JPS5853738A - Measuring device for volume of particulate - Google Patents

Measuring device for volume of particulate

Info

Publication number
JPS5853738A
JPS5853738A JP56152297A JP15229781A JPS5853738A JP S5853738 A JPS5853738 A JP S5853738A JP 56152297 A JP56152297 A JP 56152297A JP 15229781 A JP15229781 A JP 15229781A JP S5853738 A JPS5853738 A JP S5853738A
Authority
JP
Japan
Prior art keywords
amplifier
pulse
electrode
voltage
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56152297A
Other languages
Japanese (ja)
Inventor
Kenichi Ishii
賢一 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ERUMA KOGAKU KK
Original Assignee
ERUMA KOGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ERUMA KOGAKU KK filed Critical ERUMA KOGAKU KK
Priority to JP56152297A priority Critical patent/JPS5853738A/en
Publication of JPS5853738A publication Critical patent/JPS5853738A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1031Investigating individual particles by measuring electrical or magnetic effects
    • G01N15/12Investigating individual particles by measuring electrical or magnetic effects by observing changes in resistance or impedance across apertures when traversed by individual particles, e.g. by using the Coulter principle
    • G01N15/131Details
    • G01N15/132Circuits

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To eliminate the influence from being exercised on a change in specific resistance of suspension due to a temperature change, by a method wherein a constant current is flowed to an inner and an outer electrode to find a ratio of a crest value of a pulse to a DC voltage component. CONSTITUTION:An outer electrode 4 is placed in suspension, and a change in electric resistance between an inner electrode 3 and the electrode 4 when a particulate (b) to pass through a pore 1 is fetched as an electric pulse. A constant- current device 7, supplying a DC constant current to the outer electrode 4 through the pore 1, an AC amplifier 8 for amplifying only a pulse generated at the inner electrode 3, and a buffer amplifier 9 for fetching only a voltage generated at the inner electrode 3 are connected to the inner electrode 3. A low- pass filter 10 for fetching only a DC component is connected to the buffer amplifier 9, and is inputted to an analogue divider 11 together with the AC amplifier 8. This obtains a pulse voltage which does not depend on a specific resistance of suspension (a), and causes measuring of a reliable volume of a particulate without being influenced by a temperature change.

Description

【発明の詳細な説明】 本発明は自球や動植物の細胞、等の微粒子を電解液など
の浮遊液に混和させてその体積を測定する測定装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a measuring device for measuring the volume of microparticles such as self-sphere, animal and plant cells, etc. mixed in a suspended liquid such as an electrolytic solution.

この種■定装置の動作原理を説明すれば、電解液などの
浮遊液^に微粒子beim和させ、その浮遊液中に微粒
子わが1つ以上同時に通過しない程度に狭隘に形成され
た細孔1を有する検出器本体2を入れ、検出器本体2内
部を陽圧状態となして細孔1から微粒子すを通過させ、
その時微粒子と浮遊液との藺の電気抵抗、詳しくは内部
電極3と外部電極4との閤の電気抵抗が変化するので、
この変化を電気的パルスとして取出して微粒子もの体積
を測定するようになっている。
To explain the operating principle of this type of device, fine particles are mixed with a suspended liquid such as an electrolytic solution, and a pore 1 formed so narrow that one or more fine particles cannot pass through at the same time is inserted into the suspended liquid. A detector main body 2 having the above structure is inserted, the inside of the detector main body 2 is brought into a positive pressure state, and the fine particles are passed through the pores 1.
At that time, the electrical resistance between the particles and the suspended liquid, specifically the electrical resistance between the internal electrode 3 and the external electrode 4, changes.
This change is extracted as an electrical pulse to measure the volume of the particles.

係る測定@瞳は取り扱いは簡単であるが、浮遊液の比抵
抗変化によって粒子測定パルスの波高値が蛮動しやすく
、測定温度の違いが測定誤差を引き起す原因となってい
た。
Such measurement@pupil is easy to handle, but the peak value of the particle measurement pulse tends to fluctuate due to changes in the specific resistance of the suspended liquid, and differences in measurement temperature cause measurement errors.

本発明はこの様な従来暎冒の欠点に鑑み、簡単な構成で
広い温度範囲にわたり安定した測定パルスか得られる、
信頼性の高い微粒子体積測定装置を提供せんとするもの
である。
In view of these conventional drawbacks, the present invention has a simple configuration that allows stable measurement pulses to be obtained over a wide temperature range.
The present invention aims to provide a highly reliable particle volume measuring device.

