JPS5855740A - Inspecting device using nuclear magnetic resonance - Google Patents

Inspecting device using nuclear magnetic resonance

Info

Publication number
JPS5855740A
JPS5855740A JP56153407A JP15340781A JPS5855740A JP S5855740 A JPS5855740 A JP S5855740A JP 56153407 A JP56153407 A JP 56153407A JP 15340781 A JP15340781 A JP 15340781A JP S5855740 A JPS5855740 A JP S5855740A
Authority
JP
Japan
Prior art keywords
magnetic field
coil
signal
magnetic resonance
data measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56153407A
Other languages
Japanese (ja)
Inventor
Kensuke Sekihara
謙介 関原
Etsuji Yamamoto
山本 悦治
Hideki Kono
秀樹 河野
Shinji Yamamoto
真司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56153407A priority Critical patent/JPS5855740A/en
Publication of JPS5855740A publication Critical patent/JPS5855740A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution

Abstract

PURPOSE:To obtain an immage having improved space resolving power with simple operation without prolonging signal processing time by performing data measuring samplings by plural data measuring samplings of different phases. CONSTITUTION:Coils 1, 4x, 4y, 5, 3 for generating static magnetic fields, inclined magnetic fields and high-frequency magnetic fields, a coil 3 for detecting the nuclear magnetic resonance signal from an object 2 to be examined, a calculator 9 which calculates the detection signal of the coil 3, and an outputting means 16 for the calculated results of the calculator are provided. The data measuring sampling by the coil 3 is performed by plural data measuring sampling point arrays of different phases, and a display image is formed by the combination thereof.

Description

【発明の詳細な説明】 本発明#i核磁気共鳴を用−た検査装置に関し、特にサ
ンプリング位相の異なる複数の計測点列を用−ることに
より空間分解能を向上さ破た核磁気共鳴を用−た検査装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention #i relates to an inspection device using nuclear magnetic resonance, and in particular uses nuclear magnetic resonance with improved spatial resolution by using a plurality of measurement point sequences with different sampling phases. -Regarding an inspection device.

従来、人体などの内部構造を非破壊的に検査する方法と
しては% X ill OTや超音波撮像装置が広(利
用されて来て−る。 近年、これに更に核磁気共鳴現象
を利用し同様の検査を行う試みが成功し、xso’rや
超音波撮像装置では得られなかった情報を取得で龜るこ
とが明らかになって来た。
Traditionally, OT and ultrasonic imaging devices have been widely used as methods for non-destructively inspecting the internal structure of the human body. Attempts to perform these tests have been successful, and it has become clear that it is difficult to obtain information that could not be obtained using XSO'R or ultrasound imaging devices.

被磁気共鳴を用−た検査装置は、核磁気共鳴現象を利用
して対象物体中の核スピンの密度分布。
An inspection device using magnetic resonance uses the nuclear magnetic resonance phenomenon to determine the density distribution of nuclear spins in a target object.

緩和時間分布等を非破壊的に求めることによ〉、X*O
〒と同様の手法で対象物体の所望の検査部位の断面像を
構成・出力するものである。
By nondestructively determining the relaxation time distribution, etc.,
This method constructs and outputs a cross-sectional image of a desired inspection part of a target object using a method similar to that of 〒.

核磁気共鳴を用−た検査装置における上記核スピンの密
度分布、緩和時間分布の検出には、通常、パルスNMN
法が用いられる。すなわち、高周波磁場をパルス状に印
加L1それによる対象物体からの自由誘導信号(F X
 D)を観測する方法である。 第111(A)に自由
誘導信号の一例を示した。
To detect the density distribution and relaxation time distribution of nuclear spins in an inspection device using nuclear magnetic resonance, pulsed NMN is usually used.
law is used. That is, a high-frequency magnetic field is applied in a pulsed manner L1, thereby generating a free induction signal (F
D) is a method of observing. An example of the free guidance signal is shown in No. 111(A).

