JPS60222758A - Inspector employing nuclear magnetic resonance - Google Patents

Inspector employing nuclear magnetic resonance

Info

Publication number
JPS60222758A
JPS60222758A JP59078474A JP7847484A JPS60222758A JP S60222758 A JPS60222758 A JP S60222758A JP 59078474 A JP59078474 A JP 59078474A JP 7847484 A JP7847484 A JP 7847484A JP S60222758 A JPS60222758 A JP S60222758A
Authority
JP
Japan
Prior art keywords
magnetic field
section
magnetic resonance
nuclides
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59078474A
Other languages
Japanese (ja)
Other versions
JPH0585171B2 (en
Inventor
Etsuji Yamamoto
山本 悦治
Hideki Kono
秀樹 河野
Ryusaburo Takeda
武田 隆三郎
Hideaki Koizumi
英明 小泉
Nobutake Yamagata
山縣 振武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59078474A priority Critical patent/JPS60222758A/en
Publication of JPS60222758A publication Critical patent/JPS60222758A/en
Publication of JPH0585171B2 publication Critical patent/JPH0585171B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/483NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy
    • G01R33/485NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy based on chemical shift information [CSI] or spectroscopic imaging, e.g. to acquire the spatial distributions of metabolites

Abstract

PURPOSE:To shorten the measuring time by measuring signals from a plurality of nuclides containing an object to be inspected within almost at the same time length as that when a signal is measured from a single nuclide. CONSTITUTION:When the imaging of <1>H and the chemical shift of <31>P are measured, <1>H is measured in the section A and <31>P in the section B. In the section A, upon the application of a 90 deg. high frequency magnetic field, an slant magnetic field Gz is applied to a slice vertical to the direction Z is selected. Subsequently, a 180 deg. high frequency magnetic field is applied to invert the magnetization and an echo signal generated at the time t0 is detected under a slant magnetic field Gxy. Since the frequency fn of the high frequency magnetic field applied in the section A differs from the resonance frequency fp measured in the section B, no interference is caused. Because the magnetization of <31>P is in the direction of magnetostatic fields, the effect of the slant magnetic field applied in the section A vanishes the moment the slant magnetic field is made OFF and thus, in noway causes such an effect as the high frequency magnetic field does.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は被検体に含有される1H23“P。[Detailed description of the invention] [Field of application of the invention] The present invention relates to 1H23"P contained in a subject.

23Naなどからの核磁気共鳴信号を検出し、被検体の
内部構造あるいは被検体の緩和時間分布、ケミカルシフ
ト分布などを測定するのに好適な装置に関する。
The present invention relates to an apparatus suitable for detecting nuclear magnetic resonance signals from 23Na or the like and measuring the internal structure of an object, relaxation time distribution, chemical shift distribution, etc. of the object.

〔発明の背景〕[Background of the invention]

従来、人体の頭部、覆部等の内部構造を非破壊的に検査
する装置として、X線CTや超音波撮像装置が広く利用
されている。近年、]核磁気共鳴(NMR)現象を用い
て同様の検査を行う試みが成功し、X線CTや超音波撮
像装置では得られない情報を取得できることが明らかに
なって来た。
2. Description of the Related Art Conventionally, X-ray CT and ultrasonic imaging devices have been widely used as devices for non-destructively inspecting internal structures such as the head and head of a human body. In recent years, attempts to perform similar tests using the nuclear magnetic resonance (NMR) phenomenon have been successful, and it has become clear that information that cannot be obtained with X-ray CT or ultrasound imaging devices can be obtained.

NMR現象を用いた検査装置(以下、単に「検査装置j
という)においては、検査対象物体からの信号を該対象
物体各部に対応させて分離・識別する必要がある。その
ための方法の1つに、対象物体に傾斜磁場を印加して対
象物体各部の置かれた静磁場を異ならせ、これにより上
記対象物体各部の共鳴周波数あるいは位相推移量を異な
らせて位置の情報を得る方法がある。
Inspection device using NMR phenomenon (hereinafter simply referred to as “inspection device j”)
), it is necessary to separate and identify signals from an object to be inspected in correspondence with each part of the object. One method for this purpose is to apply a gradient magnetic field to the target object to vary the static magnetic field placed on each part of the target object, thereby varying the resonant frequency or phase shift of each part of the target object, thereby obtaining position information. There is a way to get it.

この方法は例えばProc、 IEEE、 71.33
8 (1983゜Proc、 IEEE、 70.11
52 (1982)などに詳細に述べられているので゛
、ここでは省略するが、検査対象物体からの信号は、1
回の測定に対し、1種類の核スピンに限定されていた。
This method is described, for example, in Proc, IEEE, 71.33.
8 (1983°Proc, IEEE, 70.11
52 (1982), etc., so it is omitted here, but the signal from the object to be inspected is
For each measurement, it was limited to one type of nuclear spin.

