JPS5853688A - Gear pump - Google Patents

Gear pump

Info

Publication number
JPS5853688A
JPS5853688A JP15178181A JP15178181A JPS5853688A JP S5853688 A JPS5853688 A JP S5853688A JP 15178181 A JP15178181 A JP 15178181A JP 15178181 A JP15178181 A JP 15178181A JP S5853688 A JPS5853688 A JP S5853688A
Authority
JP
Japan
Prior art keywords
gears
gear
pumping
casing
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15178181A
Other languages
Japanese (ja)
Inventor
Shinji Hashizume
慎治 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP15178181A priority Critical patent/JPS5853688A/en
Publication of JPS5853688A publication Critical patent/JPS5853688A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/084Toothed wheels

Abstract

PURPOSE:To prevent the enclosing phenomenon of the engaging portion by allowing a pair of gear provided on the inside and outside of a casing respectively to share a pumping action and a driving force transmitting action and by engaging the inside pumping gear in a non-contact condition. CONSTITUTION:A pumping action and a driving force transmitting action are shared by a pair of pumping gears 1, 1' provided on the inside and outside of a casing respectively through driving gears 4, 4', and both gears 1, 1' inside the casing 2 are engaged together in a non-contact condition with a clearance C. Accordingly, both pumping gears 1, 1' serve for only a pump feed mechanism, and the driving force transmitting function interlocking both gears 1, 1' is performed by only the driving gears 4, 4', thereby no such remarkable restriction on the size, shape, etc. is inflicted for production as in the case both functions are shared by a pair of gears. Furthermore, the clearance C between both gears 1, 1' gives a relief area to the material 11, thus the enclosing phenomenon can be avoided.

Description

【発明の詳細な説明】 本発明はとくに高粘稠材料の送給に適した歯車ポンプに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gear pump particularly suitable for the delivery of highly viscous materials.

近来、ミキサー等で溶融された高分子材料を押出してダ
イあるいは射出成形機等に送る手段として、スクリュー
押出機より小型で構造の簡単な歯車ポンプを用いること
が提案されているが、この場合に次のような問題点があ
った。
Recently, it has been proposed to use a gear pump, which is smaller and has a simpler structure than a screw extruder, as a means of extruding a polymer material melted in a mixer or the like and sending it to a die or injection molding machine. There were the following problems.

