JPS5855088A - Decomposing method for precursor of organic chlorine compound such as humic acid by combination use of ozone and hydrogen peroxide - Google Patents

Decomposing method for precursor of organic chlorine compound such as humic acid by combination use of ozone and hydrogen peroxide

Info

Publication number
JPS5855088A
JPS5855088A JP15510481A JP15510481A JPS5855088A JP S5855088 A JPS5855088 A JP S5855088A JP 15510481 A JP15510481 A JP 15510481A JP 15510481 A JP15510481 A JP 15510481A JP S5855088 A JPS5855088 A JP S5855088A
Authority
JP
Japan
Prior art keywords
ozone
reaction
hydrogen peroxide
toc
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15510481A
Other languages
Japanese (ja)
Inventor
Yasushi Muraki
村木 安司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suido Kiko Kaisha Ltd
Original Assignee
Suido Kiko Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suido Kiko Kaisha Ltd filed Critical Suido Kiko Kaisha Ltd
Priority to JP15510481A priority Critical patent/JPS5855088A/en
Publication of JPS5855088A publication Critical patent/JPS5855088A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To accelerate decomposition reaction and to use an oxidizing agent to be injected efficiently by decomposing org. materials by oxidation with ozone alone in an initial period of catalytic reaction and adding and using hydrogen peroxide in combination to and with the ozone in the 2nd reaction region where the reaction retards. CONSTITUTION:Org. materials such as humic acids in water are decomposed by oxidation with a treatment by the ozone alone in the 1st reaction region in an initial period of catalytic reaction. In the 2nd reaction region where reaction retards, hydrogen peroxide is added and used to and in combination with the ozone to accelerate the decomposition reaction. The two-stage treating method making combination use of ozone and hydrogen peroxide is effective as a method for removing humic acid as a precursor for formation of trihalomethane and prevents the formation of trihalomethane in both terms of an effet of decreasing TOC components and chemical stability of residual TOC components.

Description

【発明の詳細な説明】 と飲料水消毒用塩とが反応してクロロ7オルム等いりゆ
るトリハロメタンなどが生成しその有る。そしてこれの
生成防止に当って框前記アミン酸などの前駆物質を塩素
接触前(可能な限り除去しておけばその生成量型押1.
−4ことができるので、T、’H,K対策として最も有
力視されており又これら有機物質の分解に当ってはオゾ
ンかによるこれら物質の酸化分解反応は効果を発揮する
のに接触時の反応初期の瞬間的時点のみでそれ以aは殆
んど反応が進行せず実用上閘題亡なっている。
[Detailed Description of the Invention] When the salt for disinfecting drinking water reacts with the salt for disinfecting drinking water, various trihalomethanes such as chloro-7-olm are produced. In order to prevent this formation, if the precursors such as the amine acids mentioned above are removed as much as possible before contact with chlorine, the amount of formation is 1.
-4, it is considered the most promising countermeasure against T, 'H, and K.Also, when decomposing these organic substances, the oxidative decomposition reaction of these substances by ozone is effective, but the There is only a momentary moment at the beginning of the reaction, and after that the reaction hardly progresses, making it practically impossible.

本発明はこの問題点を解決しオゾン利用による実際的水
処理方法を提供するものである。次に実施例によるその
態様を説明する。
The present invention solves this problem and provides a practical water treatment method using ozone. Next, the aspect according to an example will be explained.

実施例 本発明方法の実験に当り天然水では濃厚な試料が得にく
いので試薬を用いて実験した。先ず実験に供するアミン
酸はアミン酸試薬51を加温し7tO,I N −Na
OH1ノに添加し、24時間攪拌溶解操作後、不溶性物
質tF別しフミン酸原液5000■/ノとし不溶性物質
の重量は無視し友。
EXAMPLE When conducting an experiment using the method of the present invention, it was difficult to obtain a concentrated sample using natural water, so a reagent was used for the experiment. First, the amine acid used in the experiment was prepared by heating the amine acid reagent 51 to 7tO,I N -Na.
After stirring and dissolving for 24 hours, the insoluble substances were separated and the humic acid stock solution was adjusted to 5,000 μl/mL, ignoring the weight of the insoluble substances.

