JPS5855669B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPS5855669B2
JPS5855669B2 JP3565376A JP3565376A JPS5855669B2 JP S5855669 B2 JPS5855669 B2 JP S5855669B2 JP 3565376 A JP3565376 A JP 3565376A JP 3565376 A JP3565376 A JP 3565376A JP S5855669 B2 JPS5855669 B2 JP S5855669B2
Authority
JP
Japan
Prior art keywords
oxide film
gate
forming
epitaxial layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3565376A
Other languages
Japanese (ja)
Other versions
JPS52119449A (en
Inventor
隆 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP3565376A priority Critical patent/JPS5855669B2/en
Publication of JPS52119449A publication Critical patent/JPS52119449A/en
Publication of JPS5855669B2 publication Critical patent/JPS5855669B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)
  • Weting (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に係り、特に縦型構造の
電界効果型トランジスタに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and particularly to a field effect transistor having a vertical structure.

通常のバイポーラ型の高周波大電力トランジスタはエミ
ッタをストライプ状に多数形成し大電力化をはかつてい
るが、バイポーラ型トランジスタは熱暴走しやすく素子
の大電力化は困難である。
A typical bipolar type high frequency, high power transistor has a large number of emitters formed in a stripe pattern to achieve high power, but bipolar transistors are prone to thermal runaway and it is difficult to increase the power of the device.

一方縦型構造の電界効果トランジスタは熱暴走はなく大
電力素子には適している。
On the other hand, field effect transistors with a vertical structure do not suffer from thermal runaway and are suitable for high-power devices.

従来縦型構造の電界効果トランジスタとしては第1図に
示す様な断面構造の埋め込みゲート構造のもの、または
第2図に示すような断面構造のゲートヲ深く拡散しゲー
ト間をチャンネルとする拡散ゲート構造のものが製造さ
れている。
Conventional field effect transistors with a vertical structure include a buried gate structure with a cross-sectional structure as shown in Figure 1, or a diffused gate structure with a cross-sectional structure where the gate is deeply diffused and a channel is formed between the gates, as shown in Figure 2. are being manufactured.

第1図において、ゲート1は半導体基板2にメツシュ状
に不純物を拡散したのちエピタキシャル成長によって半
導体層3を形成して製造される。
In FIG. 1, a gate 1 is manufactured by diffusing impurities into a semiconductor substrate 2 in a mesh shape and then forming a semiconductor layer 3 by epitaxial growth.

そして高周波化のためにゲート間隔を狭くしようとする
とエピタキシャル成長時のオートドーピングおよび拡散
によってゲートは拡がってチャンネルを形成しなくなる
ためにゲート間隔をあまり狭くすることはできない。
If an attempt is made to narrow the gate spacing in order to increase the frequency, the gates will expand due to autodoping and diffusion during epitaxial growth and will no longer form a channel, so the gate spacing cannot be made very narrow.

またゲート抵抗が太きいためにこの構造は低周波大電力
素子としては有効であるが高周波用には適していない。
Further, since the gate resistance is large, this structure is effective as a low frequency high power device, but is not suitable for high frequency applications.

一方第2図に示す拡散ゲート構造はゲート4を拡散で形
成するために接合容量が太きい。
On the other hand, the diffusion gate structure shown in FIG. 2 has a large junction capacitance because the gate 4 is formed by diffusion.

またゲート間の間隔が数μ程度であるために、ゲート。Also, since the distance between the gates is about a few μ, the gate.

ソース5間が短絡しないようにソース電極を取り出すこ
とが難かしい。
It is difficult to take out the source electrodes so that the sources 5 are not short-circuited.

しかしゲートに金属電極を這わせることができるために
前記埋め込みゲート方式に比べると高周波用には適して
いるが、素子の面積の大部分をゲート部分が占めるため
にこの構造はやはり高周波用大電力素子には適しない。
However, since a metal electrode can be placed over the gate, it is more suitable for high-frequency applications than the buried gate method, but since the gate portion occupies most of the area of the device, this structure is still suitable for high-power applications for high-frequency applications. Not suitable for elements.

本発明は上記従来の縦型電界効果トランジスタの欠点を
改良し高周波大電力化を可能にする自己整合方式による
縦型電界効果トランジスタの製造方法を提供することを
目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a vertical field effect transistor using a self-alignment method, which improves the drawbacks of the conventional vertical field effect transistor and enables high frequency and large power.

