JPS60151547A - Inspecting apparatus by means of nuclear magnetic resonance - Google Patents

Inspecting apparatus by means of nuclear magnetic resonance

Info

Publication number
JPS60151547A
JPS60151547A JP59007125A JP712584A JPS60151547A JP S60151547 A JPS60151547 A JP S60151547A JP 59007125 A JP59007125 A JP 59007125A JP 712584 A JP712584 A JP 712584A JP S60151547 A JPS60151547 A JP S60151547A
Authority
JP
Japan
Prior art keywords
magnetic field
coil
pulse
signal
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59007125A
Other languages
Japanese (ja)
Inventor
Etsuji Yamamoto
山本 悦治
Kensuke Sekihara
謙介 関原
Hideki Kono
秀樹 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59007125A priority Critical patent/JPS60151547A/en
Publication of JPS60151547A publication Critical patent/JPS60151547A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56563Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by a distortion of the main magnetic field B0, e.g. temporal variation of the magnitude or spatial inhomogeneity of B0

Abstract

PURPOSE:To decrease bad influence of vibrating magnetic field and to improve an image quality by setting the interval of pulse sequences to a prescribed value corresponding to the frequency of an external vibrating magnetic field. CONSTITUTION:The output of a high frequency pulse generator 2 excites a coil 4 through an amplifier 3. The signal component received by the coil 4 is converted to the image by a signal processing device 7 through an amplifier 5 and a detector 6. The output of the generator 2 is made to the standard signal of a right angle phase detection by the detector 6. Gradient magnetic fields for Z direction and direction at right angle therewith are generated by coils 8-10, and said coils are driven by amplifiers 11-13. A coil 14 for generating static magnetic field is driven by an electric source 15. By setting the interval between 90 deg. and 180 deg. high frequency magnetic fields to the value near integer times of the period of the outer part vibrating magnetic field, the bad influence of the outer part vibrating magnetic field is decreased, and the image quality is improved. In this case, the frequency of the vibrating magnetic field is obtained by a Gauss meter 20 and a counter 21 having a sensor 19.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は生体中の水素やリンなどからの核磁気共鳴(N
MR)信号を計測し、核の密度や緩和時間あるいは各々
の空間的な分布をめる装置に係り、特に外部振動磁場の
悪影響を受けない計測番と好適な装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to nuclear magnetic resonance (N
The present invention relates to an apparatus for measuring MR) signals and determining the density of nuclei, relaxation time, or their respective spatial distributions, and particularly relates to a measurement number and suitable apparatus that are not adversely affected by external oscillating magnetic fields.

〔発明の背景〕[Background of the invention]

従来、人体の頭部、腹部などの内部構造を非破壊的に検
査する装置として、X線CTや超音波撮像装置が広く利
用されて来ている。近年、核磁気共鳴現象を用いて同様
の検査を行う試みが成功し、X線CTや超音波撮像装置
では得られない情報を取得できることが明らかになって
来た。核磁気共鳴現象を用いた検査装置においては、検
査物体からの信号を物体各部に対応させて分離・識別す
る必要がある。この方法には投影再構成法(PR法と略
す)、フーリエ変換法(FT法と略す)などのようζこ
核の密度や緩和時間の分布を映像化する方法と、局所的
な部位からの信号だけを選択的に検出し、精密な緩和時
間測定やケミカルシフトの測定などを行なう方法とが知
られている。このような検査装置においては、空間的に
均一で、かつ時間的にも安定した静磁場を用いなければ
ならない。しかし、装置を設置する環境によっては外部
から擾乱磁場を受け、画像が著しく劣化するという問題
があった。
2. Description of the Related Art Conventionally, X-ray CT and ultrasonic imaging devices have been widely used as devices for non-destructively inspecting internal structures such as the head and abdomen of a human body. In recent years, attempts to perform similar tests using nuclear magnetic resonance phenomena have been successful, and it has become clear that information that cannot be obtained with X-ray CT or ultrasound imaging devices can be obtained. In an inspection device that uses nuclear magnetic resonance phenomena, it is necessary to separate and identify signals from an inspection object in correspondence with each part of the object. This method includes methods such as projection reconstruction method (abbreviated as PR method) and Fourier transform method (abbreviated as FT method), which visualize the density and relaxation time distribution of this nucleus, and A method is known in which only signals are selectively detected and precise relaxation time measurements and chemical shift measurements are performed. In such an inspection device, a static magnetic field that is spatially uniform and temporally stable must be used. However, depending on the environment in which the device is installed, it may receive a disturbing magnetic field from the outside, resulting in significant image deterioration.