自由−導信号は図から明らかな如く指数関数的に減少す
るので、その観測時間!は検出系で混入するノイズによ
って決定されるという問題がある。
As is clear from the figure, the free-guided signal decreases exponentially, so its observation time! There is a problem that is determined by noise mixed in the detection system.

tた、前記自由誘導信号の7−リエ変換の意味する亀の
は、該自由誘導信号を発生させるまでの磁場のシーケン
スによって興なシ、核スピン分布のある方向への射影デ
ータであるか、あるいは核スピン分布そのものの1ライ
ンデータのいずれかである。 第1v!!J@に自由誘
導信号の7−リエ変挨された波形の1例を示した・ い
ずれにしても、最終的な画像の空間分解能を決定するの
は、前記自由誘導信号の7−リエ変換された波形におけ
るサンプリング間隔Δf(絡1図の)参照)である。
In addition, what is meant by the 7-Lier transform of the free induction signal is data that is projected in a certain direction of the nuclear spin distribution, depending on the sequence of the magnetic field until the free induction signal is generated. Or it is either one-line data of the nuclear spin distribution itself. 1st v! ! An example of the 7-lier transformed waveform of the free guided signal is shown in J@. In any case, it is the 7-lier transformed waveform of the free guided signal that determines the spatial resolution of the final image. The sampling interval Δf (see Figure 1) is the sampling interval Δf in the waveform obtained.

該サンプリング間隔Δrと前述の自由誘導信号の観測時
間!との間には Δt −1/2T  ナルHIAがあ
るので、画像の空間分解能は検出系&/Nによって左右
されるという問題があった。
The sampling interval Δr and the observation time of the free induction signal mentioned above! Since there is a Δt −1/2T null HIA between the two, there is a problem in that the spatial resolution of the image depends on the detection system &/N.

しかしながら、画像の空間分解能を向上させるために、
検出系のB/Nを改勢するにはデータ計測時間の増大を
招き限度がある。
However, to improve the spatial resolution of images,
There is a limit to adjusting the B/N of the detection system because it increases the data measurement time.

本発明の目的は核磁気共鳴を用いた検査装置(以下単に
「検査装置」と−う)において、簡単な操作により空間
分解能を向上させた像を得ることを可能とした検査装置
を提供する仁とにある。
The purpose of the present invention is to provide an inspection device using nuclear magnetic resonance (hereinafter simply referred to as "inspection device") that is capable of obtaining images with improved spatial resolution through simple operations. It's there.

本発明の上記目的は、静磁場、傾斜磁場および高周波磁
場の各磁場発生手段と、検査対象からの核磁気共鳴信号
を検出する信号検出手段と、前記検出信号の演算を行う
計算機および該計算機にょゐ演算結果の出力手段とを有
する検査装置にお−て、前記信号検出手段によるデータ
計量サンプリンダを、位相の1IL1にる複数のデータ
計測サンプリンダ点列によって行い、これらを組み合せ
て像を構成するようにした検査装置によって達成される
The above object of the present invention is to provide magnetic field generating means for a static magnetic field, a gradient magnetic field, and a high-frequency magnetic field, a signal detecting means for detecting a nuclear magnetic resonance signal from an examination object, a computer for calculating the detection signal, and a computer for calculating the detected signal. In an inspection apparatus having a calculation result output means, data measurement sampling by the signal detection means is performed using a plurality of data measurement sampler point sequences in phase 1IL1, and these are combined to form an image. This is achieved by using a new inspection device.

