JPS5855606B2 - vacuum interrupter - Google Patents

vacuum interrupter

Info

Publication number
JPS5855606B2
JPS5855606B2 JP16493478A JP16493478A JPS5855606B2 JP S5855606 B2 JPS5855606 B2 JP S5855606B2 JP 16493478 A JP16493478 A JP 16493478A JP 16493478 A JP16493478 A JP 16493478A JP S5855606 B2 JPS5855606 B2 JP S5855606B2
Authority
JP
Japan
Prior art keywords
shield
vacuum
vacuum interrupter
withstand voltage
interrupter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16493478A
Other languages
Japanese (ja)
Other versions
JPS5590025A (en
Inventor
孝光 佐野
建四郎 小山田
佳行 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP16493478A priority Critical patent/JPS5855606B2/en
Publication of JPS5590025A publication Critical patent/JPS5590025A/en
Publication of JPS5855606B2 publication Critical patent/JPS5855606B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66261Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations
    • H01H2033/66269Details relating to the materials used for screens in vacuum switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66261Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations
    • H01H2033/66292Details relating to the use of multiple screens in vacuum switches

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

【発明の詳細な説明】 この発明は耐電圧の向上を図った真空インタラプタに関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vacuum interrupter with improved withstand voltage.

真空インタラプタの耐電圧向上には一般に下記のような
対策がある。
In general, the following measures can be taken to improve the withstand voltage of vacuum interrupters.

1ず、真空インタラプタの真空容器に設けられるシール
ド部材には銅、ニッケル又はステンレスを使用し、その
形状は部材先端部に鋭角を作らないように丸味を帯びる
ように形成し、処理においては高温下の真空中における
脱ガス処理を施すことである。
First, the shield member installed in the vacuum container of the vacuum interrupter is made of copper, nickel, or stainless steel, and its shape is rounded to avoid creating an acute angle at the tip of the member. degassing treatment in a vacuum.

又、電極部材には真空溶解銅の使用等なるべく内部残存
ガスの少ない材料を、使用目的に応じ、例えばCu−W
糸材料を使用し、その形状は前記と同様鋭角部をなくす
ように形成し、処理も前記と同様に真空中での脱ガス処
理を施すことである。
In addition, depending on the purpose of use, materials such as vacuum melted copper with as little internal residual gas as possible may be used for the electrode members, such as Cu-W.
Thread material is used, its shape is formed so as to eliminate acute corners as described above, and the treatment is to perform degassing treatment in a vacuum as described above.

しかし、最近真空インタラプタは超高電圧化かつ大容量
化されつつあるが、この要望を満足させるために上記各
手段を用いても充分満足な結果は得られない。
However, recently, vacuum interrupters have been made to have ultra-high voltages and large capacities, but even if the above-mentioned means are used to satisfy these demands, it is not possible to obtain sufficiently satisfactory results.

そこで、真空インタラプタを超高電化する一手段として
は電極間ギャップの設定及び導電部である電極を含むリ
ード棒と各シールド間ギャップの設定を適格に選定する
ことである。
Therefore, one way to make the vacuum interrupter extremely high-voltage is to appropriately select the setting of the gap between the electrodes and the setting of the gap between the lead rod including the electrode, which is the conductive part, and each shield.

前記電極間ギャップ長は真空インタラプタの軸方向で、
丑た電極を含むリード棒と各シールド間ギャップ長は真
空インタラプタの半径方向で調整される。
The interelectrode gap length is in the axial direction of the vacuum interrupter,
The gap length between each shield and the lead rod including the scraped electrode is adjusted in the radial direction of the vacuum interrupter.

一般に真空インタラプタは外泊面の絶縁耐力を強化する
目的で碍子内に収納され、その碍子内にSF6 ガスあ
るいは絶縁油等の媒介物を封入して使用される。
Generally, a vacuum interrupter is housed in an insulator for the purpose of strengthening the dielectric strength of the outer surface, and a medium such as SF6 gas or insulating oil is sealed in the insulator.