従って、1Hのイメージングと31 pのイメージング
あるいは局部に限定した測定を行なう場合、1Hの測定
が完了してから)I Pの測定(あるいはその逆)を行
なうのが通例であった。さて、NMR現象では、測定が
終了した後、次の測定を行なうには核スピンの回復を待
たなければならず、これがイメージング時間を事実1決
める要素となっている。回復に要する時間は被検体の種
類によっても異なるが、通常1秒程度である。そのため
イメージングに関する時間は数分程度となり、1Hと3
j pを測定する場合、さらに時間がかかるためその短
縮が望まれていた。
Therefore, when performing 1H imaging and 31p imaging or localized measurements, it was customary to perform IP measurements (or vice versa) after 1H measurements were completed. Now, in the NMR phenomenon, after a measurement is completed, it is necessary to wait for the recovery of the nuclear spin to perform the next measurement, and this is actually a factor that determines the imaging time. The time required for recovery varies depending on the type of subject, but is usually about 1 second. Therefore, the time required for imaging is approximately several minutes, and 1H and 3H
Since it takes more time to measure jp, it has been desired to shorten the time.

〔発明の目的〕[Purpose of the invention]

本発明はこのような欠点を鑑みてなされたもので、その
目的は検査対象物体に含まれる複数の核種からの信号を
、単一の核種からの信号を測定するのとほぼ同じ時間内
に測定することにより著しく測定時間を短縮するのに好
適な、NMRを用いた検査装置を提供することにある。
The present invention was developed in view of these drawbacks, and its purpose is to measure signals from multiple nuclides contained in an object to be inspected within approximately the same time as it would take to measure a signal from a single nuclide. An object of the present invention is to provide an inspection apparatus using NMR, which is suitable for significantly shortening measurement time.

〔発明の概要〕[Summary of the invention]

従来まで行なわれているイメージングでは、例えば1H
を対象にした場合、f=γH/2πで表わされる共鳴周
波数の高周波磁場を対象物体に印加し、これからの信号
を検出、処理することにより断層像を構成していた。こ
こで、γは核磁気回転比であり、Hは対象とする核が受
ける静磁場である。イメージングするためにはこの他に
も傾斜磁場を印加するが、測定の大部分は磁化の回復を
待つために費され、その期間には高周波磁場も傾斜磁場
も全く印加されない状態が生じる。この無駄な時間を利
用する方法として、複数の核種を測定することを案出し
た。すなわち、γは核に固有の値であるから、同一のH
に対し核種が異なれば、共鳴周波fも異なるため、前記
の無駄な時間内に他の核種を測定しても、核種間に干渉
が全て生じ゛ないことを利用するのである。これにより
、複数の核種を測定した場合、測定時間は最も長い測定
時間を要する核により決まり、各々の核を測定するのに
関する時間の和とはならないため、測定時間を著しく短
縮することが可能になる。
In conventional imaging, for example, 1H
When targeting a target object, a tomographic image was constructed by applying a high-frequency magnetic field with a resonance frequency expressed by f=γH/2π to the target object, and detecting and processing the resulting signals. Here, γ is the nuclear gyromagnetic ratio, and H is the static magnetic field that the target nucleus receives. In order to perform imaging, gradient magnetic fields are also applied, but most of the measurement is spent waiting for the magnetization to recover, and during that period, neither the radio-frequency magnetic field nor the gradient magnetic field is applied at all. As a way to make use of this wasted time, we devised a method to measure multiple nuclides. In other words, since γ is a value unique to the nucleus, the same H
On the other hand, since different nuclides have different resonance frequencies f, this method utilizes the fact that even if other nuclides are measured during the wasted time, no interference will occur between the nuclides. As a result, when measuring multiple nuclides, the measurement time is determined by the nucleus that requires the longest measurement time, and is not the sum of the time required to measure each nucleus, making it possible to significantly shorten the measurement time. Become.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面に基づいて詳細に説明する
。第1図は本発明の一実施例である検査装置の構成を示
すものである。□ 図において、制御装置1は各装置へ種々の命令を一定の
タイミングで出力する。高周波パルス発生器2の出力は
増幅器3で増幅され、コイル4を励振する。コイル4は
同時に受信コイルを兼用しており、受信された信号成分
は増幅器5を通り、検波器6で検波後、信号処理装置7
で画像に変換される。高周波パルス発生器2の出力は、
検波器6で直角位相検波する時の基準信号として用いら
れる。Z方向及びそれに直角な方向の傾斜磁場の発生は
それぞれコイル8,9.10で行ない、これらのコイル
はそれぞれ増幅器11,12.13により駆動される。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows the configuration of an inspection device that is an embodiment of the present invention. □ In the figure, a control device 1 outputs various commands to each device at a constant timing. The output of the high frequency pulse generator 2 is amplified by an amplifier 3 and excites a coil 4. The coil 4 also serves as a receiving coil, and the received signal component passes through an amplifier 5, is detected by a detector 6, and then sent to a signal processing device 7.
is converted to an image. The output of the high frequency pulse generator 2 is
It is used as a reference signal when quadrature phase detection is performed by the wave detector 6. The generation of gradient magnetic fields in the Z direction and in the direction perpendicular thereto is carried out by coils 8, 9.10, respectively, which are driven by amplifiers 11, 12.13, respectively.