このフミン酸溶液の濃度CH(号な〕とTOC濃FI 
CT 00 (5P−T’a/j ’)は直線関係とな
った。すなわちCTOO= 041 Csi + 0.
11!よりアミン酸中の41%が有機炭素ということに
なるが一般にいわれているそれの50〜60%に比して
やや低いのは不溶この7ミン酸を用い第1図による実験
装置全使用し回分式実験によジオシンによる酸化分解実
験を行い、その効果t−TOC測定にニジ比較したのが
第1表でおる。   − 回分式実験装fitは第1図に示すように硝子製の小規
模実験装置である。図中、1は所定の濃度のH2O2k
添加した試水(2))を満たした反応器(セバラブルビ
ーカ)・で、この反応器1は恒温水槽2内に配設され、
この恒温水槽2内の水温は温度コントローラ3で20C
に保持されている。また反応器l内の試水はマグネチッ
クスターラ4によって攪拌される。また反応器lの上方
には給水口5が設けられ、試水及びH2O2がそれぞれ
試水タンク6及びH2O2貯檀7からそれぞれのポンプ
8,9によって給水口5を通して所定の濃度になるよう
に実験ごとに供給される。また反応器1内の試水中には
、エアーポンプlOによって圧送された空気がオゾン発
生機11でオゾン化空気とされた後吹込管12工り吹き
込まれる。このオゾン化空気は一部試水と反応した後桟
シは反応器1の上方に設けられ几排気口13より排気さ
れ、そしてオゾン濃度計14で排気オゾン濃度を測定し
、活性炭塔15でオゾンを吸着した後大気へ放出される
。また処理された試水は反応器lの下方に設けられた排
水口16よ多連通管17ヲ通して処理水タンク18へ実
験ごとに排出される0 前記回分式実験装置の反応槽から排気される未反応オゾ
ン化空気の経時変化は第3図のようナハターンを示しこ
の時のフミン酸溶液のTOC濃度の履歴曲線Ia、@4
図のようになりCtoo対t(時間)曲線t! TOC
の除去率で50%付近に変曲点をもった直線となり即ち
Ctoo=Mtt+C0too (第1反応領域につい
て) となシ、7ミン酸のオゾン処理においては脱色の反応を
除いて7ミン酸の分解反応U TOCTh基準にした場
合、反応速度に遅い傾向がありフミン酸濃度と無関係な
零次反応となる。
Concentration CH (number) of this humic acid solution and TOC concentration FI
CT 00 (5P-T'a/j') had a linear relationship. That is, CTOO=041 Csi+0.
11! This means that 41% of the amic acid is organic carbon, which is slightly lower than the generally accepted 50-60%. Table 1 shows the results of an oxidative decomposition experiment using dioscin and a comparison of its effects with t-TOC measurements. - The batch-type experimental equipment FIT is a small-scale experimental equipment made of glass, as shown in Figure 1. In the figure, 1 is a predetermined concentration of H2O2k
A reactor (separable beaker) filled with added sample water (2)), this reactor 1 is placed in a constant temperature water tank 2,
The water temperature in this constant temperature water tank 2 is set to 20C by the temperature controller 3.
is maintained. Further, the sample water in the reactor 1 is stirred by a magnetic stirrer 4. Further, a water supply port 5 is provided above the reactor l, and sample water and H2O2 are passed through the water supply port 5 from a sample water tank 6 and a H2O2 reservoir 7 by respective pumps 8 and 9 to a predetermined concentration during the experiment. Supplied per. In addition, air pumped by an air pump 1O is converted into ozonized air by an ozone generator 11 and then blown into the test water in the reactor 1 through a blowing pipe 12. After a part of this ozonized air reacts with the sample water, it is exhausted from the exhaust port 13 installed above the reactor 1, and the ozone concentration of the exhaust gas is measured with the ozone concentration meter 14, and the ozonized air is passed through the activated carbon tower 15. is released into the atmosphere after being adsorbed. In addition, the treated sample water is discharged into the treated water tank 18 for each experiment through a drain port 16 provided at the bottom of the reactor 1 and a multiple communication pipe 17. The change over time of the unreacted ozonized air shows a Naha turn as shown in Figure 3, and the TOC concentration history curve Ia of the humic acid solution at this time, @4
As shown in the figure, the Ctoo vs. t (time) curve t! TOC
At a removal rate of When the reaction U TOCTh is used as a reference, the reaction rate tends to be slow and becomes a zero-order reaction that is unrelated to the humic acid concentration.

オゾン処理を行うとフミン酸溶液の暗かつ色は急激に脱
色されて@3図及び第4図の11付近では透明にな多水
中に残留オゾンも出現する。
When ozone treatment is carried out, the dark color of the humic acid solution is rapidly decolored, and residual ozone also appears in the transparent polyhydric water near 11 in Figures 3 and 4.

そして第1反応領域と第2反応領域のTOC’t−して
第1表より試験41と48とを比較してみると除去速度
は第1領域に比べて第2領域で懺7””34に低下し第
2領域では極めて反応が遅くなり殆んど効果が得られな
いことがわかる。
Comparing Tests 41 and 48 from Table 1 using the TOC't of the first reaction zone and the second reaction zone, the removal rate in the second zone was 7""34 compared to the first zone. It can be seen that in the second region, the reaction is extremely slow and almost no effect is obtained.

ここで7ミン酸とオゾンの反応当量を求めるために第3
図の反応槽排気オゾン濃度の経時変化よシ消費オゾン量
(点線領域)を重量法によって求めた。この場合、消費
オゾン量には純粋に反応によって消費されるオゾンの他
に、水中に溶解する量や溶解して自然分解する量も含ま
れる。
Here, in order to find the reaction equivalent of 7 minic acid and ozone, the third
The time-dependent change in ozone concentration in the reactor exhaust gas and the amount of consumed ozone (dotted line area) in the figure were determined by the gravimetric method. In this case, the amount of ozone consumed includes not only the amount of ozone consumed purely by reaction, but also the amount dissolved in water and the amount dissolved and naturally decomposed.

