JPS5853876B2 - Method of ground investigation using elastic waves using the boundary surfaces of each layer in the hole as the focal point - Google Patents

Method of ground investigation using elastic waves using the boundary surfaces of each layer in the hole as the focal point

Info

Publication number
JPS5853876B2
JPS5853876B2 JP54145515A JP14551579A JPS5853876B2 JP S5853876 B2 JPS5853876 B2 JP S5853876B2 JP 54145515 A JP54145515 A JP 54145515A JP 14551579 A JP14551579 A JP 14551579A JP S5853876 B2 JPS5853876 B2 JP S5853876B2
Authority
JP
Japan
Prior art keywords
layer
ground
waves
hole
elastic waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54145515A
Other languages
Japanese (ja)
Other versions
JPS5669573A (en
Inventor
正裕 勇野喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEIJI CONSULTANT
Original Assignee
MEIJI CONSULTANT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEIJI CONSULTANT filed Critical MEIJI CONSULTANT
Priority to JP54145515A priority Critical patent/JPS5853876B2/en
Publication of JPS5669573A publication Critical patent/JPS5669573A/en
Publication of JPS5853876B2 publication Critical patent/JPS5853876B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】 この発明は、下水道管きよ・電纜埋設管の布設や地下鉄
建設、その他建築物基礎施工などの、特に市街地域にお
ける地中土木工事の対象となる地盤の構成状態を弾性波
により調査するための方法に関するものである。
[Detailed Description of the Invention] This invention provides elasticity for the structural state of the ground that is the subject of underground civil engineering work, particularly in urban areas, such as the installation of underground sewer pipes and electrical cables, subway construction, and other building foundation construction. It concerns a method for surveying by waves.

一般に市街地やその近郊域の構成地盤は複雑・多岐に亘
る場合が多いが、家屋・建築物などが密集し、公道も舗
装されていて人通りも多く、車の往来も頻繁であるなど
の事由から、満足な地盤調査は実施困難である。
In general, the ground that makes up urban areas and their surrounding areas is often complex and diverse, but this is due to the fact that houses and buildings are densely packed, public roads are paved and have a lot of foot traffic, and there is frequent car traffic. Therefore, it is difficult to conduct a satisfactory ground investigation.

特に、公道に沿う長いルートのシールド工事に於ても、
所謂「んの調査であるボーリ/グエ事に止めざるを得な
いことから、ポーリングとポーリングの間の地盤状況は
全く不明のままで施工上種々問題となることが多い。
Especially when it comes to shield construction along long routes along public roads,
Since we have no choice but to stop at the so-called ``Bori/Gue'' survey, the ground conditions between the polls remain completely unknown, which often causes various problems during construction.

本発明はこのような難題を解決するために研究・開発し
たものであり、市街地域でも地上障害物の影響を受ける
ことなく、長区間の連続した所謂F線」または「面」の
調査を可能とした点に大きい特長がある。
The present invention was researched and developed in order to solve these difficult problems, and makes it possible to investigate long continuous so-called F lines or planes without being affected by ground obstacles, even in urban areas. It has a major advantage in that.

従来、弾性波探査法には屈折波を利用する屈折法と反射
波を利用する反射法があるが、土木地質の調査ではり、
Mintrop (独逸)が1919年実用化に成功
し特許を獲得したとされている屈折法を適用する場合が
殆んどであり、現在では地質調査の有力な手法として広
く使われている。
Traditionally, elastic wave exploration methods include the refraction method, which uses refracted waves, and the reflection method, which uses reflected waves.
In most cases, the refraction method, which was successfully put into practical use and patented by Mintrop (Germany) in 1919, is applied, and is now widely used as a powerful method for geological surveys.

この屈折法は通常一般弾性波探査法と呼ばれているが、
地表ないし浅部でダイナマイトの爆発、重錘の落下など
で発震し、地下に入射した弾性波が下位層との境界で臨
界屈折して層面を伝播し、再び臨界屈折して地表に戻る
までの時間すなわち走時を、地表の一直線上に配置した
受震器により観測した波動記録から読取り、走時曲線を
作成して解析することを基本原理としている。
This refraction method is usually called general elastic wave exploration method,
An elastic wave that is emitted by an explosion of dynamite, a falling weight, etc. at the surface or shallow depths, enters the underground, is critically refracted at the boundary with the lower layer, propagates through the layer surface, and is critically refracted again until it returns to the surface. The basic principle is to read time, or transit time, from wave records observed by seismic receivers placed in a straight line on the earth's surface, and to create and analyze transit time curves.