このように真空インタラプタを碍子内に収納させる手段
を用いると、真空インタラプタを前記のように軸方向に
長くしても碍子としては比較的自由に碍子軸方向は変え
られ、しかもそれにより重量増加や価格等の影響は少な
い。
By using this method of housing the vacuum interrupter in the insulator, even if the vacuum interrupter is lengthened in the axial direction as described above, the axial direction of the insulator can be changed relatively freely, and this also reduces the weight increase. The impact of price etc. is small.

しかし、真空インタラプタの半径方向を前記のように大
きくすると碍子の重量増加も大きくかつ価格の高騰も大
きくなる欠点が生じてくる。
However, if the radial direction of the vacuum interrupter is increased as described above, there arises the disadvantage that the weight of the insulator increases significantly and the price also increases sharply.

なお、電極間ギャップlと耐電圧Vとの間にばyO(1
0°5〜0°75の関係があり、耐電圧Vはギャップ長
lが長くなると向上することが実験的にも確認されてい
る。
Note that between the interelectrode gap l and the withstand voltage V, yO(1
It has been experimentally confirmed that there is a relationship of 0°5 to 0°75, and that the withstand voltage V improves as the gap length l increases.

第1図は前記電極間ギャップlと耐電圧Vとの実験結果
を表わす特性図である。
FIG. 1 is a characteristic diagram showing the experimental results of the interelectrode gap l and the withstand voltage V.

従って、電極間ギャップの長短により超高電圧比は可能
となる。
Therefore, an ultra-high voltage ratio is possible depending on the length of the inter-electrode gap.

しかし、シールドは真空インタラプタの容器であるガラ
ス又はセラミック等の絶縁物と同心円的に配置され、か
つリード棒とガラス等絶縁物の中間的配置となり、その
シールド間耐電圧、シールドとリード棒耐電圧はガラス
等絶縁物の耐電圧の影響を受けやすくなる。
However, the shield is placed concentrically with the insulating material such as glass or ceramic, which is the container of the vacuum interrupter, and is placed intermediate between the lead rod and the insulating material such as glass. becomes susceptible to the withstand voltage of insulating materials such as glass.

第2図Aはガラス棒GBとステンレス製シールドS1.
S2とが一体となった構造のものを真空中に配設した概
略図で、この第2図AのシールドS1,82間に電圧V
を印加し、かつシールドS1.S2のギャップ長lを変
化させたときの耐電圧特性を測定すると第2図Bの特性
図のようになる。
Figure 2A shows the glass rod GB and the stainless steel shield S1.
This is a schematic diagram of a structure in which the shields S2 and S2 are integrated in a vacuum.
is applied, and the shield S1. When the withstand voltage characteristics are measured while changing the gap length l of S2, the characteristics are as shown in FIG. 2B.

この第2図Bから耐電圧■とギャップ長lとの間にば■
■lO°25〜035の関係を得る。
From this Fig. 2B, it is found that between the withstand voltage ■ and the gap length l,
(2) Obtain the relationship between lO°25 and 035.

この関係からガラスが介在されないときに比較して(第
1図の場合)ギャップ効果は著しく小さく、ギャップ長
を多少広げても耐電圧はあ1り向上しない。
From this relationship, the gap effect is significantly smaller than when no glass is interposed (in the case of FIG. 1), and even if the gap length is increased somewhat, the withstand voltage does not improve at all.

従って、真空インタラプタの超高電圧化を図るには材料
の選定以外に電極間ギャップを長くしただけでは超高電
圧化のインタラプタは得ることができなく、超高電圧化
を図るにはインタラプタを半径方向にも大きくしなくて
はならなくなる。
Therefore, in order to achieve ultra-high voltage in a vacuum interrupter, it is not possible to obtain an ultra-high voltage interrupter simply by increasing the gap between the electrodes in addition to material selection; It will also have to be made larger in the direction.

このため、上記したように真空インタラプタは大型化し
、重量も増加する欠点は免がれなくなる。
For this reason, as described above, the vacuum interrupter inevitably becomes larger and weighs more.