静磁場の発生はコイル14で行ない、コイル14は電源
15により駆動される。 。
The static magnetic field is generated by a coil 14, and the coil 14 is driven by a power source 15. .

コイル10はコイル9と同じ形状をなし、コイル9とは
Z軸のまわりに90°回転させた関係にあり、互いに直
交する傾斜磁場を発生する。検査対よ 象である人体16はベッド17上に置かれ、ベラ ・ド
17は支持台18上を移動する。 ・λ 第2図には、本発明で用いるパルスシーケンスζ□ を示す。これは1Hのイメージングと31 pのケミカ
ルシフトを測定する場合であり、区間AでIHを、区間
Bで3″Pを測定する。イメージング法と □′しては
投影再構成法を用いるものとする。区間Aでは90’高
周波磁場の印加と同時に傾#a場G2を印加し、Z方向
に垂直なスライスを選択する。続いて、180°高周波
磁場を印加して磁化を反転させ、時刻t。において生じ
るエコー信号を、傾斜磁場Gxyのもとで検出する。G
xyは互いに直交する傾斜磁場GxとGyを合成した磁
場であり、投影角度に応じてその大きさは一定に保った
まま、合成ベクトルの方向が変化するような傾斜磁場で
ある。区間Aで印加する高周波磁場の周波数f1.は、
静磁場Hが1.5 Tとすると、fh二64 M +−
1zとなる。一方、区間Bで測定する31 pの共鳴周
波数fpは前記静磁場に対してfρ= 26 M Hz
となるため、1Hを測定するために印加された高周波磁
場は3゛Pに何ら影響を及ぼさない。従って、区間Aと
は全く独立に31 pの信号を測定できる。また、区間
Aで印加された傾斜磁場が3“Pに及ぼす影響も31 
pの磁化が静磁場の方向を向いているため、傾斜磁場が
offになると同時に消滅し、高周波磁場と同様に全く
影響を与えない。
The coil 10 has the same shape as the coil 9, is rotated 90 degrees around the Z axis, and generates gradient magnetic fields orthogonal to each other. A human body 16 to be examined is placed on a bed 17, and a bed 17 is moved on a support stand 18. -λ FIG. 2 shows the pulse sequence ζ□ used in the present invention. This is a case where 1H imaging and 31p chemical shift are measured, and IH is measured in section A and 3''P is measured in section B.The imaging method and □' are projection reconstruction methods. In section A, a gradient #a field G2 is applied simultaneously with the application of a 90' high frequency magnetic field to select a slice perpendicular to the Z direction.Next, a 180' high frequency magnetic field is applied to reverse the magnetization, and at time t The echo signal generated at .G is detected under a gradient magnetic field Gxy.
xy is a magnetic field that is a composite of gradient magnetic fields Gx and Gy that are orthogonal to each other, and is a gradient magnetic field that changes the direction of the composite vector while keeping its magnitude constant depending on the projection angle. Frequency f1 of the high frequency magnetic field applied in section A. teeth,
If the static magnetic field H is 1.5 T, fh264 M +-
It becomes 1z. On the other hand, the resonance frequency fp of 31p measured in section B is fρ = 26 MHz with respect to the static magnetic field.
Therefore, the high frequency magnetic field applied to measure 1H has no effect on 3゛P. Therefore, the signal of 31p can be measured completely independently of section A. In addition, the influence of the gradient magnetic field applied in section A on 3"P is also 31
Since the magnetization of p is oriented in the direction of the static magnetic field, it disappears as soon as the gradient magnetic field is turned off, and has no effect at all like the high-frequency magnetic field.