〔発明の目的〕[Purpose of the invention]

本発明はこのような欠点を鑑みてなされたもので、外部
振動磁場の周波数に応じてパルスシーケンスの間隔を設
定することにより、振動磁場の悪影響を低減させ画質を
著しく向上させた核磁気共鳴を用いた検査装置を提供す
ることにある。
The present invention has been made in view of these drawbacks, and is a nuclear magnetic resonance system that reduces the harmful effects of the oscillating magnetic field and significantly improves image quality by setting the pulse sequence interval according to the frequency of the external oscillating magnetic field. The object of the present invention is to provide an inspection device that uses the present invention.

〔発明の概要〕[Summary of the invention]

従来まで外部振動磁場が画質に与える影響についての報
告はなかった。しかし、発明者らが実験した結果、振動
磁場の周波数と画質劣化の程度とは密接な関係にあるこ
とを見い出した。この実験事実を説明すべく解析を行な
ったところ、次のことが明らかをどなった。すなわち、
通常、信号の検出にはスピンエコー法を用いるが、これ
は基本的には90″パルス−τ1−180@パルスーτ
2−信号観測というパルスシーケンスとなる。τ1−τ
2=τの条件が一般には諌せられるが、ここでは説明の
都合上添字1,2で区別する。
Until now, there have been no reports on the influence of external oscillating magnetic fields on image quality. However, as a result of experiments conducted by the inventors, it was discovered that there is a close relationship between the frequency of the oscillating magnetic field and the degree of image quality deterioration. When we conducted an analysis to explain this experimental fact, the following became clear. That is,
Normally, the spin echo method is used for signal detection, which basically consists of 90" pulse - τ1 - 180 @ pulse - τ
This is a pulse sequence called 2-signal observation. τ1−τ
Although the condition of 2=τ is generally discouraged, here, for convenience of explanation, we will distinguish it using subscripts 1 and 2.

このスピンエコー法によれば、τ1区間に生じた核スピ
ンの位相推移は、180°パルスにより次のτ2区間に
は前の推移を相殺する向きに変化する。
According to this spin echo method, the phase shift of the nuclear spin that occurs in the τ1 interval changes in the next τ2 interval in a direction that cancels out the previous shift due to the 180° pulse.

従って、次式が満たされる時、τ0.τ2区間での信号
の減衰は核スピンに固有のT2による減衰を除くと十分
に小さなものとなる。
Therefore, when the following equation is satisfied, τ0. The signal attenuation in the τ2 interval is sufficiently small except for the attenuation due to T2, which is specific to the nuclear spin.

ここでbH(Dは核スピンに印加される磁場であり、H
(t)=Ho+G(t) である。Hoは静磁場、G(t)は外乱磁場である。
where bH (D is the magnetic field applied to the nuclear spins, H
(t)=Ho+G(t). Ho is a static magnetic field, and G(t) is a disturbance magnetic field.

τ1=τ2=τ吉すると(1)式は となる。If τ1=τ2=τkichi, equation (1) becomes becomes.

さて、実際の測定においては180°パルスの前後の区
間における積分値が異なるため、(2)式が成立すると
は限らない。そこで次の量Qを考える。
Now, in actual measurement, since the integral values in the sections before and after the 180° pulse are different, equation (2) does not necessarily hold true. Therefore, consider the following quantity Q.