本発明の半導体装置の製造方法は次の如き工程を具備し
てなるものである。
The method for manufacturing a semiconductor device of the present invention includes the following steps.

第1の導電形の半導体基体の1主面に複数の開孔を有す
る第1の薄層を形成する工程と、前記薄層をマスクとし
てこれら開孔から露出する半導体基体表面上に夫々第1
の導電形のエビタキシャル層を形成する工程と、前記各
エピタキシャル層表面に酸化膜を形成する工程と、前記
第1の薄層を除去する工程と、前記エピタキシャル層表
面の酸化膜をマスクとして半導体基体表面に第2の導電
形の不純物を導入して第2の導電影領域を形成する工程
と、前記エピタキシャル層の上表面および第2の導電影
領域表面にイオンエツチングを施して露出面を形成する
工程と、前記各露出面に蒸着により金属電極を形成する
工程と、前記各エピタキシャル層上表面の各金属電極に
対して共通電極板を電気的に接続する工程。
forming a first thin layer having a plurality of openings on one principal surface of a semiconductor substrate of a first conductivity type;
forming an oxide film on the surface of each epitaxial layer; removing the first thin layer; using the oxide film on the surface of the epitaxial layer as a mask to form a semiconductor layer; A step of introducing an impurity of a second conductivity type into the substrate surface to form a second conductive shadow region, and performing ion etching on the upper surface of the epitaxial layer and the surface of the second conductive shadow region to form an exposed surface. forming a metal electrode on each exposed surface by vapor deposition; and electrically connecting a common electrode plate to each metal electrode on the upper surface of each epitaxial layer.

以下に本発明の半導体装置の製造方法を一実施例につき
図面を参照して詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the method for manufacturing a semiconductor device according to the present invention will be explained in detail below with reference to the drawings.

第3図において11は比抵抗が0.005Ω・αのAs
ドープ100N型シリコン基板である。
In Figure 3, 11 is As with a specific resistance of 0.005Ω・α
This is a doped 100N type silicon substrate.

12は10Ω・備の比抵抗を有する厚さ6μのN型エピ
タキシャル層である。
Reference numeral 12 denotes an N-type epitaxial layer with a thickness of 6 μm and a resistivity of 10 Ω·min.

このエピタキシャル層は四塩化シリコン(SiC4)f
l 150℃で水素還元することにより得られた。
This epitaxial layer is made of silicon tetrachloride (SiC4)
l Obtained by hydrogen reduction at 150°C.

酸化膜13(S 102 )を70OA、次に窒化膜1
4 (S’ 3N4)を10OA、さらに酸化膜15
S io 2を600 OA順次形成した。
Oxide film 13 (S 102 ) is 70OA, then nitride film 1
4 (S' 3N4) at 10OA, and an oxide film of 15
S io 2 was formed sequentially at 600 OA.

上記酸化膜13は窒化膜14をプラズマエツチング除去
するために形成される。
The oxide film 13 is formed to remove the nitride film 14 by plasma etching.

次に第4図に示す如く周知の写真蝕刻技術を用いてソー
ス領域となる部分の酸化膜15、窒化膜14および酸化
膜13を夫々NH4F (フッ化アンモニウム)、プラ
ズマ、稜よびNH4Fでエツチングして除した。
Next, as shown in FIG. 4, the oxide film 15, nitride film 14, and oxide film 13 in the portions that will become the source region are etched with NH4F (ammonium fluoride), plasma, edges, and NH4F, respectively, using a well-known photolithography technique. I removed it.

次に第5図に示す如く酸化膜15、窒化膜14、酸化膜
13をマスクとして選択エピタキシャル成長を行ない比
抵抗が5Ω・工のエピタキシャル層16を1.2μ形成
した。
Next, as shown in FIG. 5, selective epitaxial growth was performed using the oxide film 15, nitride film 14, and oxide film 13 as masks to form an epitaxial layer 16 of 1.2 μm with a resistivity of 5 Ω·min.

この除屑16は酸化膜上に0.3μはみ出た。This removed debris 16 protruded by 0.3 μm onto the oxide film.

次にエピタキシャル層16にリンPf0.3μ厚に拡散
しNへ16′を形成した。
Next, phosphorus Pf was diffused into the epitaxial layer 16 to a thickness of 0.3 μm to form N 16'.

次に酸化膜15を除去し、エピタキシャル層16を30
0OA厚に選択酸化し酸化膜17を形成した。
Next, the oxide film 15 is removed and the epitaxial layer 16 is
An oxide film 17 was formed by selective oxidation to a thickness of 0OA.