第3図には、本発明の2番目の実施例として、1Hの磁
化を反転後td待時間ってから、縦緩和時間TIの効果
を含んだ信号を観測する場合を示す。21 Pの測定は
td時間内にも行なう。勿論、1H磁化の回復を待つ間
にも31 pを測定できるのは、第2図に示す場合と同
様である。
FIG. 3 shows, as a second embodiment of the present invention, a case where a signal including the effect of the longitudinal relaxation time TI is observed after a td waiting time after reversing the 1H magnetization. Measurement of 21 P is also carried out during the td time. Of course, 31p can be measured even while waiting for recovery of 1H magnetization, as in the case shown in FIG. 2.

以上の実施例では、先に1Hを測定し次に31 pを測
定しているが、その逆でも勿論可能である。
In the above embodiments, 1H is measured first and then 31p is measured, but the reverse is of course possible.

ただし、3+ pのケミカルシフトの測定では1Hを先
に測定するのが望ましい。さらに、31 pの測定は微
少部位のケミカルシフトに限らず、密度分布。
However, when measuring the chemical shift of 3+p, it is desirable to measure 1H first. Furthermore, measurement of 31p is not limited to chemical shifts at minute sites, but also density distribution.

ケミカルシフト分布を測定する場合でも本法を用いるこ
とは可能である。その場合には、第2図に示す区間Bの
シーケンスにかわり、例えは、5ociety of 
Magnetic Re5onance in Med
icineの5econd Annual Meeti
ng、 August16−19.1983゜San 
Francisco、 Ca1ifornj、aでのP
、 A、 Bottomleyノfil告(P、 53
〜P54)に記載のシーケンスを用いればよい。
This method can also be used when measuring chemical shift distribution. In that case, instead of the sequence of section B shown in FIG. 2, for example, 5ociety of
Magnetic Re5onance in Med
icine's 5econd Annual Meeti
ng, August16-19.1983゜San
Francisco, P in Ca1ifornj, a.
, A. Bottomley's report (P., 53
The sequence described in ~P54) may be used.

なお、測定時間の有効利用の1つとしてマルチスライス
イメージングが提案されている。これは磁化の回復を待
つ間に、他のスライス面の信号を検出するものであるが
、この場合でも、複数スライスを測定する時間の一部を
用いてPを測定すればよく、スライス面が1つ減少する
だけである。
Note that multi-slice imaging has been proposed as one way to effectively utilize measurement time. This detects signals from other slice planes while waiting for magnetization to recover, but even in this case, it is sufficient to measure P using part of the time it takes to measure multiple slices, and the slice plane It only decreases by one.

また、その拡張として31 pのイメージングもマルチ
スライスイングすることが可能である。この場合には、
1Hと31 pを測定を交互に複数のスライスに対して
繰り返せばよい。
Furthermore, as an extension of this, 31 p imaging can also be multi-sliced. In this case,
Measurements of 1H and 31p may be repeated alternately on a plurality of slices.

さて、これまでは1Hと3IPの組合せについてのみ述
べて来たが、この組合せに限らず、23 N a。
So far, we have only talked about the combination of 1H and 3IP, but this combination is not limited to 23N a.

19Fなど2種類以上の核種について同時測定が可能な
のは以上の説明により明らかであろう。
It is clear from the above explanation that two or more types of nuclides such as 19F can be measured simultaneously.