以下、本発明の実施例を図面に基づ−て詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図に本発明の一実施例である検査装置の構成を示す
・ 図にお−て、IFi静磁場を発生させるコイル、2
祉検査の対象物体(この場合社人体)、3杜高層波磁場
を発生させるコイル、4工、!、tjそれぞれX、Y方
向(方向にっ−て紘第2図右方の矢印参照、但し、X方
向は紙面の垂直上方になの構造を示した・ 図の矢印は
電流の方向を示す−のである・Y方向の傾斜磁場を発生
させるフィル41  は、第3図に示したコイル4工 
を2@のまわりに90°回転させたものとなる。また、
5は2方向の傾斜磁場を発生させるコイルであり、6゜
7.8社それぞれ前記コイル4!、 4Y、 5に電流
を供給するフィル駆動装置である。
FIG. 2 shows the configuration of an inspection device that is an embodiment of the present invention. In the figure, a coil for generating an IFi static magnetic field, 2
The object to be inspected (in this case, the human body), the coil that generates the high-frequency magnetic field, the 4-piece,! , tj, respectively, in the X and Y directions (refer to the arrows on the right side of Figure 2 in the directions; however, in the X direction, the structure is shown vertically above the paper. The arrows in the figure indicate the direction of the current. The filter 41 that generates a gradient magnetic field in the Y direction is the coil 4 structure shown in Figure 3.
is rotated 90 degrees around 2@. Also,
5 is a coil that generates a gradient magnetic field in two directions, and each of the coils 4! , 4Y, and 5 are fill drive devices.

高周波磁場発生用コイル3a、高周波磁場を発生させる
と同時に対象物体2から生じた核磁気共鳴信号を検出す
る機能を有し、〈ら型、ソレノイド状ある−は円線輪等
のコイルが用いられる。コイル6としては互いに逆向き
に電流が流れるように配線された円線輪を用いる。
The high-frequency magnetic field generation coil 3a has the function of generating a high-frequency magnetic field and at the same time detecting the nuclear magnetic resonance signal generated from the target object 2, and uses a coil such as a rectangular shape, a solenoid shape, and a circular ring shape. . As the coil 6, a circular ring wired so that current flows in opposite directions is used.

前記フィル駆動装置6,7.8は計算機Oからの信号に
より動作する。また、コイル4工、匂、6により発生す
る傾斜磁場の強度は対象物体2の大きさを検出する装置
11あるいは本装置の操作者からの指令により変化させ
ることができる。
The fill drive devices 6, 7.8 are operated by signals from the computer O. Further, the strength of the gradient magnetic field generated by the coils 4 and 6 can be changed by a command from the device 11 for detecting the size of the target object 2 or the operator of this device.

次に信号伝達系について説明する。核スピンを励振する
高周波磁場は、シンセサイザ12により発生させた高周
波を変調装置13により波形整形・電力増幅し、コイル
3に電流を供給すること栂によに発生さ破る。静磁場H
0を発生させるコイル1内に挿入されて−る対象物体2
には1前記高屑波磁場および傾斜磁場が印加される・ 
該対象物体2からの信号は前記コイルδで受信され、増
幅器14を通った後、検波器1δで直交検波されて計算
機9に入力される。 計算機0は信号処理後、OR1デ
イスプレイ16に幀スピン分布あるいは幀スピン緩和時
間分布に対応する画像を表示する・ 本実施例装置においては、上記信号のサンプリングを、
第4図に示す如く、サンプリング位相の興なる2つのデ
ータ点列から、よりサンプリング間隔の小さなデータ点
列を作9、これによ抄空間分解錠を向上させた画像を得
るものである0第4図においては、サンプリング位相が
180 Ilkなる2つのデータ点列(→および(b)
から、すンプリンダ間隔が半分のデータ点列(6)を、
データ点列(→。
Next, the signal transmission system will be explained. The high-frequency magnetic field that excites the nuclear spins is generated by shaping and power-amplifying the high-frequency waves generated by the synthesizer 12 by the modulator 13, and by supplying current to the coil 3. Static magnetic field H
A target object 2 inserted into a coil 1 that generates 0
The high debris wave magnetic field and gradient magnetic field are applied to 1.
The signal from the target object 2 is received by the coil δ, passes through the amplifier 14, is orthogonally detected by the detector 1δ, and is input to the computer 9. After processing the signal, the computer 0 displays an image corresponding to the Hori spin distribution or the Hori spin relaxation time distribution on the OR1 display 16.
As shown in Fig. 4, a data point sequence with a smaller sampling interval is created from two data point sequences with different sampling phases, thereby obtaining an image with improved spatial resolution. In Figure 4, there are two data point sequences with a sampling phase of 180 Ilk (→ and (b)
, the data point sequence (6) with half the sprinter interval is
Data point sequence (→.