次に熱リン酸で窒化膜14を除去後、酸化膜13をNH
4Fで除去した。
Next, after removing the nitride film 14 with hot phosphoric acid, the oxide film 13 is removed with NH
It was removed at 4F.

次に酸化膜17をマスクとしてボロンBf5X1015
個/cdイオン注入し、ゲート領域18を形成した。
Next, using the oxide film 17 as a mask, boron Bf5X1015
A gate region 18 was formed by implanting ions/cd.

このときボロンは孔の下部の部分にしか注入されない(
第6図)。
At this time, boron is injected only into the lower part of the hole (
Figure 6).

次に酸化膜17を除去し、第7図に示す如く1000℃
で基板を全面酸化し、酸化膜19を200OA形成した
Next, the oxide film 17 is removed and heated to 1000°C as shown in FIG.
The entire surface of the substrate was oxidized to form an oxide film 19 with a thickness of 200 OA.

次に基板に対して垂直方向よりArガスを用いたイオン
エツチングにより酸化膜19を除去した。
Next, the oxide film 19 was removed by ion etching using Ar gas in a direction perpendicular to the substrate.

この時側壁部分の酸化膜19′はエツチングされない(
第8図)。
At this time, the oxide film 19' on the side wall portion is not etched (
Figure 8).

次に第9図に示す如く、アルミニウム、@ 3000A
、クロムf200人銅f500A順次電子ビーム蒸着を
して、ゲート電極20、ソース電極21を形成した。
Next, as shown in Figure 9, aluminum @ 3000A
A gate electrode 20 and a source electrode 21 were formed by sequential electron beam evaporation of F200 chromium and F500 A copper.

このときこれらの電極は逆台形構造のために、ソースと
ゲート部分に自己整合的にパターニングされる。
At this time, these electrodes are patterned in self-alignment with the source and gate portions to form an inverted trapezoidal structure.

上記銅は後のめっきを容易にするために蒸着された。The copper was deposited to facilitate subsequent plating.

またソースの島は相互に離隔してなるため接続する必要
がある。
Also, the source islands are separated from each other and need to be connected.

このため印加電圧1.2■で金めつきを施した。For this reason, gold plating was applied at an applied voltage of 1.2 .

ゲート層はソース層に比して接合電圧だけ印加電圧か低
下するため、めっきはソース電極に対してのみ施される
Since the voltage applied to the gate layer is lower than that of the source layer by the junction voltage, plating is applied only to the source electrode.

めっき層22の厚さは20μでありソース間の間隔の0
.8μに比し充分大であるためにソースは相互に接続さ
れる。
The thickness of the plating layer 22 is 20μ, and the distance between the sources is 0.
.. Since it is sufficiently large compared to 8μ, the sources are interconnected.

次に全体のソース領域に対応した面積のN+のシリコン
片23と金層22とを熱圧着により接着した。
Next, the N+ silicon piece 23 having an area corresponding to the entire source region and the gold layer 22 were bonded together by thermocompression bonding.

この金層22とシリコン片23は素子の熱抵抗を下げる
のに有効であつた。
The gold layer 22 and silicon piece 23 were effective in lowering the thermal resistance of the device.

次に基板にドレイン電極を設は素子を形成した。Next, a drain electrode was provided on the substrate to form a device.

上記本発明によれば写真蝕刻用のマスクは1枚でよいた
めにマスク製作の際にピッチずれ、および合わせずnv
考慮する必要なく非常に高密度のパターンのマスクを使
用でき高周波大電力素子が簡単に製造しつる顕著な利点
がある。
According to the present invention, since only one mask is required for photoetching, pitch deviations and misalignment occur during mask production.
There are significant advantages in that very dense patterned masks can be used without any considerations and that high frequency, high power devices can be manufactured easily.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はいづれも従来の電界効果トランジ
スタの断面図、第3図力)ら第9図までは本発明の製造
方法の一実施例を工程順に示すいづれも断面図である。 なお図中同一符号は同一または相当部分を夫々示すもの
とする。 11・・・・・・半導体基体(シリコン基板)、12・
・・・・・エピタキシャル層、13.15.19・・・
・−酸化膜)Sin2)、14・・・・・・窒化膜(S
i3N4)、20・・・・・・ゲート電極、21・・・
・・・ソース電極、23・・・・・・シリコン片(共通
電極板)。
1 and 2 are sectional views of a conventional field effect transistor, and FIGS. 3 to 9 are sectional views showing an embodiment of the manufacturing method of the present invention in the order of steps. Note that the same reference numerals in the drawings indicate the same or corresponding parts, respectively. 11... Semiconductor base (silicon substrate), 12.
...Epitaxial layer, 13.15.19...
- Oxide film) Sin2), 14...Nitride film (S
i3N4), 20...gate electrode, 21...
. . . Source electrode, 23 . . . Silicon piece (common electrode plate).