しかし、この原理に基く観測方法では、地表の受震器を
配列した測線近傍に下層より波の伝播速度の大きい上層
、例えばコンクリートやアスファルトの舗装道路、コン
クリート基礎・地下室などをもつ建物、その細波の伝播
に歪を起こすような障害物が存在する場合には、理論上
地盤下部層まで正則的に波動が伝播しないため適用が不
可能であった。
However, in the observation method based on this principle, the fine waves of upper layers where the wave propagation speed is higher than the lower layers, such as concrete or asphalt paved roads, buildings with concrete foundations/basements, etc. If there is an obstacle that causes distortion in the propagation of waves, theoretically the wave motion would not propagate regularly to the lower ground layer, making it impossible to apply this method.

本発明の方法は、この問題を解決したものであり、地盤
調査のために適当な間隔で実施したポーリング孔を利用
し、確認された孔内の各地層境界面位置、即ち所定深度
の地中で発震を行って、直接および層面な伝播・臨界屈
折して地表に達する波動な受震・観測することをその原
理としている。
The method of the present invention solves this problem, and utilizes poling holes conducted at appropriate intervals for ground investigation, and determines the location of each stratum boundary surface within the confirmed holes, that is, the depth of the ground at a predetermined depth. The principle is to emit an earthquake and receive and observe the waves that reach the earth's surface through direct and layered propagation and critical refraction.

従って、一般弾性波探査法とは発震形式、屈折波の伝播
や出現位置、走時曲線の形態などで大きく相違している
Therefore, it differs greatly from the general elastic wave exploration method in terms of the ejection format, the propagation and appearance position of refracted waves, and the form of the travel time curve.

以下にその詳細を記述する。第1図はv1速度層、v2
速度層およびv3速度層がそれぞれzlおよびz2の深
さに在る水平三層構造の場合を模式的に表わし、図Aは
本発明の原理による場合、図Bは一般弾性波探査の場合
について、波の伝播経路(下図)と走時曲線(上図)を
示す。
The details are described below. Figure 1 shows v1 speed layer, v2
Schematically represents the case of a horizontal three-layer structure in which the velocity layer and the v3 velocity layer are located at depths of zl and z2, respectively, Figure A is based on the principle of the present invention, Figure B is the case of general elastic wave exploration, The wave propagation path (lower figure) and travel time curve (upper figure) are shown.

本発明の原理による図Aについて、0点の孔内のV1層
とV2層との境界面h□の位置で発震し、vl た波は臨界角θ1□二8In”−の波路となる距離2 (臨界距離)X□ までは地中震源からの直接波となる
が、それより境界面を伝播し、臨界屈折して地表に達す
る屈折波が初動の波となる。
Regarding diagram A according to the principle of the present invention, the wave emitted at the position of the interface h□ between the V1 layer and the V2 layer in the hole at point 0, and the wave generated by vl becomes a wave path with a critical angle θ1□28In”- at a distance of 2 Up to (critical distance)

従って、hlの発震波が下層の73層面に進み臨界屈折
して層面に沿って進み再び臨界屈折して地表に現れる距
離X2 までの間は、走時曲線(縦軸に時間t。
Therefore, the emitted wave of hl advances to the 73rd layer surface in the lower layer, undergoes critical refraction, travels along the layer surface, is critically refracted again, and appears on the surface at a distance X2, during which time the travel curve (time t is plotted on the vertical axis).

横軸に距離X)としてv2で示した直線(傾斜一般弾性
波探査図Bでは地表の震源0点から出た弾性波は、地表
付近を直接伝播する直接波と、■1層、72層の境界面
で臨界屈折角θ1□=で屈折し、層面に沿い伝播して再
び臨界屈折して地表に戻る屈折波がそれぞれ初動の波と
して観測される。
The horizontal axis is a straight line (distance The refracted waves that are refracted at the critical refraction angle θ1□= at the boundary surface, propagated along the layer surface, critically refracted again, and returned to the earth's surface are each observed as initial waves.