(1)のデータを交互に配列しなおすことによ)得てい
る・ここで、サンプリング位相を逆にするのは、■静磁
場■、をΔH−t/r(Δf)だけ賓化さぜる方法。
(1) is obtained by rearranging the data alternately.Here, reversing the sampling phase means inverting the static magnetic field by ΔH-t/r(Δf). How to do it.

■高周波磁場の周波数をΔt/2変化させる方法の2通
りの方法が可能である。 ここで、Δfは前記自由誘導
信号の7−リエ変換波形におけるサンプリング間隔であ
る。
(2) Two methods are possible: changing the frequency of the high-frequency magnetic field by Δt/2. Here, Δf is a sampling interval in the 7-lier transformed waveform of the free induction signal.

第6図に上述の■の方法、すなわち、静磁場五〇を変化
させる方法を具体化する装wI!成を示した。
FIG. 6 shows an example of a method embodying the above-mentioned method (2), that is, the method of changing the static magnetic field 50! showed success.

前述の静磁場■。の中に置かれた被検体26かもの自由
誘導信号を検出コイル20で検出し、ムD変換器21で
ムD変換し計算機22で7−リエ変換を行った後、メモ
リ25に格納する。このデータは前述の@4図(&)に
相当するものである。
The static magnetic field mentioned above■. A free induction signal of a subject 26 placed in the test object 26 is detected by a detection coil 20, subjected to MuD conversion by a MuD converter 21, subjected to 7-Lier transformation by a computer 22, and then stored in a memory 25. This data corresponds to the above-mentioned @4 diagram (&).

次に、計算機22からの信号により、静磁場を前記ΔH
だけ変化させるための、△H発生用コイル19と電源2
4とを結ぶスイッチ23を閉じてΔ■を発生させる。 
このときのデータを先程と同様のシーケンスでメモリ2
5に格納する。このデータは前述の第養図伽)に相当す
るものである。
Next, according to a signal from the computer 22, the static magnetic field is changed to the above ΔH.
△H generation coil 19 and power supply 2 to change the
4 is closed to generate Δ■.
The data at this time is stored in memory 2 in the same sequence as before.
Store in 5. This data corresponds to the above-mentioned data.

ここで、メモリ25から2つのデータ列を取抄出し、交
互に配列して前述の第4図(a)に相当するデータを作
り出し、メモリ2δに再び格納する。
Here, two data strings are extracted from the memory 25, arranged alternately to create data corresponding to the above-mentioned FIG. 4(a), and stored again in the memory 2δ.

第6図は前記■の高周波磁場の周波数を変化させる方法
を具体化する装置構成を示すものである。
FIG. 6 shows the configuration of an apparatus embodying the method (2) of changing the frequency of the high-frequency magnetic field.

この装置においては、高安定発振器28かもの信号をパ
ルスアンプ27で増幅し、高周波磁場印加コイル20に
より被検体26に印加し、それによる自由誘導信号を前
記コイル20によシ検出し)ムD変換器21でムD変換
し計算機22で7−りエ蛯換を行った後、メモリ25に
格納する・次に、計算機22からの信号によや、発振器
28の周波数をΔt/2  だ砂シフトさせ、このとき
のデータを先程と同じシーケンスでメモリ25に格納す
る0そしてメモ92心から2つのデータ列を取り出して
交互に並べ変えれば良−0 なお、第6図、第6図とも、上記操作に直接関連する部
分のみを示しであるので、全体の構成につ%IIh″C
′鯰前掲の112図を参照のこと。
In this device, a signal from a highly stable oscillator 28 is amplified by a pulse amplifier 27 and applied to a subject 26 by a high-frequency magnetic field applying coil 20, and the resulting free induction signal is detected by the coil 20. The converter 21 performs D conversion, and the computer 22 performs 7-D conversion, and then stores it in the memory 25.Next, based on the signal from the computer 22, the frequency of the oscillator 28 is changed to Δt/2. Shift and store the data at this time in the memory 25 in the same sequence as before 0 Then, take out the two data strings from the memo 92 and rearrange them alternately. Since only the parts directly related to the operation are shown, the overall configuration is %IIh''C
'Catfish See Figure 112 above.