Claims (1)

【特許請求の範囲】[Claims] 1 第1の導電型の半導体の1主面に複数の開孔を有す
る第1の薄層を形成する工程と、前記薄層をマスクとし
てこれら開孔から露出する半導体基体表面上に夫々第1
の導電型のエピタキシャル層を形成する工程と、前記各
エピタキシャル層表面に酸化膜を形成する工程と、前記
第1の薄層を除去する工程と、前記エピタキシャル層表
面の酸化膜をマスクとして半導体基体表面に第2の導電
型の不純物を導入して第2の導電型領域を形成する工程
と、前記エピタキシャル層の上表面および第2の導電型
領域表面にイオンエツチングを施して露出面を形成する
工程と、前記各露出面に蒸着により金属電極を形成する
工程と、前記各エピタキシャル層上表面の各金属電極に
対して共通電極板を電気的に接続する工程とを備えてな
る半導体装置の製造方法。
1. Forming a first thin layer having a plurality of openings on one principal surface of a semiconductor of a first conductivity type, and using the thin layer as a mask, forming a first
forming an oxide film on the surface of each of the epitaxial layers; removing the first thin layer; and using the oxide film on the surface of the epitaxial layer as a mask, the semiconductor substrate is A step of introducing impurities of a second conductivity type into the surface to form a second conductivity type region, and performing ion etching on the upper surface of the epitaxial layer and the surface of the second conductivity type region to form an exposed surface. forming a metal electrode on each exposed surface by vapor deposition; and electrically connecting a common electrode plate to each metal electrode on the upper surface of each epitaxial layer. Method.
JP3565376A 1976-03-31 1976-03-31 Manufacturing method of semiconductor device Expired JPS5855669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3565376A JPS5855669B2 (en) 1976-03-31 1976-03-31 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3565376A JPS5855669B2 (en) 1976-03-31 1976-03-31 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS52119449A JPS52119449A (en) 1977-10-06
JPS5855669B2 true JPS5855669B2 (en) 1983-12-10

Family

ID=12447823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3565376A Expired JPS5855669B2 (en) 1976-03-31 1976-03-31 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5855669B2 (en)

Also Published As

Publication number Publication date
JPS52119449A (en) 1977-10-06

Similar Documents

Publication Publication Date Title
JP2577330B2 (en) Method of manufacturing double-sided gate static induction thyristor
JPS6146063A (en) Manufacture of semiconductor device
JPS5855669B2 (en) Manufacturing method of semiconductor device
JPS5855668B2 (en) Manufacturing method of semiconductor device
JPS5854512B2 (en) Manufacturing method of semiconductor device
JPH0311765A (en) Manufacture of semiconductor device
JPS5846846B2 (en) hand tai souchi no seizou houhou
JPS6149471A (en) Manufacture of semiconductor device
JPS6013313B2 (en) Manufacturing method of semiconductor device
JPS5855670B2 (en) Manufacturing method of semiconductor device
JPH0626217B2 (en) Method for manufacturing semiconductor device
JPS6077460A (en) Manufacture of semiconductor device
JPS5854511B2 (en) Manufacturing method of semiconductor device
JPS6120141B2 (en)
JPS6142169A (en) Manufacture of semiconductor device
CN115274442A (en) SiC MOSFET (Metal-oxide-semiconductor field Effect transistor), preparation method thereof and semiconductor device
JPS60140757A (en) Manufacture of semiconductor device
JPS6188543A (en) Manufacture of semiconductor device
JPS6210027B2 (en)
JPH11145151A (en) Power semiconductor device using semi-insulating polysilicon film
JPS63257271A (en) Semiconductor device and manufacture thereof
JPH03235334A (en) Bipolar transistor and manufacture thereof
JPH01270270A (en) Manufacture of semiconductor device
JPS61236161A (en) Manufacture of semiconductor device
JPS61158176A (en) Semiconductor device and manufacture thereof