この場合の走時曲線&L直接波とv2層を伝わる屈折波
が同時に到着する距離(臨界距離)Xcl まではv1
層の速度を示す直線(傾斜波が同時に到着するまでの距
離(臨界距離)Xc2そこで、この両者の波の伝播経路
および走時曲線を対比してみると、本発明による場合に
は一般弾性波探査の場合に対し次のような相違点や特長
がある。
In this case, the travel time curve &L is v1 up to the distance (critical distance) where the direct wave and the refracted wave traveling through the v2 layer arrive at the same time (critical distance)
A straight line indicating the velocity of the layer (distance (critical distance) until the inclined waves arrive at the same time) There are the following differences and features compared to exploration.

■ 本発明による場合は、一般弾性波探査のような地表
付近を水平方向に伝わる直接波がなく、下方から地表に
達する直接波と屈折波のみである。
(2) In the case of the present invention, unlike general elastic wave exploration, there is no direct wave that propagates horizontally near the ground surface, but only direct waves and refracted waves that reach the ground surface from below.

従って、地表付近に高速度層が存在しても殆んどその影
響を受けない。
Therefore, even if a high-velocity layer exists near the ground surface, it will hardly be affected.

■ 第1図からも判るように、各層に対する臨界距離が
一般弾性波探査に比べ極端に短いので、発震孔のごく近
傍から各層を伝わる屈折波の走時曲線がそれぞれ長区間
に亘り得られる。
■ As can be seen from Figure 1, the critical distance for each layer is extremely short compared to general elastic wave exploration, so the travel time curves of refracted waves propagating through each layer from very close to the focal hole can be obtained over long periods.

臨界距離X1 とXclを例にとると、理論式から、
■ 臨界距離が著しく短ぐなることから、本発明による
場合は、深い基盤の調査でも一般弾性波探査のような臨
界距離を考慮した長い測線(通常基盤までの深さを2と
した場合必要とされる測線長りはL≧6〜7Z)の布設
は必要でな≦′狭小な立地域でも適用可能となる。
Taking the critical distances X1 and Xcl as an example, from the theoretical formula,
■ Since the critical distance is significantly shortened, in the case of the present invention, even when surveying deep foundations, a long survey line that takes into account the critical distance like general elastic wave exploration (normally required when the depth to the foundation is 2) is required. The length of the survey line to be used is L≧6 to 7Z), and it is not necessary to install the cable, and it can be applied even in a narrow area.

■ 発震源を孔内の各地層境界面に置くことから、発震
エネルギーの臨界距離に相当した波路分の減衰がなくな
り、波動の伝達距離が長くなり、また良好な記録が得ら
れ、鞘度の向上が望める。
■ By placing the epicenter at the boundary between each layer in the hole, the attenuation of the wave path corresponding to the critical distance of the seismic energy is eliminated, the wave transmission distance becomes longer, and good records can be obtained, making it possible to reduce the sheath intensity. I hope for improvement.

■ 地表から入射する波では、中間層として高速度層ま
たは低速度層が実在する場合、ある特定の条件下でなげ
れば下層の存在を走時曲線に示す記録として得られない
が、本発明の場合&転下方から発震するのでその存在を
掴むことが可能である。
■ For waves incident from the earth's surface, if there is a high-velocity layer or a low-velocity layer as an intermediate layer, if it is dropped under certain conditions, it will not be possible to record the existence of the lower layer on the travel time curve. In the case of &, it is possible to grasp its existence because it emanates from below.

■ また、理論上一般弾性波探査法では下層の厚さが上
層の厚さに比べそれらの速度値から決まるある厚さ以上
なげれば走時曲線に出現してこない(ブラインドレーヤ
ーとなる)が、各地層境界面で発震する本発明の場合は
そのような薄層の追跡も可能である。
■ Also, theoretically, in the general elastic wave exploration method, if the thickness of the lower layer exceeds a certain thickness determined from the velocity value of the upper layer, it will not appear in the travel time curve (it will become a blind layer). In the case of the present invention, in which vibrations occur at the boundary surfaces of each layer, it is also possible to track such thin layers.