以下、本発明実施の一例を図面に基づいて説明すれば、
検出器本体2はガラス等の電気的絶縁材で中空形状に形
成し、内部に内部電極3を段重すると共に、下部には細
孔1を、更に上部には微粒子すと浮遊液aを細孔から定
圧、定速で吸引する為の定曇装置5を取付けてなる。
Hereinafter, an example of implementing the present invention will be described based on the drawings.
The detector main body 2 is formed in a hollow shape using an electrically insulating material such as glass, and internal electrodes 3 are layered inside, and a pore 1 is formed in the lower part, and a suspended liquid a is formed in the upper part to form fine particles. A constant fogging device 5 is attached to draw suction from the hole at a constant pressure and constant speed.

細孔1はルビーやサファイヤ等のチップ6に開穿され、
微粒子すが1つ以上同時に通過しない程度に狭隘に形成
する。
The pore 1 is opened by a chip 6 made of ruby, sapphire, etc.
It is formed so narrowly that one or more particles cannot pass through at the same time.

そして、浮遊液内に外部電極4を入れ、微粒子すが細孔
1を通過する時の微粒子すと浮遊液aとの電気抵抗変化
を電気的パルスとして取出して微粒子すの体積を測定す
るものである。
Then, an external electrode 4 is placed in the suspended liquid, and the change in electrical resistance between the fine particles and the suspended liquid A when the fine particles pass through the pores 1 is extracted as an electrical pulse to measure the volume of the fine particles. be.

その為に、内部電極3には、内部電極3から細孔1を通
して外部電極4に直流一定電流を供給する定電流装置7
と、内部電極3に発生するパルスのみを増幅する交流増
幅器8及び、内部電極3に影響を与えることなく内部電
極3に発生する電圧を取出すバッハ−アンプ9を接続す
る。
For this purpose, the internal electrode 3 is equipped with a constant current device 7 that supplies a constant DC current from the internal electrode 3 to the external electrode 4 through the pore 1.
An AC amplifier 8 that amplifies only the pulses generated at the internal electrode 3 and a Bach amplifier 9 that extracts the voltage generated at the internal electrode 3 without affecting the internal electrode 3 are connected.

バッハ−アンプ9には内部電極3に発生した直流成分の
みを取出すローパスフィルター10を接続し、このロー
パスフィルター10をアナログ割算器11の分母入力に
接続し、上記交流増幅器8をアナログ割算器11の分子
入力に接続してなる。
A low-pass filter 10 is connected to the Bach amplifier 9 for extracting only the DC component generated in the internal electrode 3. This low-pass filter 10 is connected to the denominator input of an analog divider 11, and the AC amplifier 8 is connected to the analog divider 11. It is connected to 11 molecular inputs.

然して、細孔1間の電気抵抗Rは、T’Cにおける浮遊
液aの比抵抗日と微粒子すの比抵抗lとが8(職 とす
れば、次の式で現わせる。
Therefore, the electrical resistance R between the pores 1 can be expressed by the following formula, assuming that the specific resistance of the suspended liquid a at T'C and the specific resistance l of the fine particles are 8 (d).

R−FF?・d/S+P−v/SJ 式中Sは細孔1の断面積、dは細孔の軸方向の長さ、■
は微粒子体積を現わす。
R-FF?・d/S+P-v/SJ In the formula, S is the cross-sectional area of pore 1, d is the axial length of the pore, ■
represents the particle volume.

今ここで、細、孔1間に一定電流■が流れているとする
と、内部電極3に発生する電圧Vは、V今I−R −I (F?−d/S+F7−v/S’)となる。この
電圧Vは細孔1の電気抵抗によって発生する電圧Mと、
微粒子すの電気抵抗によって発゛生ずるパルス電圧■と
の合成電圧なので、V、 −R−d  ・ I/S V、−P、−V −I/S” とすると、V = Vl + Vlとなり、結局v1は
直流電圧であり、■はパルス電圧であるご仁になる。
Now, if a constant current ■ is flowing between the thin hole 1, the voltage V generated at the internal electrode 3 is VI-R-I (F?-d/S+F7-v/S') becomes. This voltage V is the voltage M generated by the electrical resistance of the pore 1,
Since it is a composite voltage with the pulse voltage ■ generated by the electrical resistance of the fine particles, V, -R-d ・I/S V, -P, -V -I/S'', then V = Vl + Vl, After all, v1 is a DC voltage, and ■ is a pulse voltage.