この発明は上記の欠点を除去するために、シールド全体
あるいはシールド先端部、渣たは通電部の先端等の比較
的耐電圧の低い部分にベリリウム、ホウ素、炭素のうち
少なくとも一種類の金属をメッキ等により表面処理させ
たことにより、耐電圧の向上を図り従来と同一の構造の
真空容器を用いて超高電圧化が可能となる真空インタラ
プタを提供することを目的とする。
In order to eliminate the above-mentioned drawbacks, this invention plated the entire shield, the tip of the shield, the residue, or the tip of the current-carrying part with a relatively low withstand voltage with at least one metal selected from beryllium, boron, and carbon. The object of the present invention is to provide a vacuum interrupter which improves the withstand voltage by surface treatment using methods such as the above, and which enables ultra-high voltage using a vacuum vessel having the same structure as the conventional one.

以下図面を参照してこの発明の一実施例を説明する。An embodiment of the present invention will be described below with reference to the drawings.

第3図に釦いて、11は真空容器で、この真空容器11
はガラス絶縁筒12,13i−よび固定、可動フランシ
ト4,15から形成される。
In Figure 3, 11 is a vacuum container, and this vacuum container 11
is formed from glass insulating cylinders 12, 13i and fixed and movable flanks 4, 15.

16は固定電極、17は可動電極で、両電極16.17
の対向面には固定および可動接点18.19が設けられ
る。
16 is a fixed electrode, 17 is a movable electrode, both electrodes 16.17
Fixed and movable contacts 18, 19 are provided on opposite sides of.

20は固定リード棒で、この固定り−ド棒20の一端は
固定電極16が固着され、他端は固定フランジ14を介
して外部に導出される。
Reference numeral 20 denotes a fixed lead rod, one end of which is fixed with a fixed electrode 16, and the other end led out to the outside via a fixed flange 14.

21は可動リード棒で、このリード棒21の一端は可動
電極17に固着され、他端は可動フランジ15に取着さ
れたベローズ22を介して外部に導出される。
Reference numeral 21 denotes a movable lead rod, one end of which is fixed to the movable electrode 17, and the other end led out to the outside via a bellows 22 attached to the movable flange 15.

23は前記ガラス絶縁筒12,13の内周壁面に沿って
配設された主シールド、24゜25は固定むよび可動リ
ード棒20,21に固着された軸シールド釦よびベロー
ズシールド、26゜2γは固定および可動フランジ14
.15に固着された外シールドである。
23 is a main shield disposed along the inner circumferential wall surface of the glass insulating tubes 12 and 13; 24; 25 is a shaft shield button and a bellows shield fixed to the fixed and movable lead rods 20 and 21; 26° is 2γ. is a fixed and movable flange 14
.. This is an outer shield fixed to 15.

前記固定および可動リード棒20.21の外部には集電
コンタクト28゜29を介して導電ラス板30.31が
接続される。
A conductive lath plate 30.31 is connected to the outside of the fixed and movable lead rod 20.21 via current collecting contacts 28 and 29.

上記構成の真空インタラプタの各シールド等の全部若し
くは一部、例えば図示a−j部(図示太線部分)に予め
、銅、鉄系金属よりも軽く、硬度が大きく、融点、沸点
も同等以上の傾向を有し、インタラプタの電圧印加時、
電流しゃ断時等に発生する電子、X線、光子あるいは波
のエネルギー等の影響による耐電圧低下を、それらのエ
ネルギーを吸収する事によって防止し得る材料、例えば
ベリリウムBe、ホウ素B、炭素C等の金属をメッキ等
により表面処理を施す。
All or a part of each shield, etc. of the vacuum interrupter having the above configuration, for example, parts a to j (bold line part in the diagram) shown in the figure, have a tendency to be lighter and harder than copper and iron-based metals, and have melting points and boiling points equal to or higher than those of copper and iron-based metals. When voltage is applied to the interrupter,
Materials that can prevent voltage drop due to the influence of electron, Surface treatment of metal by plating, etc.

このときの表面処理量としては2〜30μm程度が最適
である。
The optimal amount of surface treatment at this time is about 2 to 30 μm.