有機炭素対消費オゾン量として整理してみるとオゾン単
独処理においては消費オゾン量は反応速度の項で論じた
第1領域で大きく、第2領域では有機炭素の分解空停止
してしまい消費オシン量も著しく減少してしまう0 第1領域でU TOC対消費オゾン量の曲線はCtoc
 = KIDO3+ C”To。
When organized as organic carbon versus consumed ozone amount, in ozone-only treatment, the consumed ozone amount is large in the first region discussed in the reaction rate section, and in the second region, organic carbon decomposition stops and the consumed ozone amount is large. In the first region, the curve of U TOC versus consumed ozone is Ctoc.
= KIDO3+ C"To.

なる直線となり、反応当量係数Klが求められる。A straight line is obtained, and the reaction equivalence coefficient Kl is obtained.

第5図は各−実験条件での反応当量曲線であシ、これよ
りKlt−求めると、 K* = −0,138 となり、TOC除去量(g9)の7.2倍の消費オゾン
量となる0この点から考えると第1領域におけるオゾン
とフミン酸中の有機炭素分との0反応はC+ 203→
CO2+ 20a (’−’20a/C=96/12k
q8 )の形が予想され、フミン酸の分解に寄与してい
るのにオゾンの発生機の酸素が大部分を占めていること
がわかる0 またオゾンと過酸化水素同時併用処理については処理対
象フミン酸溶液中に当初よりH2O2’に注入し、そこ
にオゾン注入した時の排気ガスのオゾン濃度の履歴曲線
は第6図のようになる0WIJ6図に示す第1領域にお
いては、注入したミン酸の反応が瞬間的に生じると同 時に 03 + H2O2→OH+ HO2+ 0203 +
 H2O2→202 + H2O等のオゾンとH2O2
の反応も若干化じており、その結果としてオゾン単独処
理に比べて、反応速度係数や反応当量は低下している0
第2領域においてはオゾン単i処理においてほとんど反
応ミン酸の残留TOC分がH2O2の添 加によって反応速度が向上し、若干の分解が可能となっ
た。しかし上記の理由から第1領域においてオゾンと過
酸化水素を併用することは得策とは言えない。また反応
当量から見ても第1領域においては過酸化水素併用処理
に不利になっている。
Figure 5 shows the reaction equivalent curve under each experimental condition. If Klt is calculated from this, K* = -0,138, which is the amount of consumed ozone that is 7.2 times the amount of TOC removed (g9). 0 Considering this point, the 0 reaction between ozone and the organic carbon content in humic acid in the first region is C+ 203 →
CO2+ 20a ('-'20a/C=96/12k
q8) is expected, and it can be seen that oxygen from the ozone generator accounts for the majority of the contribution to the decomposition of humic acid. The history curve of the ozone concentration in the exhaust gas when H2O2' is initially injected into the acid solution and ozone is injected there is shown in Figure 6. As the reaction occurs instantaneously, 03 + H2O2→OH+ HO2+ 0203 +
H2O2 → 202 + Ozone such as H2O and H2O2
The reaction of 0
In the second region, the reaction rate was improved by the addition of H2O2, making it possible to slightly decompose most of the residual TOC content of the reacted minic acid in the ozone monoi treatment. However, for the above reasons, it is not advisable to use ozone and hydrogen peroxide together in the first region. Also, in terms of reaction equivalents, the first region is disadvantageous for combined treatment with hydrogen peroxide.

そこで前記の状態からオゾン単独処理および(03+H
2O2)同時併用処理の実験結果よfi、OHラジカル
反応を利用してその酸化力を生かすには第2領域におけ
るTOC成分の分解速度をあけ明したので、最初はオゾ
ン単独で処理し、かつ色の色相が消える第1領域終了後
(実験条件でハ40〜60分の接触時間)にH2O2を
添加しオゾン処理する2段処理法について実験し次。第
7図にOs + (034H2H2)併用2段処理時の
排気オゾン濃度の変化を示す。
Therefore, from the above state, ozone treatment alone and (03+H
2O2) Experimental results of simultaneous combined treatment: In order to utilize the oxidizing power of the OH radical reaction, the decomposition rate of the TOC component in the second region was determined. After the first region in which the hue disappears (contact time of 40 to 60 minutes under experimental conditions), a two-stage treatment method was conducted in which H2O2 was added and ozone treatment was performed. FIG. 7 shows the change in exhaust ozone concentration during two-stage treatment with Os + (034H2H2).

係数のpH依存性を確認する友めに0.I N −Na
OH。
0 to confirm the pH dependence of the coefficient. I N -Na
Oh.