すなわち、一般に一対の互いに噛合する歯車と該両歯車
を囲むケーシングとからなる歯車ポンプにおいて、両歯
車が必要とするモーメントは、歯車の歯頂部に発生する
力の中心軸に対するモーメント、歯側面に発生する力の
中心軸に対するモーメント、歯車の他の部分に発生する
力の中心軸に対するモーメント、および歯車軸と軸受部
との間に発生する力の中心軸に対するモーメント等を加
えたものとなり、これらのモーメントにはポンプ送りさ
れる材料の粘度が関係し、歯車駆動動力はほぼ材料粘度
に比例する。従って、水やオイル等に比べてはるかに粘
度の高い高分子材料を送るためには歯車ポンプの駆動動
力が大きくなる。ところで、従来の水やオイル等を送る
一般の歯車ポンプは、ケーシング内の互いに噛合する一
対の歯車がポンプ送り用と駆動力伝達用の両用に使われ
ているが、この構造によると、高粘稠材料を送る場合、
ポンプ送りの機能からは、歯車は低回転の方が効率よく
材料を送ることができるので毎分数十回転から百回転程
度の回転数が望ましく、その反面、このように低回転に
なると剪断力の低下により材料粘度が高くなる傾向があ
るからトルクが増大し、ポンプとしての役目と駆動力伝
達としての役目とで相反する面を有する。このため歯車
そのものの強度を上げる必要があって歯面硬度を極度に
高くしなければならず、かくするとポンプ送゛りされる
材料に含まれる異物が歯車間に噛み込んだ場合に障害が
生じ易くなり、高精度が要求されて高価でありながら寿
命が短い等の欠点がある。また、歯車ポンプにおいては
、単に一対の歯車を噛合させた基礎的な構造によると、
所謂閉じ込みと呼ばれる問題が生ずる。これは第1図に
示すように、一対の歯車G1162が噛み合うとき二点
P、Qで接してその間の密閉空間Aに材料が閉じ込めら
れ、かつ、第1図(a)に示す閉込み開始時点と同(b
)に示す閉込み中央時点と同(C)に示す閉込み終了時
点とにわたり上記密閉空間Aの体積が漸次変化すること
により、該空間Aに閉じ込められた材料に大きな圧力変
化、が生じる現象を言い、かかる現象は歯車ポンプにと
って障害となり、高分子材料に使用する場合には品質に
も悪影響を及ぼす。この閉込みの解決方法としては、従
来、各歯車に上記密閉空間Aに連通させるように逃げ溝
を設けること、あるいは各歯車にシングルヘリカルまた
はダブルへりカルギヤを用いることが知られている。
In other words, in a gear pump that generally consists of a pair of gears that mesh with each other and a casing that surrounds both gears, the moment required by both gears is the moment relative to the central axis of the force generated at the top of the tooth of the gear, and the moment generated at the side surface of the tooth. The moment of the force generated in other parts of the gear with respect to the central axis, the moment of the force generated between the gear shaft and the bearing with respect to the central axis, etc. are added. The moment is related to the viscosity of the material being pumped, and the gear drive power is approximately proportional to the material viscosity. Therefore, the driving power of the gear pump becomes large in order to feed a polymeric material whose viscosity is much higher than that of water, oil, etc. By the way, in conventional gear pumps for pumping water, oil, etc., a pair of mutually meshing gears inside the casing are used for both pumping and driving force transmission. When sending concentrated materials,
In terms of the pump feeding function, the material can be fed more efficiently when the gear is rotated at low speeds, so it is desirable to have a rotation speed of several tens to 100 revolutions per minute.On the other hand, at such low rotation speeds, the shear force increases. Since the viscosity of the material tends to increase due to a decrease in the viscosity of the material, the torque increases, and the role of the pump and the role of the driving force transmission are contradictory. For this reason, it is necessary to increase the strength of the gear itself, and the hardness of the tooth surface must be extremely high, making it easy to cause problems if foreign matter contained in the material being pumped gets caught between the gears. However, it requires high precision, is expensive, and has short lifespan. In addition, gear pumps have a basic structure of simply meshing a pair of gears.
A problem called so-called confinement occurs. As shown in Figure 1, when a pair of gears G1162 mesh, they meet at two points P and Q, and the material is trapped in the sealed space A between them, and at the time when the confinement starts as shown in Figure 1 (a). Same as (b
) The volume of the sealed space A gradually changes between the middle point of confinement shown in (C) and the end of confinement shown in (C), causing a large pressure change in the material confined in the space A. However, this phenomenon is a hindrance to gear pumps and has a negative impact on quality when used with polymeric materials. Conventionally, as a solution to this entrapment, it is known to provide each gear with an escape groove so that it communicates with the sealed space A, or to use a single helical or double helical gear for each gear.

しかしながら、前者の方法では逃げ溝に材料が滞貿し、
とくに高粘度の高分子材料では逃げ溝内で品質劣化を生
じさせる虞れが生じ、また後者の方法ではシングルへり
カルギヤの時スラスト力が生じたりダブルへりカルギヤ
の時製作上歯当たりの難しさが生じたりする等の曲順が
あり、その上、いずれの方法でも歯の接触部分に異物が
噛込むことによる障害cj酵消されず、高粘稠材料に用
いる歯車ポンプとしてはあまり有効なものではなかった
However, with the former method, materials are held up in the relief groove,
In particular, with high viscosity polymeric materials, there is a risk of quality deterioration within the relief groove, and the latter method produces thrust force when using a single helical gear, and difficulty in manufacturing teeth contact when using a double helical gear. In addition, no matter what method you use, problems caused by foreign matter biting into the contact area of the teeth cannot be eliminated, making it not very effective as a gear pump used for highly viscous materials. There wasn't.