このように表面処理することにより、リード棒20゜2
1とシールド23〜25間、シールド23とシールド2
6.27間、特にガラス、セラミック等に近接するシー
ルド23,26.27等の耐電圧は飛躍的に向上する。
By surface treatment in this way, the lead rod 20°2
Between 1 and shields 23 to 25, between shield 23 and shield 2
6.27, the withstand voltage of shields 23, 26, 27, etc., which are close to glass, ceramics, etc., is dramatically improved.

従って、従来と同一構造のインタラプタに比較して極め
て高電圧に耐え得ることができる。
Therefore, it can withstand an extremely high voltage compared to an interrupter having the same structure as a conventional interrupter.

一例として第2図Aに示す構造に上記Beをステンレス
表面に電気メツキ処理をほどこした実験において処理し
たのに比べ略1.5〜2倍の耐電圧向上を見た。
As an example, when the structure shown in FIG. 2A was treated with Be in an experiment in which the stainless steel surface was electroplated, an improvement in withstand voltage of approximately 1.5 to 2 times was obtained.

第4図は比較的高電圧に耐え得る真空インタラプタの断
面図で、このインタラプタにも前記実施例と同様の金属
を用いて表面処理を図ることにより超高電圧にも充分適
用可能なものとなる。
Figure 4 is a cross-sectional view of a vacuum interrupter that can withstand relatively high voltages. By using the same metal as in the previous embodiment and surface-treating this interrupter, it can be sufficiently applied to ultra-high voltages. .

なお、第4図にトいて、32,33は内シールド、34
゜35は中間シールド36.37は内シールド支持絶縁
体であり、第3図と同一部分は同符号を付して示す。
In addition, in Fig. 4, 32 and 33 are inner shields, and 34
35 is an intermediate shield 36, and 37 is an inner shield supporting insulator, and the same parts as in FIG. 3 are designated with the same reference numerals.

以上述べたようにこの発明によれば真空インタラプタの
容器内の耐電圧を必要とする部材の表面に、電子軌道数
が少なくかつ軌道のもつエネルギーの小さい金属である
Be + By Cのうちの少なくとも一種類の金属を
施したので、電子、光子が前記Be、B、C等の金属に
突入しても、これによる電子、光子の発生は極めて僅少
であり、しゃ断時における耐電圧は悪化しないので、電
流零点にて確実にしゃ断ができ、動的時の耐圧向上を飛
躍的に向上させることができ、超高電圧化が大型化、重
量増加等を招かなくても容易に達成することができ、し
かも、従来と同じ耐電圧を得る場合にはインタラプタを
極めて小型化できる等の利点がある。
As described above, according to the present invention, at least one of Be + By C, which is a metal with a small number of electron orbits and a small orbital energy, is applied to the surface of a member that requires a withstand voltage inside the container of a vacuum interrupter. Since one type of metal is applied, even if electrons and photons rush into the metals such as Be, B, and C, the generation of electrons and photons will be extremely small, and the withstand voltage will not deteriorate when cut off. , the current can be cut off reliably at the zero point, and the withstand voltage during dynamic operation can be dramatically improved, and ultra-high voltage can be easily achieved without increasing the size or weight. Moreover, it has the advantage that the interrupter can be extremely miniaturized if the same withstand voltage as the conventional one is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電極ギャップ長に対する耐電圧特性を示す特性
図、第2図Aはガラス棒とシールドとが一体的に形成さ
れている場合の実験用構成図、第2図Bは第2図Aの特
性図、第3図はこの発明の一実施例を示す断面図、第4
図はこの発明の他の実施例を示す断面図である。 11・・・真空容器、16・・・固定電極、17・・・
可動電極、18・・・固定接点、19・・・可動接点、
20・・・固定リード棒、21・・・可動リード棒、2
3・・・主シールド、24・・・軸シールド、25・・
・ベローズシールド、26.27・・・外シールド、3
2.33・・・内シールド、34,35・・・中間シー
ルド。
Figure 1 is a characteristic diagram showing withstand voltage characteristics with respect to electrode gap length, Figure 2A is an experimental configuration diagram when the glass rod and shield are integrally formed, and Figure 2B is Figure 2A. FIG. 3 is a sectional view showing an embodiment of the present invention, and FIG.
The figure is a sectional view showing another embodiment of the invention. 11... Vacuum container, 16... Fixed electrode, 17...
Movable electrode, 18... Fixed contact, 19... Movable contact,
20...Fixed lead rod, 21...Movable lead rod, 2
3... Main shield, 24... Axis shield, 25...
・Bellows shield, 26.27...outer shield, 3
2.33...Inner shield, 34,35...Middle shield.