ここで、内部電極3に発生する電圧■は交流増幅器とバ
ッハ−アンプ9に伝送されてアナログ割゛禅器11に伝
達されるが、交流増幅器8によりパルス電圧■成分のみ
が増幅されてアナログ割算器11の分子入力に伝達され
、他方バッハ−アンプ9に伝送された電圧Vはローパス
フィルター10により直流電圧■、酸成分みがアナログ
割算器11の分母入りに伝達される。即ち、交流増幅器
8の増!1度をAとす−れば、アナログ割算器11の分
゛子入力は、 A−V、=7A−F?−V −1/S”となり、アナロ
グ割算器11の分母入力は、y、=p−d−I/S  
         。
Here, the voltage ■ generated at the internal electrode 3 is transmitted to the AC amplifier and the Bach amplifier 9, and then to the analog divider 11, but only the pulse voltage ■ component is amplified by the AC amplifier 8, and the analog divider The voltage V transmitted to the numerator input of the multiplier 11 and the Bach amplifier 9 on the other hand is transmitted to the denominator input of the analog divider 11 with only the DC voltage (2) and the acid component being transmitted by the low-pass filter 10 . In other words, the number of AC amplifiers 8 is increased! If 1 degree is A, then the denominator input of analog divider 11 is A-V, =7A-F? −V −1/S”, and the denominator input of the analog divider 11 is y, =p−d−I/S
.

となるから、アナログ割算器11の出力Yは、Y−A婚
V、/込 11.−コニし工」ヱ泊−・1 (P−d ・I/5) −A・v/S−d となり、結局パルス電圧は浮遊液aの比抵抗弓には依存
しないことが解る。
Therefore, the output Y of the analog divider 11 is Y-A marriage V, /inclusive 11. -Konishiko'Edomari-・1 (P-d・I/5) −A・v/S-d, and it can be seen that the pulse voltage does not depend on the resistivity arc of the floating liquid a.

尚、電圧パルスを取出した後の処理は特に図示しないが
、従来品と同様である。
Note that the processing after taking out the voltage pulse is not particularly shown in the drawings, but is similar to the conventional product.

本発明は斯様に、内部電極と外部電極との闇に直流一定
電流を流す定電流装置と、内部電極に一生するパルスの
みを増幅する交流増幅器と、内部電極に発生する電圧を
取出すバッハ−アンプ及びその直流成分のみをとりだす
O−バスフィルターと、増幅されたパルスの波高値とロ
ーパスフィルターとの出力の比をとるアナログ割算器と
で構成したので、測定温度の変化による浮遊液の比抵抗
変化が無視でき、よって広い温度範囲にわたって安定し
た測定パルスが得られ、信頼性の高いものとなる。
In this way, the present invention includes a constant current device that flows a constant DC current between the internal electrode and the external electrode, an AC amplifier that amplifies only the pulse that is generated in the internal electrode, and a bach amplifier that extracts the voltage generated in the internal electrode. It consists of an amplifier, an O-bass filter that takes out only its DC component, and an analog divider that takes the ratio of the peak value of the amplified pulse to the output of the low-pass filter, so the ratio of suspended liquid due to changes in measurement temperature can be adjusted. Resistance changes are negligible, resulting in stable measurement pulses over a wide temperature range and high reliability.

しかも、その構成が簡単であり、安価に提供でき、その
実用的効果は大なるものがある。
Moreover, it has a simple configuration, can be provided at low cost, and has great practical effects.

よって、所期の目的を達成し得る。Therefore, the intended purpose can be achieved.

、4、図面の簡単な説明 ′  − 第1図は本発明実施の一例を示す回路図、第2図は細孔
と微粒子との関係を説明する概念図である。
, 4. Brief Description of the Drawings' - Fig. 1 is a circuit diagram showing an example of the implementation of the present invention, and Fig. 2 is a conceptual diagram illustrating the relationship between pores and fine particles.

図中、1は細孔、2は検出器本体、3は内部型°極、4
は外部電極、5は定11@置、6はチップ、7は定電流
装置、8は交流増幅器、9はバッハ−アンプ、10はロ
ーパスフィルター、11はアナログ割算器、aは浮遊液
、bは微粒子、である。
In the figure, 1 is the pore, 2 is the detector body, 3 is the internal type pole, and 4
is an external electrode, 5 is a constant 11@ position, 6 is a chip, 7 is a constant current device, 8 is an AC amplifier, 9 is a Bach amplifier, 10 is a low-pass filter, 11 is an analog divider, a is a floating liquid, b is a fine particle.