なお、第6図に示した装置においては、静磁場■、を変
化させるためにΔ■発生用コイル19を用−る倒を示し
たが、これは前記Δ■発生用コイル19を設けずに、静
磁場発生用コイルl(第2図参照)を調整するようにし
ても良い。
In the apparatus shown in FIG. 6, the Δ■ generating coil 19 is used to change the static magnetic field (■), but in this case, the Δ■ generating coil 19 is not provided. , the static magnetic field generating coil l (see FIG. 2) may be adjusted.

以上述べた如く、本発明によれば、静磁場、傾斜磁場お
よび高周波磁場の各磁場発生手段と、検査対象からの核
磁気共鳴信号を検出する信号検出手段と、前記検出信号
の演算を行う計算機および該計算機による演算結果の出
力手段とを有する検査装置にお−て、前記信号検出手段
によるデータ計測サンプリングを、位相の興なる複数の
データ計測サンプリング点列によって行い、これらt組
み合せて像を構成するようにしたので、簡単な操作で、
信号処理時間を、延長することなしに、空間分解能を向
上させた像を得ることを可能とした検査装置を実現でき
るというWji著な効果を奏するものである。
As described above, according to the present invention, magnetic field generating means for a static magnetic field, a gradient magnetic field, and a high-frequency magnetic field, a signal detecting means for detecting a nuclear magnetic resonance signal from an examination object, and a computer for calculating the detected signal are provided. and an output means for outputting the calculation result by the computer, the data measurement sampling by the signal detection means is performed using a plurality of data measurement sampling point sequences having different phases, and these are combined to form an image. With simple operation,
This has the remarkable effect of making it possible to realize an inspection apparatus that can obtain images with improved spatial resolution without extending signal processing time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図■祉自由誘導信号を、同@はそのフーリエ変換波
彫の一例を示す図、第2図は本発明の実施例装置の*I
rt、を示す図、第3図は傾斜磁場発生用フィルを示す
図、第4図は本実施例装置の作用を示す図、第6図、第
6図は本実施例の要部の具体的装置構成を示す図である
。 1:静磁場発生用コイル、2:検査対象物体、3:高周
波磁場発生用コイル、牛!:X方向傾斜磁場発生用コイ
ル、4Y:Y方向傾斜磁場発生用コイル、6:z方向傾
斜磁場発生用コイル、6,7゜8:コイル駆動装置19
:計算機、10:静磁場発生用コイル駆動装置。 第1図 第4図 第゛3図
Figure 1 shows the welfare freedom guidance signal, where @ shows an example of its Fourier transform wave carving, and Figure 2 shows *I of the embodiment device of the present invention.
rt, FIG. 3 is a diagram showing the gradient magnetic field generation filter, FIG. 4 is a diagram showing the operation of the device of this embodiment, and FIGS. FIG. 3 is a diagram showing the device configuration. 1: Coil for generating static magnetic field, 2: Object to be inspected, 3: Coil for generating high frequency magnetic field, cow! : X-direction gradient magnetic field generation coil, 4Y: Y-direction gradient magnetic field generation coil, 6: Z-direction gradient magnetic field generation coil, 6,7° 8: Coil drive device 19
: Computer, 10: Coil drive device for static magnetic field generation. Figure 1 Figure 4 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 静磁場、傾斜磁場および高周波磁場の各磁場発生手段と
、検査対象からの核磁気共鳴信号を検出する信号検出手
段と、前記検出信号の演算を行う計算機および該計算機
による演算結果の出力手段とを有する被磁気共鳴を用い
た検査装置にお≠て、前記信号検出手段によるデータ計
測サンプリングを、位相の異なる複数のデータ計測サン
プリング点列によって行うようにしたことを特徴とする
核磁気共鳴を用いた検査装置。
A magnetic field generating means for a static magnetic field, a gradient magnetic field, and a high-frequency magnetic field, a signal detecting means for detecting a nuclear magnetic resonance signal from an examination object, a computer for calculating the detection signal, and a means for outputting the calculation result by the computer. An inspection apparatus using nuclear magnetic resonance characterized in that data measurement sampling by the signal detection means is performed by a plurality of data measurement sampling point sequences having different phases. Inspection equipment.
JP56153407A 1981-09-28 1981-09-28 Inspecting device using nuclear magnetic resonance Pending JPS5855740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56153407A JPS5855740A (en) 1981-09-28 1981-09-28 Inspecting device using nuclear magnetic resonance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56153407A JPS5855740A (en) 1981-09-28 1981-09-28 Inspecting device using nuclear magnetic resonance