Claims (1)

【特許請求の範囲】 1 真空容器内に相対的に離脱及び接触し得る接点を配
設し、前記容器内の耐電圧を必要とする部材の表面に、
ベリリウムBe、ホウ素B、炭素Cのうちの少なくとも
一種類の金属を施したことを特徴とする真空インタラプ
タ。 2 前記部材は真空容器内の各部のシールドあるいは通
電部からなる特許請求の範囲第1項に記載の真空インタ
ラプタ。
[Claims] 1. Contacts that can be relatively detached and contacted are arranged in a vacuum container, and on the surface of a member in the container that requires a withstand voltage,
A vacuum interrupter characterized by being coated with at least one metal selected from beryllium Be, boron B, and carbon C. 2. The vacuum interrupter according to claim 1, wherein the members include shields or current-carrying parts for each part within the vacuum container.
JP16493478A 1978-12-27 1978-12-27 vacuum interrupter Expired JPS5855606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16493478A JPS5855606B2 (en) 1978-12-27 1978-12-27 vacuum interrupter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16493478A JPS5855606B2 (en) 1978-12-27 1978-12-27 vacuum interrupter

Publications (2)

Publication Number Publication Date
JPS5590025A JPS5590025A (en) 1980-07-08
JPS5855606B2 true JPS5855606B2 (en) 1983-12-10

Family

ID=15802611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16493478A Expired JPS5855606B2 (en) 1978-12-27 1978-12-27 vacuum interrupter

Country Status (1)

Country Link
JP (1) JPS5855606B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120043A (en) * 1980-02-27 1981-09-21 Tokyo Shibaura Electric Co Vacuum valve
DE102018212953A1 (en) * 2018-08-02 2020-02-06 Siemens Aktiengesellschaft Locking contact system

Also Published As

Publication number Publication date
JPS5590025A (en) 1980-07-08

Similar Documents

Publication Publication Date Title
US3469050A (en) Arc rotating coil structure in vacuum circuit interrupters
US4081640A (en) Compact vacuum switch for high voltage circuit interruption
KR930011829B1 (en) Vacuum interrupter
US6891122B2 (en) Vacuum switch tubes
US10134546B2 (en) Maximizing wall thickness of a Cu—Cr floating center shield component by moving contact gap away from center flange axial location
US3679474A (en) Periodic electrode structure for vacuum gap devices
GB2188781A (en) A circuit interrupter vacuum bottle
US4471184A (en) Vacuum interrupter
US3914568A (en) High-voltage vacuum switch
US4695689A (en) Vacuum circuit breaker
CN109273315A (en) A kind of fixing means and vacuum interrupter of shielding cylinder and porcelain shell
JPS5855606B2 (en) vacuum interrupter
US3979634A (en) Travelling-wave tube with an improved electron gun
US4574169A (en) Bimetallic arc shield
CN208954891U (en) A kind of vacuum interrupter
US3555222A (en) Vacuum switch with cylindrical guide means and annular field deflector means
US4128748A (en) High-current vacuum switch with reduced contact erosion
JPS59822A (en) Vacuum valve
JPS59186219A (en) Slender contact structure
US2917649A (en) Ignitron
WO1996020491A1 (en) Vacuum switch
JPS598273Y2 (en) Vacuum cutter
JPH0652645B2 (en) Vacuum valve
JP2002319342A (en) Vacuum valve
KR910006238B1 (en) Vacuum intakaputa