特許出願人   エルマ光学株式会社Patent applicant: Elma Optical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 浮遊液に混和させた微粒子が細孔を通過する時の微粒子
と浮遊液との電気抵抗変化を電気的パルスとして取出し
て微粒子体積を測定する装置において、検出一本体に組
込んだ内部電極と外部電極との圀に直流一定電流を流す
定電Il@置と、内部電極に発生するパルスのみを増幅
する交流増幅器と、内部電極に発生する電圧を取出すバ
ッハ−アンプ及びその直流成分のみを取、  出すロー
パスフィルターと、増幅されたl<ルスの波高値とロー
パスフィルターとの出力の比をとるアナログ割算器と、
からなる事を特徴とする微粒子の体積測定装置。
In a device that measures the volume of particles by extracting the electrical resistance change between the particles and the suspended liquid as an electrical pulse when the particles mixed in the suspended liquid pass through a pore, an internal electrode built into the detection body and an external electrode are used. A constant current Il @ device that flows a constant DC current between the electrodes, an AC amplifier that amplifies only the pulses generated at the internal electrodes, a Bach amplifier that extracts the voltage generated at the internal electrodes, and a Bach amplifier that extracts only the DC component. an analog divider that calculates the ratio of the amplified peak value of l<Rus to the output of the low-pass filter;
A particulate volume measuring device characterized by comprising:
JP56152297A 1981-09-25 1981-09-25 Measuring device for volume of particulate Pending JPS5853738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56152297A JPS5853738A (en) 1981-09-25 1981-09-25 Measuring device for volume of particulate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56152297A JPS5853738A (en) 1981-09-25 1981-09-25 Measuring device for volume of particulate

Publications (1)

Publication Number Publication Date
JPS5853738A true JPS5853738A (en) 1983-03-30

Family

ID=15537440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56152297A Pending JPS5853738A (en) 1981-09-25 1981-09-25 Measuring device for volume of particulate

Country Status (1)

Country Link
JP (1) JPS5853738A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4827143A (en) * 1986-03-26 1989-05-02 Hitachi, Ltd. Monitor for particles of various materials
JPH01112448U (en) * 1988-01-21 1989-07-28

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046179A (en) * 1973-08-13 1975-04-24
JPS5068173A (en) * 1973-10-16 1975-06-07
JPS513279A (en) * 1974-06-26 1976-01-12 Toa Electric Co Ltd Kendakuekichuno ryushikeisokusochi
JPS53133487A (en) * 1977-04-27 1978-11-21 Nippon Kouden Kougiyou Kk Particle detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046179A (en) * 1973-08-13 1975-04-24
JPS5068173A (en) * 1973-10-16 1975-06-07
JPS513279A (en) * 1974-06-26 1976-01-12 Toa Electric Co Ltd Kendakuekichuno ryushikeisokusochi
JPS53133487A (en) * 1977-04-27 1978-11-21 Nippon Kouden Kougiyou Kk Particle detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4827143A (en) * 1986-03-26 1989-05-02 Hitachi, Ltd. Monitor for particles of various materials
JPH01112448U (en) * 1988-01-21 1989-07-28

Similar Documents

Publication Publication Date Title
US5543717A (en) Integrable conductivity measuring device
JPS6426157A (en) Method and apparatus for measuring hematocrit in whole blood
WO2017181955A1 (en) Dust concentration detection device and dust concentration detection method
GB1316473A (en) Indication related to the percentage cell volume in a conductive liquid
GB843028A (en) Process for determining cyanide concentrations in solution
Staub A simple small oxygen electrode
JP2001305041A (en) Particle signal processing device and particle measurement device using it
JPS5853738A (en) Measuring device for volume of particulate
JPS60135855A (en) Gas analyzer
JPS57131029A (en) Temperature detector
RU2267186C1 (en) Method for measurement of concentration of ions
US5220283A (en) Calibration of streaming current detection
CN108061673A (en) A kind of electronic cigarette atomizing aerosol sampling device and test device and test method
JPS5574472A (en) Device for measuring conductivity of fluid
JPS5742865A (en) Magnetic-field detector
CN205679578U (en) A kind of SCM Based measurement apparatus
Gluckauf et al. 1. A method for the continuous measurement of the local concentration of atmospheric ozone
JP2880830B2 (en) Electromagnetic flow meter
RU180594U1 (en) DEVICE FOR ION ACCOUNT
JP2619111B2 (en) Electromagnetic flow meter
JP2000131283A (en) Detecting analyzer for positive and negative ion in liquid
RU2185605C1 (en) Capacitive level indicator
RU2024885C1 (en) Device for measuring conductance
JPH0450510Y2 (en)
JPH0184021U (en)