■ 市街地などの場合、保安上からダイナマイトなどの
危険物は使用出来ないが、標準貫入試験に準じた重錘落
下の発震法や圧縮気体(空気や窒素ガス)の放出による
「エアーガン」などの発展方法を孔内で実施するので、
何等支障なく安全に作業が出来る。
■ Dangerous materials such as dynamite cannot be used in urban areas for security reasons, but developments include the concussion method of dropping a weight based on standard penetration tests, and "air guns" that release compressed gas (air or nitrogen gas). Since the method is carried out in the borehole,
You can work safely without any problems.

なお、今までにもポーリング孔内や孔底、または坑道内
で発震し地表で受電する探査法も実験的・試行的に行わ
れてはいるが、これらは、特に地層の各境界面で発震し
、層面な直接伝播・臨界屈折する波を組織的にとらえ、
上層から順次下層まで詳細にその地盤構成を調査・解析
する本発明の方法とは基本的に異なるものである。
In addition, experimental and trial exploration methods have been carried out in the past in which the power is generated at the surface of the earth by generating vibrations inside the poling hole, the bottom of the hole, or in the tunnel, but these methods do not require the generation of vibrations at the interfaces of the strata. Then, we systematically capture the direct propagation and critical refraction waves in the layer plane,
This method is fundamentally different from the method of the present invention, which investigates and analyzes the ground structure in detail from the upper layer to the lower layer.

次に本発明の方法を実際に適用する場合の1例を模式的
に第2図に示す。
Next, an example in which the method of the present invention is actually applied is schematically shown in FIG. 2.

第2図について、■および■(Aある間隔(シールド工
事の調査では100〜zoom)で実施された地盤調査
用のポーリング孔を示す。
Regarding Fig. 2, ■ and ■ (A) show poling holes for ground investigation conducted at certain intervals (100 to zoom in the investigation of shield construction).

■は非爆薬震源として使用する「エアーガン」で■なる
送気用ホースにより■なる高圧ガスボンベ(通常80〜
140 atm/)空気または窒素ガス)に運なかれる
■ is an "air gun" used as a non-explosive source, and a high-pressure gas cylinder (usually 80 ~
140 atm/) air or nitrogen gas).

■はワイヤーをもつケーブル線で■なる操作パネルのボ
タンにより「エアーガン」を操作する電流を流すほか、
「エアーガン」を吊り下げ保持するものである。
■ is a cable line with a wire. In addition to passing the current to operate the "air gun" using the button on the operation panel marked with ■,
It is used to hang and hold an "air gun."

■は発震の瞬間の電流を取り出すショット用電線であり
、増巾器0に連結される。
3 is a shot wire that extracts the current at the moment of oscillation, and is connected to the amplifier 0.

■は地表に展開した受電器群で[相]なる本線にそれぞ
れ結線され0なる中継線を介して0の増巾器にインプッ
トされる。
■ is a group of power receivers deployed on the ground, each connected to the main line called [phase] and input to the amplifier at 0 via the relay line called 0.

なお、発震ポーリング孔に対応した他端のポーリング孔
(次回に発震孔とする)内に+3同一地層の深度に@な
る水中受震器を挿入し、走時のチェックを行うこともあ
る。
In addition, an underwater seismic receiver (@) may be inserted at a depth of +3 in the same stratum into the other end of the polling hole (which will be used as the launching hole next time) corresponding to the originating polling hole, and the travel time may be checked.

■は記録器で0からのアウトプットを波動として記録す
るものであり、その記録例は[相]に示す。
(2) is a recorder that records the output from 0 as a wave, and an example of that recording is shown in [Phase].

いま、地表に受電器群(通常24箇ないし48箇)を展
開(5〜IOm間隔が普通)して、各結線、器械調整を
終えた後、「エアーガン」により発展を行うと、発生し
た弾性波動は、層面に沿い伝播・臨界屈折して地表に達
し、各位置の受震器で電気信号に変換され、これが増巾
・記録されることになる。
Now, after deploying a group of power receivers (usually 24 to 48) on the ground (usually at intervals of 5 to IOm) and completing each connection and instrument adjustment, if you deploy with an "air gun", the generated elasticity The waves propagate along the layer surface, undergo critical refraction, reach the earth's surface, are converted into electrical signals by seismic receivers at various locations, and are amplified and recorded.