Q= l f G(t)at −f G(t)dt I
 (3)0 τ この量は、180°パルスにより相殺されずに残るG(
t)の時間積分の絶対値であり、結局核スピンへの外乱
の程度を表わす量である。いまG(t)= gOcos
 (ωを十ψ)の形で外乱磁場が与えられるとする。こ
こで、ωは外乱磁場の角周波数であり、ψは90°パル
スとG(t)とが同期していないために生じる位相差を
表わす変数である。この変数ψは信号の加算あるいは投
影角度によりランダムに変化する。従って、Qも同じよ
うに変化するので、外乱の程度を表わす量としてその期
待値Qをめる。(2)式より が得られる。このQを、外乱G(t)の影響の程度を表
わす指標とする。第1図には、τfを横軸にとった時の
(4)式よりめたQ/Qmaxを示す。ここでs Qm
axはQの最大値である。第1図から分かるように、τ
fが整数の場合に極小値に近い値をとることが分かる。
Q= l f G(t)at −f G(t)dt I
(3) 0 τ This amount is the G (
It is the absolute value of the time integral of t), and is a quantity that ultimately represents the degree of disturbance to the nuclear spin. Now G(t) = gOcos
Suppose that a disturbance magnetic field is given in the form (ω = 1ψ). Here, ω is the angular frequency of the disturbance magnetic field, and ψ is a variable representing the phase difference that occurs because the 90° pulse and G(t) are not synchronized. This variable ψ changes randomly depending on signal addition or projection angle. Therefore, since Q changes in the same way, the expected value Q is taken as a quantity representing the degree of disturbance. From equation (2), the following can be obtained. Let this Q be an index representing the degree of influence of the disturbance G(t). FIG. 1 shows Q/Qmax obtained from equation (4) when τf is plotted on the horizontal axis. Here s Qm
ax is the maximum value of Q. As can be seen from Figure 1, τ
It can be seen that when f is an integer, it takes a value close to the minimum value.

τf=0すなわちf=oの場合外部振動磁場は磁場の不
均一に相当し、これは180°パルスによ−り補償され
、全く影響を与えないので当然である。
When τf=0, that is, f=o, the external oscillating magnetic field corresponds to magnetic field inhomogeneity, which is naturally compensated by the 180° pulse and has no effect at all.

以上の結果より、外乱磁場が特定の周期で変化する場合
、τすなわち906パルスと180’パルスの間隔τを
外部振動磁場の周期の整数倍に近い値に設定することに
より、その影響を著しく低減できることが分かっな。
From the above results, when the disturbance magnetic field changes with a specific period, its influence can be significantly reduced by setting τ, that is, the interval τ between the 906 pulse and the 180' pulse, to a value close to an integral multiple of the period of the external oscillating magnetic field. I don't know what I can do.

さらに、第1図により、τfの値を大きくすればすなわ
ち、外部振動磁場の周期(1/f )に比べて90″パ
ルスと1800パルスの間隔τを十分長く選べば、Q 
/ Qmaxの値は十分に小さくなり、外部振動磁場の
影響が小さくできることがわかる。
Furthermore, according to Fig. 1, if the value of τf is increased, that is, if the interval τ between the 90″ pulse and the 1800 pulse is selected to be sufficiently long compared to the period (1/f ) of the external oscillating magnetic field, then the Q
It can be seen that the value of /Qmax becomes sufficiently small, and the influence of the external oscillating magnetic field can be reduced.

また一方、低調波の外部磁場振動がある場合には、τf
の値をゼロに近づけれる程Q/Qmaxの値はゼロに近
づく。すなわち、この場合には90゜パルスと180°
パルスの間隔τをできるだけ短かくすることにより外部
振動磁場の影響を低減することができる。
On the other hand, when there is subharmonic external magnetic field vibration, τf
The closer the value of Q/Qmax is to zero, the closer the value of Q/Qmax is to zero. That is, in this case, 90° pulse and 180° pulse
The influence of external oscillating magnetic fields can be reduced by making the pulse interval τ as short as possible.