Publications (1)

Publication Number Publication Date
JPS5855740A true JPS5855740A (en) 1983-04-02

Family

ID=15561808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56153407A Pending JPS5855740A (en) 1981-09-28 1981-09-28 Inspecting device using nuclear magnetic resonance

Country Status (1)

Country Link
JP (1) JPS5855740A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6099240A (en) * 1983-11-04 1985-06-03 横河メディカルシステム株式会社 Calculator tomography apparatus
WO1997035517A1 (en) * 1996-03-28 1997-10-02 Hitachi Medical Corporation Method and apparatus for magnetic resonance imaging
JP2013202245A (en) * 2012-03-29 2013-10-07 Hitachi Medical Corp Magnetic resonance imaging apparatus and measurement method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6099240A (en) * 1983-11-04 1985-06-03 横河メディカルシステム株式会社 Calculator tomography apparatus
WO1997035517A1 (en) * 1996-03-28 1997-10-02 Hitachi Medical Corporation Method and apparatus for magnetic resonance imaging
US6222365B1 (en) 1996-03-28 2001-04-24 Hitachi Medical Corporation Magnetic resonance imaging apparatus and method
CN100366216C (en) * 1996-03-28 2008-02-06 株式会社日立医药 Method and apparatus for mangetic resonance imaging
CN100437140C (en) * 1996-03-28 2008-11-26 株式会社日立医药 Magnetic resonance imaging apparatus and method
JP2013202245A (en) * 2012-03-29 2013-10-07 Hitachi Medical Corp Magnetic resonance imaging apparatus and measurement method

Similar Documents

Publication Publication Date Title
US4472683A (en) Imaging apparatus using nuclear magnetic resonance
JPS6311895B2 (en)
WO2009101871A1 (en) Magnetic resonance imaging device, initial state creating method, optimum intensity deciding method, and magnetic resonance imaging method
US5241271A (en) Ultra-fast imaging method and apparatus
JPH06169896A (en) Magnetic resonance imaging system
JP3339509B2 (en) MRI equipment
JPH0337931B2 (en)
JPS5855740A (en) Inspecting device using nuclear magnetic resonance
JPS6148752A (en) Inspecting device using nuclear magnetic resonance
JPH0556140B2 (en)
JPS614951A (en) Inspecting instrument using nuclear magnetic resonance
JP2695594B2 (en) MRI equipment
JPS6151581A (en) Measuring method of spatial magnetic field distribution
JPH0311223B2 (en)
WO2012137606A1 (en) Magnetic resonance imaging device and radial sampling method
JPH07163541A (en) Blood flow plotting method of magnetic resonance imaging system
JP3332951B2 (en) Magnetic resonance imaging equipment
JPH03106339A (en) Magnetic resonance imaging device
JP4961116B2 (en) Magnetic resonance imaging device
JPS60222758A (en) Inspector employing nuclear magnetic resonance
JP2008080030A (en) Magnetic resonance imaging apparatus
JPS60151547A (en) Inspecting apparatus by means of nuclear magnetic resonance
JPS5983039A (en) Inspecting method and apparatus utilizing nuclear magnetic resonance
JPH02241433A (en) Fourier transformation imaging method
JPH05237077A (en) Magnetic resonance imaging apparatus