従って、発震の瞬間を示すタイムベース(T、B、)か
ら各波動の初動までの時間を読みとれば、距離と時間と
の関係を示す走時曲線が得られ、これを解析することで
、地盤状態が知れる。
Therefore, by reading the time from the time base (T, B,) that indicates the moment of eruption to the initial movement of each wave, a travel time curve that shows the relationship between distance and time can be obtained, and by analyzing this, it is possible to Know the condition.

第3図は市街地の公道に沿うシールド工事に対する調査
例を示す。
Figure 3 shows an example of an investigation into shield construction along a public road in an urban area.

■は地盤調査兼発震ポーリング孔で、[相]なるアスフ
ァルト舗装の公道側部の歩道上または空き地などに施工
したもので、■は■と対面する歩道上に展開した受電器
群である。
■ is a ground investigation and seismic polling hole, which was constructed on the sidewalk or vacant lot on the side of the asphalt-paved public road, and ■ is a group of power receivers deployed on the sidewalk facing ■.

■、[相]は公道に沿った地中基礎や地下室をもつ建物
を示す。
■, [phase] indicates a building with an underground foundation or basement along a public road.

いま、発震をポーリング孔内の■1層とV2層の境界面
り、またはV2層とV3層の境界面h2の深度で行った
場合をみると、それらの波は公道下の地層面を直接伝播
し臨界屈折して地上の受震器に達することになる。
Now, if we look at the case where an earthquake is emitted at the interface between layer 1 and V2 in the poling hole, or at a depth of h2 at the interface between layer V2 and V3, those waves will directly hit the strata surface under the public road. It propagates, undergoes critical refraction, and reaches a ground-based seismic receiver.

この波の伝播は平面的には発震孔を中心として受電器群
に拡がる扇形状となる。
In plan, the propagation of this wave takes on the shape of a fan that spreads to the receiver group with the focal point as the center.

従って、この本発明の方法によれば、地表に存在するア
スファルト舗装(通常弾性波の伝播速度は800〜12
00m/sをもつ)には左右されず、また観測単位長を
適当に選定することにより、公道両側の建物などの影響
も殆んど考慮する必要はなく、公道下のポーリングとポ
ーリング間を結ぶ連続した地盤状態や地下構造を知るこ
とが出来る。
Therefore, according to the method of the present invention, asphalt pavement existing on the ground surface (normally the propagation velocity of elastic waves is 800 to 12
00 m/s), and by selecting the observation unit length appropriately, there is almost no need to consider the influence of buildings on both sides of the public road, and it is possible to connect the polls under the public road. You can learn about continuous ground conditions and underground structures.

なお、同様な考え方で、地盤調査のポーリング孔を中心
とし、放射状または任意位置に受震器を配置して各層面
を伝播してくる波を観測すれば、平面的拡がりをもった
範囲内の各層の深度が求められ、等深線図なども作成出
来るので、狭い立地域での建築物、橋梁その他の構造物
基礎地盤、ダムサイト地盤の調査にも応用することが出
来る。
In addition, based on the same idea, if we place seismic receivers radially or at arbitrary positions around the poling hole of the ground survey and observe the waves propagating on each layer, we can detect waves within a planar area. Since the depth of each layer can be determined and contour maps etc. can be created, it can also be applied to surveys of the foundation ground of buildings, bridges and other structures in narrow areas, and the ground of dam sites.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図であり、同図Aは本発明の
方法による場合、同図Bは一般弾性波探査法による場合
の弾性波伝播経路とその場合に得られる走時曲線の形態
の相違を比較して示したものである。 第2図は本発明の方法を適用する場合の実施例を示す。 第3図は、市街地の公道に沿うシールド工事に対する地
盤調査に適用した場合について、発震孔と受電器配列と
の相対関係、および地中の波の伝播経路の状態を示した
ものである。
Figure 1 is a diagram explaining the principle of the present invention. Figure A shows the elastic wave propagation path when using the method of the present invention, and Figure B shows the elastic wave propagation path when using the general elastic wave exploration method and the travel time curve obtained in that case. This is a comparison of the differences in form. FIG. 2 shows an embodiment in which the method of the present invention is applied. Figure 3 shows the relative relationship between the oscillation hole and the power receiver array, and the state of the underground wave propagation path when applied to a ground investigation for shield construction along public roads in an urban area.