0、I N −ICノによって試水のpHt変化させた
。第1領域、第2領域ともに実験範囲のpH輯囲円では
アルカリ111に移行するほどに値やに値が向上−域で
はその現象が顕著である◇こ0M因ハ第1領域が拡散律
速支配でるるためアミン酸溶液のpHによる溶解性の向
上とか、アルカリ側でのオゾンの自己分解速度の向上に
よるものと思われる〇 t Os 十H2O2)処1と03単独処理の処理限界
値を除去率として比べると第2表のように03単独処理
で平均47%、(Os + H2O2)併用処理で71
%n開時58−55088 (5) と25%も向上し友。
The pH of the sample water was changed by 0, IN-IC. In both the first region and the second region, in the pH circle of the experimental range, the value increases as it moves to alkali 111. This phenomenon is remarkable in the - region. This is thought to be due to the improvement in solubility due to the pH of the amic acid solution or the improvement in the self-decomposition rate of ozone on the alkali side. As shown in Table 2, when compared with
%nOpened 58-55088 (5) and improved by 25%.

しかしながら、某下水処理場二次処理水に対する結果の
ように完全に近い分解は不可能であった。
However, almost complete decomposition was not possible, as was the case with secondary treated water from a certain sewage treatment plant.

また、興味ある結果として回分式実験ではH2O2が0
3と反応して消滅する直前、直後の10〜20分間にT
OCが20〜30%急激に低下す゛ることが観察された
。これ10. H2O2、TOC−Oaの注入量の関係
に某下水処理場の結果で得友ようなTOCに対する03
やH2O2の最適な注入点が存在していることを示唆し
ているものと考えられる。
Also, an interesting result is that in the batch experiment, H2O2 was 0.
T for 10 to 20 minutes immediately before and after reacting with 3 and disappearing.
A sharp drop in OC of 20-30% was observed. This is 10. 03 for TOC, as found in the results of a certain sewage treatment plant regarding the relationship between the injection amount of H2O2 and TOC-Oa.
This seems to suggest that there is an optimal injection point for H2O2 and H2O2.

以上は回分処理についての実験であったが、これを第2
図に系す即き装置を利用し更に連続式処理実験、を実施
した。
The above was an experiment regarding batch processing, but this was
Further continuous processing experiments were conducted using the equipment shown in the figure.

112図に示す連続式処理実験装置は硝孕製の小規模実
験装置で、図中、20ハ円筒状の反応器(25m5$ 
x 2000  、 t))で、この反応器加の上方に
は給水口21が設けられ、試水及びH2O2がそれぞれ
試水タンク22及びH2O2貯槽23からそれぞれポン
プ24 、25によって給水0211通して所定の濃度
になるように連続的に供給される。また反応器加の下方
に設けられた給気口26からはエアーポンプ27によっ
て圧送された空気がオゾン発生機器でオゾン化空気とさ
れた後に吹き込まれる。そしてこのオゾン化空気は反応
器1中において一部試水と反応した後桟bh反応器1の
上方に設−けられた排気口器よシ排気され、オゾン濃度
計Jで排気オゾン濃度を測定し、活性炭塔31でオゾン
を吸着した後大気へ放出される。また処理された試水は
反応器1の下方に設けられた排水口32から連通管33
を通して処理水タンク34へ連続的に排出される。
The continuous processing experimental equipment shown in Figure 112 is a small-scale experimental equipment manufactured by Nippon Steel.
x 2000, t)), a water supply port 21 is provided above the reactor, and sample water and H2O2 are supplied from the sample water tank 22 and H2O2 storage tank 23, respectively, through the water supply 0211 by pumps 24 and 25, respectively, to a predetermined amount. Continuously supplied to achieve the desired concentration. Further, from an air supply port 26 provided below the reactor chamber, air is pumped by an air pump 27 and is blown into the ozonized air after being converted into ozonized air by an ozone generator. After some of this ozonized air reacts with the sample water in the reactor 1, it is exhausted through an exhaust port installed above the crosspiece bh reactor 1, and the ozone concentration meter J measures the exhaust ozone concentration. After adsorbing ozone in the activated carbon tower 31, it is released into the atmosphere. In addition, the treated sample water flows from the drain port 32 provided below the reactor 1 to the communication pipe 33.
The treated water is continuously discharged through the tank 34.

以下に各連続式処理実験の方法について説明する。The method of each continuous treatment experiment will be explained below.

(1)オゾン単独処理実験 回分式実験の結果よシ、アミン酸のオゾン処理では脱色
が完了するまでは反応は瞬間的であり (TOC除去除
去率5稚 るため反応器のオゾン供給能によって除去効果が変わっ
てくるものと考えられる。
(1) Ozone treatment experiment The results of the batch experiment show that in the ozone treatment of amino acid, the reaction is instantaneous until the decolorization is completed (TOC removal rate is 5%, so it is removed by the ozone supply capacity of the reactor). It is thought that the effect will be different.