本発明はこれらの事情に鑑み、ケーシング内部に設けた
一対の歯車と、ケーシング外部に設けた7  ′ 一対の歯車とで、ボンピング作用と駆動力伝達作用とを
分担させ、かつ、ケーシング内部のボンピング歯車を非
接触状態で噛合うようにすることにより、従来の歯車ポ
ンプの欠点を解消し、高粘稠材料に有効に利用し得る歯
車ポンプを提供するものである。更に、本発明を利用す
ればボンピング用歯車をシングルへりカルギヤとする時
、駆動用歯車をヘリカル角を逆にとったシングルへりカ
ルギヤとすることによって両歯車のスラスト力が相殺す
るように働き、シングルへりカルギヤ使用上の欠点であ
るスラスト力の発生を防ぐこともてきる。
In view of these circumstances, the present invention shares the pumping action and the driving force transmission action between a pair of gears provided inside the casing and a pair of gears provided outside the casing. By making gears mesh in a non-contact manner, the drawbacks of conventional gear pumps are overcome, and a gear pump that can be effectively used for highly viscous materials is provided. Furthermore, by using the present invention, when the pumping gear is a single helical gear, the driving gear is a single helical gear with the helical angle reversed, so that the thrust forces of both gears cancel each other out, and the single helical gear is used. It also prevents the generation of thrust force, which is a drawback when using helical gears.

以下、本発明を図示せる実施によって説明する。The invention will now be explained by means of illustrative implementations.

第2図および第6図は本発明歯車ポンプの全体構造の概
略を示し、これらの図において、1 、1’は互いに噛
合する位置に配置された一対のボンピング用歯車、2は
該両歯車1,1を囲むケーシング、ろ、6′は該両歯車
1,1′にそれぞれ一体的にr  ゛ 連結した回転軸、4,4はケーシング2の外部に配置さ
れた互いに噛合する駆動用歯車である。
2 and 6 schematically show the overall structure of the gear pump of the present invention. In these figures, 1 and 1' are a pair of pumping gears arranged in meshing positions, and 2 is a pair of pumping gears 1 and 1'. , 1, and 6' are rotating shafts integrally connected to both gears 1 and 1', and 4 and 4 are drive gears disposed outside the casing 2 and meshing with each other. .

上記ケーシング2は、上方に材料取入口5、下方に材料
送出口6をそれぞれ有し、ボンピング用歯車1,1、の
軸方向両側端面に対して前後壁内面がシール状態を保つ
ように密接し、ボンピング用歯車1,1′の外周に対し
て両側壁内面が部分的に歯先に摺幽する形状としている
◇なお、被ボンピング材料の粘度が高い場合、取入口5
から両ポンピング用歯車1,1上に供給される材料が即
時には歯溝に入り込みにくいため、歯車1,1′の外周
に対応するケーシング2内面には、送出口6に近い箇所
に歯先との摺接部分7,7′を残した状態で、その上流
側に、材料が移動につれて歯溝に入り込み易くするため
の空間を形成するアンダーカット部8,8′を設けてお
(ことが望ましい。
The casing 2 has a material intake port 5 on the upper side and a material outlet port 6 on the lower side, and the inner surfaces of the front and rear walls are in close contact with both axial end surfaces of the pumping gears 1, 1 to maintain a sealing state. , the inner surfaces of both side walls of the outer periphery of the pumping gears 1 and 1' are shaped so that they partially slide over the tips of the teeth ◇If the viscosity of the material to be pumped is high, the intake port 5
Since the material supplied onto both pumping gears 1, 1 from the above does not enter the tooth groove immediately, there are tooth tips and tooth tips on the inner surface of the casing 2 corresponding to the outer periphery of the gears 1, 1' at a location near the outlet 6. With the sliding contact parts 7, 7' remaining, undercut parts 8, 8' are preferably provided on the upstream side to form a space for the material to easily enter the tooth groove as it moves. .