Claims (1)

【特許請求の範囲】[Claims] 1 地中に掘さくされたポーリング孔内の各地層境界面
で「エアーガン」その他により弾性波を発震し、地層境
界面を伝播・臨界屈折して地表に現われる波動を地表に
直線上または適当な広がりをもった位置に展開配置した
受震器で追跡観測することによって、地上障害物の多い
市街地域や狭小な立地条件域での深部探査を可能とした
弾性波による地盤調査の方法。
1. Elastic waves are emitted by an air gun or other device at each strata interface within a poling hole drilled underground, and the waves that propagate through the strata interface, undergo critical refraction, and appear on the ground surface are sent straight to the ground surface or in an appropriate direction. A method of ground investigation using elastic waves that enables deep exploration in urban areas with many ground obstacles and in narrow geographical conditions by conducting tracking observations with seismic receivers deployed at widely spread locations.
JP54145515A 1979-11-12 1979-11-12 Method of ground investigation using elastic waves using the boundary surfaces of each layer in the hole as the focal point Expired JPS5853876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54145515A JPS5853876B2 (en) 1979-11-12 1979-11-12 Method of ground investigation using elastic waves using the boundary surfaces of each layer in the hole as the focal point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54145515A JPS5853876B2 (en) 1979-11-12 1979-11-12 Method of ground investigation using elastic waves using the boundary surfaces of each layer in the hole as the focal point

Publications (2)

Publication Number Publication Date
JPS5669573A JPS5669573A (en) 1981-06-10
JPS5853876B2 true JPS5853876B2 (en) 1983-12-01

Family

ID=15387016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54145515A Expired JPS5853876B2 (en) 1979-11-12 1979-11-12 Method of ground investigation using elastic waves using the boundary surfaces of each layer in the hole as the focal point

Country Status (1)

Country Link
JP (1) JPS5853876B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7480204B2 (en) * 2006-07-07 2009-01-20 Westerngeco L.L.C. Seismic data processing

Also Published As

Publication number Publication date
JPS5669573A (en) 1981-06-10

Similar Documents

Publication Publication Date Title
Trnkoczy et al. Site selection, preparation and installation of seismic stations
US20130094326A1 (en) System and method for seismological sounding
Malehmir et al. Planning of urban underground infrastructure using a broadband seismic landstreamer—Tomography results and uncertainty quantifications from a case study in southwestern Sweden
Yamamoto et al. Imaging geological conditions ahead of a tunnel face using three-dimensional seismic reflector tracing system
CN112965136A (en) Multi-stage advanced detection method for water-rich karst tunnel
Contrucci et al. Aseismic mining subsidence in an abandoned mine: Influence factors and consequences for post-mining risk management
CN109001794A (en) Vehicle-mounted removable seismic acquisition system and method suitable for urban environment
JP4181139B2 (en) Subsurface imaging method by seismic reflection survey
CN112965139A (en) Advanced geological comprehensive forecasting method for tunnel under complex geological condition
McCann et al. Application of cross-hole seismic measurements in site investigation surveys
JP4260329B2 (en) Geological exploration method in front of tunnel face
JPS5853876B2 (en) Method of ground investigation using elastic waves using the boundary surfaces of each layer in the hole as the focal point
JP4187042B2 (en) Seismic depth transmission method using underground insertion tube
JP4526738B2 (en) Geological exploration method of existing tunnel and maintenance management method of existing tunnel using it
Ballard Tunnel detection
Molnar et al. A microearthquakes survey in the Ethiopian Rift
Nilot et al. Obstacle forecasting for tunnel construction using reflected seismic waves
NL9002065A (en) Seismic pulse generator using permanent magnet - with pulse coil to generate seismic waves of known intensity and frequency within cage in bore
McGuinness et al. The application of various geophysical techniques to specialized engineering projects
BĂLAN et al. THE IMPACT OF TURNkey SEISMIC MONITORING NETWORK IN BUCHAREST.
Banghar New Tables of Angels of Incidence of P Waves as a Function of Epicentral Distance
Olson Determination of unknown bridge foundation depths with NDE methods
Nedilko Seismic detection of rockfalls on railway lines
Johnson et al. APPLICATIONS OF SEISMIC METHODS TO FOUNDATION EXPLORATION BY A. MORGAN JOHNSON AND RICHARD H. WESLEY² SYNOPSIS
Way Low-frequency Teleseismic and Infrasound Arrivals along the Dense Corvallis Nodal Array