連続実験では原水のフミン酸濃度を約 20!」二二に調整し、20■l/J X 05 X絆
80す03/ツノ 程度を試水とオゾンの反応当量と考え、注入オゾン量に
ついてIa.113q−03/ノ〜4861%l−03
/i (D範囲で実験した。
In continuous experiments, the humic acid concentration in raw water was approximately 20! ”22, and considering 20 l/J x 05 113q-03/ノ~4861%l-03
/i (Experimented in D range.

TOC除去率および反応当量については注入オゾン量、
処理水の滞留時間等の処理条件の変化にかかわらず全実
験(第3表中の試験番号1゜2 、3 、4 、5 、
6 、12 、17 、18 、19 )の平均原水T
OC濃度184号々に対し平均除去率として46%とな
シ、回分式の結果と良く一致した。
For TOC removal rate and reaction equivalent, the amount of ozone injected,
Regardless of changes in treatment conditions such as residence time of treated water, all experiments (test numbers 1゜2, 3, 4, 5,
6, 12, 17, 18, 19) average raw water T
The average removal rate for OC concentration No. 184 was 46%, which was in good agreement with the batch method results.

理論当量8をやや上回った。The theoretical equivalent was slightly higher than 8.

+21  同じくオゾンと過酸化水素同時併用処理実験
では、オゾン注入量全オゾン単独処理の時と同じに変化
させ、過酸化水素注入量175gf−HzO2/Jと一
定にして同時併用処理を行なった結果が試験番号7,8
.9である。また、それとは逆にオゾン注入量を一定に
しておいて過酸化水素注入量を変化させたものが試験番
号10 、11である。
+21 Similarly, in the same simultaneous treatment experiment with ozone and hydrogen peroxide, the ozone injection amount was changed to the same as in the total ozone treatment, and the hydrogen peroxide injection amount was kept constant at 175 gf-HzO2/J. Exam number 7, 8
.. It is 9. On the contrary, test numbers 10 and 11 were conducted in which the amount of ozone injection was kept constant and the amount of hydrogen peroxide injection was varied.

TOC除去率および反応当量についてに、TOC除去率
の平均値ハロ2%であり、オゾン単独処理時の46%に
比べて16%向上した。
Regarding the TOC removal rate and reaction equivalent, the average TOC removal rate was 2% halo, which was 16% improved compared to 46% when treated with ozone alone.

反応当量については第8図及び第9図から除良い一致を
示した。
Regarding the reaction equivalents, FIGS. 8 and 9 showed good agreement.

(3)  オゾンと(オゾン+過酸化水素)併用2段処
理については、回分式実験で述べたように脱色反応の完
了する第1領域はオゾン単独処理でTOC成分の除去も
ツ能である。そこで第1領域に対してはオゾン単独処理
を実施し、その後に(03+ H2O2)の併用処理を
行なう2段処理を行なった。
(3) Regarding the two-stage treatment in combination with ozone and (ozone + hydrogen peroxide), as described in the batch experiment, the first region where the decolorization reaction is completed can be treated with ozone alone to remove TOC components. Therefore, a two-stage process was carried out in which the first region was treated with ozone alone, and then treated with (03+H2O2) in combination.

TOC除去率および反応当量でに、試験番号13゜14
.15[オゾン単独処理を実施した処理水に対し、オゾ
ン注入量を一定にしておいて過酸化水素注入量を変化さ
せた時の結果である。
In terms of TOC removal rate and reaction equivalent, test number 13°14
.. 15 [These are the results when the amount of hydrogen peroxide injected was varied while the amount of ozone injected was kept constant for treated water subjected to ozone treatment alone.

に最適点があるようだ。There seems to be an optimal point for

処理水滞留時間については試験番号20 、21 。Test numbers 20 and 21 for treated water residence time.

22では2段処理時の処理水の滞留時間を確認するため
に、オゾン注入量、過酸化水素注入量を出来る限り同一
にして処理水の滞留時間を変化させた結果である。TO
C除去率に注目してみると29分、62分でハ34%と
変わらず16分では9%に激減している。
22 shows the results of changing the residence time of treated water while keeping the ozone injection amount and hydrogen peroxide injection amount as similar as possible in order to confirm the residence time of treated water during the two-stage treatment. T.O.
Looking at the C removal rate, it remains unchanged at 34% at 29 minutes and 62 minutes, but sharply decreases to 9% at 16 minutes.

2段処理の場合も第2領域のTOC除去反応は遅く、3
0分以上60分程度の滞留時間が必要であるO 前記の結果より併用処理法と2段処理法の比較をしてみ
ると第4表となり、過酸化水素の注入量は大幅に低減で
きる。
Even in the case of two-stage treatment, the TOC removal reaction in the second region is slow;
A residence time of about 0 minutes or more and about 60 minutes is required O Based on the above results, a comparison of the combined treatment method and the two-stage treatment method is shown in Table 4, which shows that the amount of hydrogen peroxide injected can be significantly reduced.

第4表 併用処理法と2段処理法の比較本発明は前記の
如くして前駆物質を除去するものであるが、本発明方法
の本来目的とするトリハロメタンの除去効果については
次の如くである。
Table 4 Comparison of combined treatment method and two-stage treatment method The present invention removes precursors as described above, but the trihalomethane removal effect, which is the original objective of the method of the present invention, is as follows. .

トリハロメタ/生成能比較実験の結果 (1)  実験方法及び内容 アミン酸、フルボ酸等の腐蝕物質がトリハロメタンの前
駆物質であることは多くの報告で明らかになっているが
、今回の実験ではその再確認と、オゾン処理や(オゾン
十過酸化水素)併用2段処理によって処理され九本のト
リハロメタン生成能の変化について検討した。
Results of trihalomethane/formation ability comparison experiment (1) Experimental method and contents Many reports have revealed that corrosive substances such as amine acids and fulvic acids are precursors of trihalomethane. We investigated changes in the trihalomethane production ability of nine samples treated by ozone treatment and two-stage treatment using ozone and hydrogen peroxide.

原液、としてTOC濃度184製々のフミン酸溶液(フ
ミン酸試薬より調整した溶液を水道水の活性炭脱塩素水
で希釈したもの)を使用し、塩素処理用の試水として次
のような4種類を作製したO AI  オゾン単独処理水 原液t?60分間オゾン処理したもの。
A humic acid solution with a TOC concentration of 184 was used as the stock solution (a solution prepared from a humic acid reagent was diluted with activated carbon-dechlorinated tap water), and the following four types of sample water were used for chlorination. Prepared OAI ozone-only treated water stock solution t? Treated with ozone for 60 minutes.

(注入オゾン濃度241号々−air 、注入オゾン化
空気量587々1) 扁2 オゾン+(オゾン十過酸化水素)併用2段処理水
AI水に更に124■力の過酸化水素を添加した状態で
60分間オゾン処理したもの。
(Injected ozone concentration 241-air, amount of injected ozonized air 587-1) 2-stage ozone + (ozone 10 hydrogen peroxide) combined 2-stage treated water AI water with 124 μg of hydrogen peroxide added treated with ozone for 60 minutes.

I63  原液の2倍希釈水 オゾン処理水のTOC除去率會およそ50%と想定し、
塩素処理時のTOC濃度を合わせるために希釈したもの
I63 Assuming that the TOC removal rate of ozonated water diluted twice as much as the stock solution is approximately 50%,
Diluted to match TOC concentration during chlorination.

44  水道水 希釈用水としてのブランク試験用 各試水に100■−ageノ/ノの塩素濃度になるよう
に次亜塩素酸ソーダを加えた後、0.lN−H2SO4
によってpH7,0にpH調整し、密栓したガラス容器
に封入して20rの恒温楕円で70時間放置し、喉シ出
した後オーバーヘッドスペース法によるガスクロマトグ
ラフィによって生成した総トリハロメタンの量を測定し
た。
44 Sodium hypochlorite was added to each sample water for blank test as water for diluting tap water so that the chlorine concentration was 100 ■-age/no, and then 0. lN-H2SO4
The pH was adjusted to 7.0 using the following method, and the solution was sealed in a sealed glass container and left for 70 hours in a constant temperature ellipse at 20 R. After being drained, the amount of total trihalomethane produced was measured by gas chromatography using an overhead space method.

(2)結果 実験の結果は第5表のようになった。オゾン単独処理や
(オゾン十過酸化水素)併用2段処理の効果は ■ TOC成分の減少効果 ■ 残留TOC成分のトリハロメタン転換率の低下、ノ
の、−21点に表われる。
(2) Results The results of the experiment were as shown in Table 5. The effects of the ozone treatment alone or the two-stage treatment in combination with ozone (deca hydrogen peroxide) are shown in (1) TOC component reduction effect (2) Reduction in the trihalomethane conversion rate of the residual TOC component (-21 points).

第6表 各処理法例よる生成りロロホルム量の変化すな
わち■の点では第6表のようにオゾン単独処理でTOC
は34.2%除去され、この時生成りロロオルム量は原
液に対し85.3%減少する0更に(オゾン士過酸化水
素)処理によってTOCは72.8%除去され、生成り
ロロホルム量は95.8%も減少する0オゾン処理のみ
でも生成りロロホルム量はおよそ1/7に減った。
Table 6 Regarding the changes in the amount of produced loroform according to each treatment method, that is, in terms of
34.2% of TOC was removed, and the amount of produced loloform was reduced by 85.3% compared to the original solution. Furthermore, by (ozonation and hydrogen peroxide) treatment, 72.8% of TOC was removed, and the amount of produced loloform was 95%. The amount of produced loroform was reduced to about 1/7 even with the ozone treatment alone, which reduced the amount by .8%.

■に関しては第7表のように残留TOCの減少TOC轟
りのクロロホルム転換率として比較すると、原液に対し
て424μに〜−罫冗のものがオゾン処理水ではおよそ
1/4の95μg、4g−TOC、本発明方法の(オゾ
ン+過酸化水素)併用2段処理水では1/7の65μV
へ一賀χとなった。
Regarding (2), as shown in Table 7, when comparing the reduction in residual TOC and the chloroform conversion rate of TOC, it is 424 μg compared to the undiluted solution. TOC, 65 μV, 1/7 of the two-stage treated water using the method of the present invention (ozone + hydrogen peroxide)
It became Ichiga χ.

そしてオゾン処理、(オゾン+過酸化水素)併用2段処
理の本発明方法によって除去されないで残留したTOC
成分に化学的に安定で塩素処理によってトリフ10メタ
ンを生成する能力は極めて低下する特徴がある0 第7表 各処理における残留TOCのトリハロ生成能の
比較 本発明は以上の如くして実施するのであI′るが、トリ
ハロメタン生成の前駆物質としての7ミン酸の除去法と
してオゾンと過酸化水素を併用した2段処理法は有効で
あり、TOC成分の減少効果および残留TOC成分の化
学的安定性の両面でトリハロメタンの生成を防とするこ
とが出来て極めて有効でめる0
TOC remaining without being removed by the ozone treatment and the two-stage treatment (ozone + hydrogen peroxide) of the present invention
The ingredients are chemically stable, and the ability to generate trihalogen-10 methane is significantly reduced by chlorination. However, a two-stage treatment method using ozone and hydrogen peroxide in combination is effective as a method for removing 7-minic acid as a precursor for trihalomethane production, and has the effect of reducing TOC components and chemically stabilizing residual TOC components. It is extremely effective in preventing the production of trihalomethane in terms of both gender and performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は回分式実験装置の配置図、第2図は連続式実験
装置の配置図、!3図は回分式実験の反応器出口オゾン
濃度の変化を示すグラフ、第4図はオゾン処理時の7ミ
ン酸溶液のTOCの変化を示すグラフ、第5図にオゾン
単独処理および03 +(H2O2+Oa )併用2段
処理時のTOC濃度対消費オゾン量を示すグラフ、第6
図は(Oa + H2O2)同時併用処理時の排オゾン
濃度変化を示すグラフ、第7図はOa + (03+H
zOz )併用2段処理時の排気オゾン濃度の変化を示
すグラフ、@8図は(03+ H2O2)併用同時処理
の場合でH2O2濃度一定(75製々)で03量変化し
た場合を示すグラフ、第9図は(03+H2O3)併用
向蒔処理の場合でH2O2濃度変化した場合を示すグラ
フである。 特許出願人 水道機工株式会社 第3図 第4図 +′>キーε −枠墾量♂
Figure 1 is the layout of the batch-type experimental equipment, and Figure 2 is the layout of the continuous-type experimental equipment. Figure 3 is a graph showing the change in ozone concentration at the reactor outlet in the batch experiment, Figure 4 is a graph showing the change in TOC of the 7 minic acid solution during ozone treatment, and Figure 5 is the graph showing the change in TOC of the 7 minic acid solution during ozone treatment and 03 + (H2O2 + Oa ) Graph showing TOC concentration versus consumed ozone amount during combined two-stage treatment, No. 6
The figure is a graph showing the change in exhaust ozone concentration during simultaneous treatment of (Oa + H2O2).
Figure @8 is a graph showing the change in exhaust ozone concentration during two-stage combined treatment with (03 + H2O2), a graph showing the case where the H2O2 concentration is constant (75 products) and the amount of 03 changes in the case of simultaneous treatment with (03 + H2O2). FIG. 9 is a graph showing the change in H2O2 concentration in the case of (03+H2O3) combination sowing treatment. Patent applicant Suido Kiko Co., Ltd. Figure 3 Figure 4 +'> Key ε - Frame depth ♂

Claims (1)

【特許請求の範囲】[Claims] 水中に混在するアミン酸等の有機物質をオゾン及び過酸
化水素を用いて酸化分解するに際し、接触反応初期即ち
第1反応領域においてにオゾン単独処理にて酸化分解を
行い、該反応が停滞する第1反応領域に至ってオゾンに
過酸化水素全添加併用することによって分解反応を促進
すると共にオゾン及び過酸化水素の注入酸化剤を効率的
に利用することを特徴とするオゾン及び過酸化水素併用
によるフミン酸等有機塩素化合物の前駆物質の分解処理
方法O
When organic substances such as amino acids mixed in water are oxidatively decomposed using ozone and hydrogen peroxide, oxidative decomposition is performed by ozone alone in the early stage of the catalytic reaction, that is, in the first reaction region, and in the first stage when the reaction stagnates. 1 reaction region, the decomposition reaction is promoted by adding all hydrogen peroxide to ozone, and the injected oxidizing agent of ozone and hydrogen peroxide is efficiently utilized. Decomposition treatment method for precursors of organic chlorine compounds such as acids O
JP15510481A 1981-09-30 1981-09-30 Decomposing method for precursor of organic chlorine compound such as humic acid by combination use of ozone and hydrogen peroxide Pending JPS5855088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15510481A JPS5855088A (en) 1981-09-30 1981-09-30 Decomposing method for precursor of organic chlorine compound such as humic acid by combination use of ozone and hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15510481A JPS5855088A (en) 1981-09-30 1981-09-30 Decomposing method for precursor of organic chlorine compound such as humic acid by combination use of ozone and hydrogen peroxide

Publications (1)

Publication Number Publication Date
JPS5855088A true JPS5855088A (en) 1983-04-01

Family

ID=15598697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15510481A Pending JPS5855088A (en) 1981-09-30 1981-09-30 Decomposing method for precursor of organic chlorine compound such as humic acid by combination use of ozone and hydrogen peroxide

Country Status (1)

Country Link
JP (1) JPS5855088A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792407A (en) * 1986-11-25 1988-12-20 Ultrox International Oxidation of organic compounds in water
US4849114A (en) * 1988-02-18 1989-07-18 Ultrox International Oxidation of toxic compounds in water
FR2699914A1 (en) * 1992-12-28 1994-07-01 Degremont Reactor for optimized ozonation of water intended for human consumption.
US5552059A (en) * 1995-03-15 1996-09-03 Canadian Forest Products Ltd. Process to decontaminate soil containing chlorophenols

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55147191A (en) * 1979-05-07 1980-11-15 Mitsubishi Electric Corp Treatment process for waste water
JPS55149688A (en) * 1979-05-08 1980-11-21 Mitsubishi Electric Corp Disposal plant for waste water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55147191A (en) * 1979-05-07 1980-11-15 Mitsubishi Electric Corp Treatment process for waste water
JPS55149688A (en) * 1979-05-08 1980-11-21 Mitsubishi Electric Corp Disposal plant for waste water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792407A (en) * 1986-11-25 1988-12-20 Ultrox International Oxidation of organic compounds in water
US4849114A (en) * 1988-02-18 1989-07-18 Ultrox International Oxidation of toxic compounds in water
FR2699914A1 (en) * 1992-12-28 1994-07-01 Degremont Reactor for optimized ozonation of water intended for human consumption.
EP0605277A1 (en) * 1992-12-28 1994-07-06 Degremont S.A. Reactor for optimized ozonation of water used for human consumption
US5552059A (en) * 1995-03-15 1996-09-03 Canadian Forest Products Ltd. Process to decontaminate soil containing chlorophenols

Similar Documents

Publication Publication Date Title
Benitez et al. The role of hydroxyl radicals for the decomposition of p-hydroxy phenylacetic acid in aqueous solutions
Tekin et al. Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater
Siddiqui Chlorine-ozone interactions: formation of chlorate
Rivas et al. Oxidation of p-hydroxybenzoic acid by Fenton's reagent
US5424032A (en) Method and apparatus for controlling microorganisms
US5178772A (en) Process for destruction of metal complexes by ultraviolet irradiation
CA2329896A1 (en) Stable oxidizing bromine formulations, methods of manufacture thereof and methods of use for microbiofouling control
Borghei et al. Comparison of furfural degradation by different photooxidation methods
KR20180049828A (en) Method for producing an aqueous stable chlorine dioxide solution
Yang et al. Ammonia removal in bubble column by ozonation in the presence of bromide
JPH02207891A (en) Decomposition of nitrophenol
KR20170139676A (en) Process for treating ammonia nitrogen-containing wastewater and ammonia nitrogen decomposition
Throop Alternative methods of phenol wastewater control
JPS60500572A (en) Method for producing modified chlorite aqueous solution, solution obtained by the method, and its uses
Ruffino et al. Orthophosphate vs. bicarbonate used as a buffering substance for optimizing the bromide-enhanced ozonation process for ammonia nitrogen removal
JPS5855088A (en) Decomposing method for precursor of organic chlorine compound such as humic acid by combination use of ozone and hydrogen peroxide
Yasar et al. Decolorization of Blue CL-BR dye by AOPs using bleach wastewater as source of H2O2
Acero et al. Degradation of p-hydroxyphenylacetic acid by photoassisted Fenton reaction
WO2023091610A1 (en) Improved formulations for oxidation, bleaching and microbial control
Ruffino et al. The role of boundary conditions in the bromide-enhanced ozonation process for ammonia nitrogen removal and nitrate minimization
Guittonneau et al. Free radicals formation induced by the ozonation of humic substances in aqueous medium
Boncz Selective oxidation of organic compounds in waste water by ozone-based oxidation processes
Yusuf et al. Effects of ultraviolet-enhanced ozonation on the degradation of ammonia and urea in fertilizer plant wastewater
CN110200011A (en) A kind of preparation method of composite chlorine dioxide
Ruffino et al. Experimental study on the abatement of ammonia and organic carbon with ozone