上記各ポンピング用歯車1,1に連結された回転軸ろ、
6′は、それぞれベアリング9・・・を介してケーシン
グ2に回転自在に支持され、かつ、両回転軸6,3の各
一端側はケーシング2を通してその外部に突出し、この
突出部分に前記駆動用歯車4.4が取付けられている。
a rotary shaft filter connected to each of the pumping gears 1, 1;
6' are rotatably supported by the casing 2 via bearings 9, respectively, and one end side of each of the two rotating shafts 6, 3 protrudes outside through the casing 2, and the drive shaft is attached to this protruding portion. Gear 4.4 is installed.

該両歯車4,4は、一般の歯車の噛合状態と同様に、噛
み合い部分で互い接触する完全な噛合状態となっている
。また、上記両回転軸6.乙のうちの一方の回転軸6は
駆動源としてのモーター0に減速機等(図示省略)を介
して連動連結され、この回転軸乙の回転が上!    
                        !
記両駆動用歯車4,4を介して他方の回転軸6に伝達さ
れることにより、両回転軸6,6′ひいては両ポンピン
グ用歯車1,1が同期回転するように1ζ している。その回転方向は、一般のこの種歯車ポンプと
同様、第6図に矢印で示すように、両ポンピング用歯車
1,1上に供給された材料を外方に案内してケーシング
2の内面と歯車1,1′の周辺との間から下流側に送る
方向としている。
The two gears 4, 4 are in a completely meshed state in which they contact each other at their meshing portions, similar to the meshing state of general gears. In addition, both the rotation shafts 6. One of the rotating shafts 6 is connected to the motor 0 as a drive source via a reducer (not shown), and the rotation of the rotating shaft 6 is up!
!
By being transmitted to the other rotating shaft 6 via both driving gears 4, 4, both rotating shafts 6, 6', and thus both pumping gears 1, 1, are rotated synchronously. The direction of rotation is similar to a general gear pump of this type, as shown by the arrow in FIG. 1 and 1' to the downstream side.

第4図は前記両ポンピング用歯車1,1′の噛み合い部
分を拡大して示し、同図に示すように、上−記両ポンピ
ング用歯車1 !;’は、一方の歯が他方の歯溝に入り
込む噛合状  はありながら、常に互いの歯部が接触す
ることなく、歯部同士が最も接近するところでも微少の
クリアランスCを有するように形成しである。
FIG. 4 shows an enlarged view of the meshing portion of the two pumping gears 1, 1', and as shown in the same figure, the two pumping gears 1, 1' are engaged with each other. ;' is formed so that although there is a meshing shape in which one tooth enters the groove of the other tooth, the teeth do not always touch each other and there is a slight clearance C even where the teeth are closest to each other. It is.

この歯車ポンプの作用を次に説明する。The operation of this gear pump will be explained next.