〔発明の実施例〕 以下、本発明の実施例を図面に基づいて詳細に説明する
。第2図は本発明の一実施例である検査装置の構成を示
すものである。
[Embodiments of the Invention] Hereinafter, embodiments of the present invention will be described in detail based on the drawings. FIG. 2 shows the configuration of an inspection device that is an embodiment of the present invention.

制御装置は各装置へ種々の命令を一定のタイミングで出
力する。高周波パルス発生器2の出力は増幅器3で増幅
され、コイル4を励振する。コイル4は同時に受信コイ
ルを兼用しており、受信された信号成分は増幅器5を通
り、検波器6で検波後、信号処理装置7で画像をこ変換
される。高周波パルス発生器2の出力は、検波器6で直
角位相検波する時の基準信号として用いられる。Z方向
及びそれに直角な方向の傾斜磁場の発生はそれぞれコイ
ル8,9.10で行ない、これらのコイルはそれぞれ増
幅器11.12.13により駆動される。静磁場の発生
はコイル14で行ない、コイル14は電源15により駆
動される。コイル10はコイル9と同じ形状をなし、コ
イル9とはZ軸のまわりに90°回転させた関係にあり
、互いに直交する傾斜磁場を発生する。検査対象である
人体16はベッド17上に置かれ、ベッド17は支持台
18上を移動するようになっている。第3図にはイメー
ジングで用いるパルスシーケンスの中から、高周波磁場
H1のエンベロープと信号とを示示す。パルスシーケン
スはPR法とFT法とでは異なるが、そのいずれにおい
てもHlに関しては同じである。なお、第4図には反転
−回復(In−version−Recovery )
法により信号計測を行なう場合を示し、第3図の場合に
比べて磁化を反転させるための180°パルスが1個多
くなる。反転後td待時間ってから90°パルス、18
0°パルスニヨリ信号計測を行なうと、T1の効果が含
まれた信号を得ることができる。第3図、第4図におい
ては180°パルスとして矩形状のエンベロープを有す
るパルスを用いたが、勿論これに限らず、ガウシャンや
5INCで変調した形状でもよい。また逆に90°パル
スは矩形状であってもかまわない。
The control device outputs various commands to each device at constant timing. The output of the high frequency pulse generator 2 is amplified by an amplifier 3 and excites a coil 4. The coil 4 also serves as a receiving coil, and the received signal component passes through an amplifier 5, is detected by a detector 6, and then converted into an image by a signal processing device 7. The output of the high frequency pulse generator 2 is used as a reference signal when quadrature phase detection is performed by the wave detector 6. The generation of magnetic gradient fields in the Z direction and in the direction perpendicular thereto takes place by coils 8, 9, 10, respectively, which are driven by amplifiers 11, 12, 13, respectively. The static magnetic field is generated by a coil 14, and the coil 14 is driven by a power source 15. The coil 10 has the same shape as the coil 9, is rotated 90 degrees around the Z axis, and generates gradient magnetic fields orthogonal to each other. A human body 16 to be examined is placed on a bed 17, and the bed 17 is moved on a support stand 18. FIG. 3 shows the envelope and signal of the high frequency magnetic field H1 from among the pulse sequences used in imaging. Although the pulse sequences differ between the PR method and the FT method, Hl is the same in both. In addition, FIG. 4 shows the inversion-recovery (In-version-Recovery)
This shows a case where signal measurement is performed by the method, and the number of 180° pulses for reversing magnetization is increased by one compared to the case of FIG. 90° pulse after td waiting time after reversal, 18
When 0° pulse deviation signal measurement is performed, a signal including the effect of T1 can be obtained. In FIGS. 3 and 4, a pulse having a rectangular envelope is used as the 180° pulse, but the shape is of course not limited to this, and a shape modulated by Gaussian or 5INC may be used. Conversely, the 90° pulse may have a rectangular shape.