最後に、ここで示した実施例では2次元イメージングの
場合であったが、本発明は2次元に限らず3次元にも適
用できるのは勿論である。
Finally, although the embodiment shown here deals with two-dimensional imaging, the present invention is of course applicable not only to two-dimensional imaging but also to three-dimensional imaging.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、1種類の核種を測定する時間内に、複
数の核種を測定できるため、測定時間を著しく低減させ
ることが可能である。
According to the present invention, a plurality of nuclides can be measured within the time it takes to measure one type of nuclides, so the measurement time can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】 1、静磁場、傾斜磁場および高周波磁場の各磁場発生手
段と、検査対象からの核磁気共鳴信号を検出する信号検
出手段と、該信号検出手段の検出信号の演算を行う計算
機および該計算機による演算結果の出力手段を有する核
磁気共鳴を用いた検査装置において、複数の核種の測定
を時分割で行なうことを特徴とする核磁気共鳴を用いた
検査装置。 2.1つの核種の励起と信号検出が終了後、核磁化の回
復を待つ間に、別の核種の励起と信号検出を行うことを
特徴とする特許請求の範囲第1項記載の核磁気共鳴を用
いた検査装置。 3、]つの核種について複数断面のイメージングを、1
断面のイメージングとほぼ同一の測定時間内に完了する
と同時に、該核種の核磁化の回復を待つ時間内に、他の
核種の測定を行うことを特徴とする特許請求の範囲第1
項記載の核磁気共鳴を用いた検査装置。 4.1つの核種の磁化が反転され、その回復を待つ時間
内にも、他の核種の励起、信号検出を行なうことを特徴
とする特許請求の範囲第1項記載の核磁気共鳴を用いた
検査装置。
[Claims] 1. Magnetic field generating means for a static magnetic field, a gradient magnetic field, and a high-frequency magnetic field, a signal detecting means for detecting a nuclear magnetic resonance signal from an object to be examined, and calculating a detection signal of the signal detecting means. What is claimed is: 1. An inspection device using nuclear magnetic resonance, which includes a computer and means for outputting calculation results from the computer, and is characterized in that it measures a plurality of nuclides in a time-sharing manner. 2. Nuclear magnetic resonance according to claim 1, characterized in that after excitation and signal detection of one nuclide are completed, excitation and signal detection of another nuclide are performed while waiting for recovery of nuclear magnetization. An inspection device using 3. Imaging of multiple sections for two nuclides, 1
Claim 1 characterized in that the imaging of the cross section is completed within approximately the same measurement time, and at the same time, the measurement of other nuclides is carried out within the time period for waiting for the recovery of the nuclear magnetization of the nuclide.
An inspection device using nuclear magnetic resonance as described in Section 1. 4. Using nuclear magnetic resonance according to claim 1, wherein the magnetization of one nuclide is reversed and the excitation and signal detection of other nuclides are performed even while waiting for its recovery. Inspection equipment.
JP59078474A 1984-04-20 1984-04-20 Inspector employing nuclear magnetic resonance Granted JPS60222758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59078474A JPS60222758A (en) 1984-04-20 1984-04-20 Inspector employing nuclear magnetic resonance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59078474A JPS60222758A (en) 1984-04-20 1984-04-20 Inspector employing nuclear magnetic resonance

Publications (2)

Publication Number Publication Date
JPS60222758A true JPS60222758A (en) 1985-11-07
JPH0585171B2 JPH0585171B2 (en) 1993-12-06

Family

ID=13663010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59078474A Granted JPS60222758A (en) 1984-04-20 1984-04-20 Inspector employing nuclear magnetic resonance

Country Status (1)

Country Link
JP (1) JPS60222758A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534419A (en) * 2004-04-29 2007-11-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Magnetic resonance imaging at several RF frequencies
JP2009513218A (en) * 2005-10-28 2009-04-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Simultaneous MR excitation of multiple nuclei using a single RF amplifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534419A (en) * 2004-04-29 2007-11-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Magnetic resonance imaging at several RF frequencies
JP2009513218A (en) * 2005-10-28 2009-04-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Simultaneous MR excitation of multiple nuclei using a single RF amplifier

Also Published As

Publication number Publication date
JPH0585171B2 (en) 1993-12-06

Similar Documents

Publication Publication Date Title
US4254778A (en) Imaging systems
US4318043A (en) Method and apparatus for rapid NMR imaging of nuclear densities within an object
JPS6363225B2 (en)
JPS5946546A (en) Inspection method and apparatus by nuclear magnetic resonator
JPS6047947A (en) Method of image-forming slice of test specimen
US4684892A (en) Nuclear magnetic resonance apparatus
JPH0454448B2 (en)
JPH0685768B2 (en) Inspection method using nuclear magnetic resonance
JPS60222758A (en) Inspector employing nuclear magnetic resonance
CN110780249B (en) Magnetic resonance imaging method using adiabatic radio frequency pulses to measure radio frequency B1 field distribution
JP2585278B2 (en) Inspection equipment using nuclear magnetic resonance
JP2607466B2 (en) Inspection equipment using nuclear magnetic resonance
JPH0785737B2 (en) Inspection device using nuclear magnetic resonance
JPH0370792B2 (en)
JPH0622934A (en) Magnetic resonance imaging device and method
JPS63311945A (en) Nuclear magnetic resonance tomographic imaging apparatus
JP3322695B2 (en) Magnetic resonance imaging equipment
JPS60146140A (en) Method and apparatus of inspection using nuclear magnetic resonance
JP3152690B2 (en) Magnetic resonance imaging
JP3249114B2 (en) MRI apparatus and gradient magnetic field applying method in MRI apparatus
JPS60151547A (en) Inspecting apparatus by means of nuclear magnetic resonance
JPS5957146A (en) Method and apparatus for inspection utilizing nuclear magnetic resonance
JPH0453537B2 (en)
JP2647066B2 (en) Inspection equipment using nuclear magnetic resonance
JPH0436813Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees