素生成量も増
量する。
As described above, the present invention relates to a photoelectric conversion hydrogen generation device that converts light energy into electrical energy and decomposes water in an aqueous electrolyte in the conversion process, and has a forbidden band on the cathode corresponding to the solar spectral region. Among P-type semiconductors with width characteristics, P-type G has particularly good unipolar characteristics.
A metal electrode that uses a P-type Ga-based compound semiconductor such as aP or P-type GaAs, exhibits a base potential at the anode, has smaller polarization than a semiconductor electrode, and generates hydrogen by reacting with an aqueous electrolyte. Therefore, a high discharge pressure can be obtained and the amount of hydrogen produced at the cathode can also be increased.

更にアノードにおいても水素が発生するためカソードよ
りの水素発生と合わせて多量の水素を得ることができる
Furthermore, since hydrogen is also generated at the anode, a large amount of hydrogen can be obtained in combination with hydrogen generation from the cathode.

尚、経時特性に関して、金属電極においては溶解、腐蝕
反応を伴うため有限であるが、低置な金属電極を用いる
ため新しいものと取換えて連続的に作動しうるものであ
る。
Regarding the aging characteristics, metal electrodes are limited because they involve dissolution and corrosion reactions, but since low-lying metal electrodes are used, they can be replaced with new ones and operated continuously.

このように、自然エネルギーである太陽光を有効に利用
せるこの種装置において装置の低廉化、発生起電力の増
大化及び水素生成量の増量化が計れる本発明装置は工業
的に資するところ極めて犬である。
As described above, the device of the present invention, which can reduce the cost of the device, increase the generated electromotive force, and increase the amount of hydrogen produced in this type of device that effectively uses sunlight, which is a natural energy, is extremely useful in terms of industrial contribution. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の構成図、第2図は本発明装置(Z
n/P型GaP系)と従来装置(n型GaP/P型Ga
P系)との各種の単極特性及び電池電圧特性比較図、第
3図及び第4図は本発明装置と従来装置との電圧−電流
特性及び水素発生特性比較図である。 1・・・カソード電極、2・・・アノード電極、3・・
・銅リード線、4・・・ガラス容器、5・・・水溶性電
解液、6・・・アスベスト隔膜、7・・・石英板、8,
9・・・水素導出口、10・・・封目板。
Figure 1 is a configuration diagram of the device of the present invention, and Figure 2 is a diagram of the device of the present invention (Z
n/P-type GaP system) and conventional equipment (n-type GaP/P-type GaP system) and conventional equipment (n-type GaP/P-type GaP system)
Figures 3 and 4 are comparison diagrams of voltage-current characteristics and hydrogen generation characteristics between the device of the present invention and a conventional device. 1... Cathode electrode, 2... Anode electrode, 3...
・Copper lead wire, 4... Glass container, 5... Water-soluble electrolyte, 6... Asbestos diaphragm, 7... Quartz plate, 8,
9... Hydrogen outlet, 10... Sealing plate.

Claims (1)

【特許請求の範囲】[Claims] 1少くとも一方が半導体よりなる一対の電極を水溶性電
解液中に浸漬し、前記半導体電極に光照射して起電力を
発生させると共に水を分解する装置において、カソード
はp型のGa系化合物半導体電極で構成され、アノード
は電解液と反応して水素を発生する金属あるいは合金よ
りなる電極で構成されることを特徴とする光電変換水素
発生装置。
1. In an apparatus in which a pair of electrodes, at least one of which is made of a semiconductor, is immersed in an aqueous electrolytic solution and the semiconductor electrodes are irradiated with light to generate an electromotive force and decompose water, the cathode is a p-type Ga-based compound. A photoelectric conversion hydrogen generation device comprising a semiconductor electrode, and an anode comprising an electrode made of a metal or an alloy that generates hydrogen by reacting with an electrolyte.
JP50041610A 1975-04-04 1975-04-04 Koden Henkansu Isohatsu Seisouchi Expired JPS58516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50041610A JPS58516B2 (en) 1975-04-04 1975-04-04 Koden Henkansu Isohatsu Seisouchi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50041610A JPS58516B2 (en) 1975-04-04 1975-04-04 Koden Henkansu Isohatsu Seisouchi

Publications (2)

Publication Number Publication Date
JPS51116181A JPS51116181A (en) 1976-10-13
JPS58516B2 true JPS58516B2 (en) 1983-01-06

Family

ID=12613109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50041610A Expired JPS58516B2 (en) 1975-04-04 1975-04-04 Koden Henkansu Isohatsu Seisouchi

Country Status (1)

Country Link
JP (1) JPS58516B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161907A (en) * 1983-03-07 1984-09-12 Victor Co Of Japan Ltd Digital control device for requency characteristics
JPS6395318U (en) * 1986-12-11 1988-06-20
JPH0519324B2 (en) * 1983-10-25 1993-03-16 Rohm Kk
US10577700B2 (en) 2012-06-12 2020-03-03 Aquahydrex Pty Ltd Breathable electrode structure and method for use in water splitting
US10637068B2 (en) 2013-07-31 2020-04-28 Aquahydrex, Inc. Modular electrochemical cells
US11005117B2 (en) 2019-02-01 2021-05-11 Aquahydrex, Inc. Electrochemical system with confined electrolyte

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX356022B (en) * 2010-12-10 2018-05-08 Aquahydrex Pty Ltd Multi-layer water- splitting devices.
JP6040511B2 (en) * 2015-03-31 2016-12-07 株式会社エクォス・リサーチ Solar power system
JP6040512B2 (en) * 2015-03-31 2016-12-07 株式会社エクォス・リサーチ Solar power system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50131868A (en) * 1974-04-09 1975-10-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50131868A (en) * 1974-04-09 1975-10-18

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161907A (en) * 1983-03-07 1984-09-12 Victor Co Of Japan Ltd Digital control device for requency characteristics
JPH0519324B2 (en) * 1983-10-25 1993-03-16 Rohm Kk
JPS6395318U (en) * 1986-12-11 1988-06-20
US10577700B2 (en) 2012-06-12 2020-03-03 Aquahydrex Pty Ltd Breathable electrode structure and method for use in water splitting
US10637068B2 (en) 2013-07-31 2020-04-28 Aquahydrex, Inc. Modular electrochemical cells
US11018345B2 (en) 2013-07-31 2021-05-25 Aquahydrex, Inc. Method and electrochemical cell for managing electrochemical reactions
US11005117B2 (en) 2019-02-01 2021-05-11 Aquahydrex, Inc. Electrochemical system with confined electrolyte
US11682783B2 (en) 2019-02-01 2023-06-20 Aquahydrex, Inc. Electrochemical system with confined electrolyte

Also Published As

Publication number Publication date
JPS51116181A (en) 1976-10-13

Similar Documents

Publication Publication Date Title
US7481914B2 (en) Photoelectrolysis cells, and related devices and processes
CN102284293B (en) Cu/Cu2O film material for reducing CO2 into organic fuel under catalysis
CN111188058B (en) System for producing hydrogen by full-film silicon semiconductor double-electrode unbiased photoelectrocatalysis full-decomposition of water and application thereof
CN107699901B (en) Preparation method of zinc-iron-aluminum hydrotalcite/titanium dioxide composite membrane photo-anode for photoproduction cathodic protection
JP2007525593A (en) Photoelectrochemical device and electrode
JPS6122036B2 (en)
Khan et al. Stability and Photoresponse of Nanocrystalline n‐TiO2 and n‐TiO2/Mn2 O 3 Thin Film Electrodes during Water Splitting Reactions
JP2003238104A (en) Apparatus for generating hydrogen by light
US4501804A (en) Photo-assisted electrolysis cell with p-silicon and n-silicon electrodes
JPS58516B2 (en) Koden Henkansu Isohatsu Seisouchi
US8853685B2 (en) Optical semiconductor, optical semiconductor electrode using same, photoelectrochemical cell, and energy system
CN116936955A (en) Chloride ion battery based on salt-coated electrolyte and preparation method thereof
Liu et al. Photo-assisted seawater-electrolyte Mg/H2O batteries for simultaneous generation of electricity and hydrogen
Yu Understanding the stability of semiconducting photocathodes for solar water splitting
KR100864024B1 (en) Hydrogen generating apparatus and fuel cell system using the same
CN111334812B (en) Amorphous silicon thin film photoelectrode based on hydrated iron oxyhydroxide and preparation method thereof
JP2013049891A5 (en)
CN108063274B (en) Novel sacrificial fuel cell, preparation method thereof and application of paired synthesis method in carbon dioxide recycling
JPS5856036B2 (en) Water splitting device using light energy
CN100497747C (en) Method for combined production of hydrogen and hydroxide by water electrolysis with low power consumption
CN216738553U (en) Step-by-step water electrolysis hydrogen production device
JPS5927391B2 (en) Water splitting device using light energy
CN113293381A (en) SrFeO3/Fe2O3 photoelectrode material, preparation method thereof and application thereof in photo-generated cathode corrosion prevention
Shcherbakova et al. Metal hydride use for solar energy accumulation
Ueda et al. Efficient and stable solar to chemical conversion with n+− p junction crystalline silicon electrodes having textured surfaces