さて、前述した様に外部から振動磁場が印加されると、
第3図、第4図で示される区間τにおけ′る振動磁場の
積分値の期待値Qに応じて画質が劣化する。
Now, as mentioned above, when an oscillating magnetic field is applied from the outside,
The image quality deteriorates depending on the expected value Q of the integral value of the oscillating magnetic field in the interval τ shown in FIGS. 3 and 4.

そこで、振動磁場の周波数fに対応して、τの値を略n
 / fとなるように設定する。ただし、nは自然数で
ある。パルスシーケンスは、制御装置1中のRAMの中
に記憶されているので、τ値の変更はRAMの内容を書
き換えるだけでよい。
Therefore, corresponding to the frequency f of the oscillating magnetic field, the value of τ is approximately n
/ f. However, n is a natural number. Since the pulse sequence is stored in the RAM in the control device 1, changing the τ value only requires rewriting the contents of the RAM.

振動磁場の周波数の測定は、良く知られているようにセ
ンサー19を有するガウスメータ20あるいはサーチコ
イル式磁場測定装置により振動磁場を検出し、その周波
数を周波数カウンタ21によりめればよい。
The frequency of the oscillating magnetic field can be measured by detecting the oscillating magnetic field using a Gaussmeter 20 having a sensor 19 or a search coil type magnetic field measurement device, and counting the frequency using a frequency counter 21, as is well known.

〔発明の効果〕〔Effect of the invention〕

本発明によれば外部振動磁場が存在する場所でもその影
響を著しく緩和できるので、高品質の画像あるいはスペ
クトルを得るのに有効である一
According to the present invention, the influence of external oscillating magnetic fields can be significantly reduced even in locations where external oscillating magnetic fields exist, making it an effective method for obtaining high-quality images or spectra.

【図面の簡単な説明】 第1図は外部振動磁場の周波数と、信号の劣化を表わす
評価関数Qとの関係を示す図、第2図は本発明で用いる
装置の構成図、第3図、第4図は高周波磁場H1のシー
ケンスを示す図、第5図は振動磁場の周波数を検出する
回路を示す図である。 1・・・制御装置 2・・・高周波パルス発生器 3・
・・増幅器 4・・・コイル 5・・・増幅器 6・・
・検波器 7・・・信号処理装置 8,9.10・・・
コイル 11゜12.13・・・増幅器 14・・・静
磁場発生コイル15・・・電源 81 図 第2図 第 3 図 イも号□−−− 第 5 旧
[Brief Description of the Drawings] Fig. 1 is a diagram showing the relationship between the frequency of an external oscillating magnetic field and an evaluation function Q representing signal deterioration, Fig. 2 is a configuration diagram of the device used in the present invention, Fig. 3, FIG. 4 is a diagram showing the sequence of the high frequency magnetic field H1, and FIG. 5 is a diagram showing a circuit for detecting the frequency of the oscillating magnetic field. 1...Control device 2...High frequency pulse generator 3.
...Amplifier 4...Coil 5...Amplifier 6...
・Detector 7...Signal processing device 8,9.10...
Coil 11゜12.13...Amplifier 14...Static magnetic field generating coil 15...Power supply 81

Claims (1)

【特許請求の範囲】[Claims] 1、静磁場および高周波磁場の各磁場発光手段と、検査
対象からの核磁気共鳴信号を検出する信号検出手段と、
該信号検出手段の検出信号の演算を行う計算機および該
計算機による演算結果の出力手段を有する核磁気共鳴を
用いた検査装置において、90度高層波磁場とそれに続
く180度高周波磁場との間隔を、外乱磁場の周期の略
自然数倍に選ぶか、あるいは外乱磁場の周期に比べて十
分長く選んだことを特徴とする核磁気共鳴を用いた検査
装置。
1. Each magnetic field emitting means for a static magnetic field and a high-frequency magnetic field, and a signal detection means for detecting a nuclear magnetic resonance signal from an object to be examined;
In an inspection apparatus using nuclear magnetic resonance having a computer for calculating a detection signal of the signal detection means and a means for outputting the calculation result by the computer, an interval between a 90 degree high frequency magnetic field and a subsequent 180 degree high frequency magnetic field, An inspection device using nuclear magnetic resonance, characterized in that the period is selected to be approximately a natural number multiple of the period of the disturbance magnetic field, or sufficiently long compared to the period of the disturbance magnetic field.
JP59007125A 1984-01-20 1984-01-20 Inspecting apparatus by means of nuclear magnetic resonance Pending JPS60151547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59007125A JPS60151547A (en) 1984-01-20 1984-01-20 Inspecting apparatus by means of nuclear magnetic resonance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59007125A JPS60151547A (en) 1984-01-20 1984-01-20 Inspecting apparatus by means of nuclear magnetic resonance

Publications (1)

Publication Number Publication Date
JPS60151547A true JPS60151547A (en) 1985-08-09

Family

ID=11657353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59007125A Pending JPS60151547A (en) 1984-01-20 1984-01-20 Inspecting apparatus by means of nuclear magnetic resonance

Country Status (1)

Country Link
JP (1) JPS60151547A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2590025A1 (en) * 1985-11-12 1987-05-15 Thomson Cgr NUCLEAR MAGNETIC RESONANCE IMAGING APPARATUS
JP2007152206A (en) * 2005-12-02 2007-06-21 Hitachi Plant Technologies Ltd Dust collecting electrode of electrostatic precipitator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2590025A1 (en) * 1985-11-12 1987-05-15 Thomson Cgr NUCLEAR MAGNETIC RESONANCE IMAGING APPARATUS
EP0227512A1 (en) * 1985-11-12 1987-07-01 General Electric Cgr S.A. Nuclear magnetic resonance imaging apparatus
JP2007152206A (en) * 2005-12-02 2007-06-21 Hitachi Plant Technologies Ltd Dust collecting electrode of electrostatic precipitator

Similar Documents

Publication Publication Date Title
US4672320A (en) Imaging apparatus and method using nuclear magnetic resonance
JPS5946546A (en) Inspection method and apparatus by nuclear magnetic resonator
US5309099A (en) Method of determining real-time spatially localized velocity distribution using magnetic resonance measurements
JPH0373300B2 (en)
US4672318A (en) Method of measuring the static magnetic field distribution in an NMR inspection system
JPS5991344A (en) Method and device for nuclear magnetic resonance
JPH03224538A (en) Mri device provided with process for correcting primary magnetostatic field ununiformity and executing measurement
US5317262A (en) Single shot magnetic resonance method to measure diffusion, flow and/or motion
JPS6148752A (en) Inspecting device using nuclear magnetic resonance
JPH0454448B2 (en)
JP2585278B2 (en) Inspection equipment using nuclear magnetic resonance
JPS60151547A (en) Inspecting apparatus by means of nuclear magnetic resonance
JPS62148658A (en) Examination method using nuclear magnetic resonance
JPS6240658B2 (en)
JPS6029685A (en) Inspecting method by nuclear magnetic resonance
JPH11290289A (en) Examination instrument using nuclear magnetic resonance
JPS60146140A (en) Method and apparatus of inspection using nuclear magnetic resonance
JPH08215167A (en) Space magnetic field distribution-masuring method and space magnetic field distribution-measuring device
JPS5983039A (en) Inspecting method and apparatus utilizing nuclear magnetic resonance
JPS6218863B2 (en)
JPS60222758A (en) Inspector employing nuclear magnetic resonance
JPH0421491B2 (en)
JPS59105550A (en) Inspection method by nuclear magnetic resonance
JPS6029684A (en) Inspecting method and device by nuclear magnetic resonance
JPS59105548A (en) Inspection method and apparatus by nuclear magnetic resonance