流体材料をポンプ送りする作用は基本的には一般のこの
種歯車ポンプと同様であって、前記取入口5からケーシ
ング2内に送り込まれた材料を、両ポンピング用歯車1
,1′の回転に伴い歯溝に入り込ませつつ外側周方向に
案内し、ケーシング2内面に沿って下流側に送る。そし
て、各ポンピング用歯車1,1′の歯先とケーシング2
内面との摺接部分7,7でその上流側と下流側との連通
が遮断され、歯車1,1の歯溝に保持された材料が定量
的に送出口6側へ送られる。この場合、材料を送出口6
から一定圧力で定量的に押出すには、ケーシング2内中
央部で両歯車1,1が噛み合って歯溝から材料を押出す
作用を有することが必要であるが、本発明において前記
両ボンピング用歯車i 、 i、’は悲接触状態ではあ
っても、一方の歯が他方の歯溝に入り込む噛合状態には
なっていてそのクリアランスは小さく材料の粘度が高い
故に出口側から入口側へ逆流する量は少なく、従って押
出力が得られる。
The action of pumping fluid material is basically the same as that of a general gear pump of this type, and the material sent into the casing 2 from the intake port 5 is pumped through both pumping gears 1.
, 1', it is guided in the outer circumferential direction while entering the tooth groove, and is sent downstream along the inner surface of the casing 2. Then, the tooth tip of each pumping gear 1, 1' and the casing 2
Communication between the upstream side and the downstream side is cut off at the sliding contact portions 7, 7 with the inner surface, and the material held in the tooth grooves of the gears 1, 1 is quantitatively sent to the outlet 6 side. In this case, the material is transferred to the outlet 6
In order to quantitatively extrude the material at a constant pressure from the casing 2, it is necessary that both gears 1 and 1 mesh with each other at the center of the casing 2 to have the effect of extruding the material from the tooth groove. Even though gears i, i, and ' are in a negative contact state, they are in a meshing state where one tooth enters the tooth groove of the other, and because the clearance is small and the viscosity of the material is high, a backflow occurs from the outlet side to the inlet side. The quantity is small and therefore the extrusion force is obtained.

この動作において、上記両ポンピング用歯車1.1はポ
ンプ送り機構のみ受持ち、該両歯車1゜1を連動させる
駆動力伝達機能は前記駆動用歯車4.4によって行われ
ることに、より、一対の歯車に両機能を共有させる場合
のような寸法、形状等についての製作上の著しい制約を
受けることがなく、各歯車の設計、製作が容易になる。
In this operation, both pumping gears 1.1 are responsible only for the pump feeding mechanism, and the driving force transmission function for interlocking the two gears 1.1 is performed by the driving gear 4.4. The design and manufacture of each gear become easier without being subject to significant manufacturing constraints regarding dimensions, shapes, etc., unlike when gears share both functions.

また、ポンピング用歯車1.1においては駆動力伝達の
ための接触噛合を要しないことから、歯巾や噛合い深さ
等を適宜型めること、により、第4図に示すように噛合
い部分で両ポンピング用歯車1.1が互いに接触しない
状態が得られる。そして、非接触状態が保たれることに
より、該両歯車1.1間のクリアランスが材料11の逃
げ場を与え、前記の閉込み現象が避けられる。ただしこ
の場合、上記クリアランスを通して下流の高圧側から上
流の低圧側に若干は材料が洩れ、これが吐出効率をやや
落とすという心配があるが、クリアランスが充分・示さ
い限り、粘度の高い材料に対しては実用上支障は生じな
い。すなわち、第4図に示す噛み合い部分の一定区間し
て材料にュートン流体と仮定する)の洩れ量Qを計算し
てみると、ギヤ巾をb1平均クリアランスをT1゛上流
側と下流側との圧力差をp1粘度をηとすれば次式のよ
うになる。
In addition, since the pumping gear 1.1 does not require contact meshing for driving force transmission, by appropriately shaping the tooth width, meshing depth, etc., meshing can be achieved as shown in Fig. 4. A situation is obtained in which the two pumping gears 1.1 do not come into contact with each other. By maintaining the non-contact state, the clearance between the two gears 1.1 provides an escape area for the material 11, and the above-mentioned entrapment phenomenon can be avoided. However, in this case, there is a concern that some material will leak from the downstream high-pressure side to the upstream low-pressure side through the above clearance, and this will reduce the discharge efficiency slightly, but as long as the clearance is sufficient, it can does not cause any practical problems. In other words, when calculating the leakage amount Q for a certain section of the meshing part shown in Fig. 4 (assuming that the material is Newtonian fluid), the gear width is b1 the average clearance is T1゛ the pressure between the upstream side and the downstream side If the difference is p1 and the viscosity is η, then the following equation is obtained.

T3p 従って、材料の粘度が比較的大きく、かつ、クリアラン
スが小さければ洩れ量は充分小さく抑えられ、ポンプ機
能の低下仲人したことはない。例えば、被ポンピング材
料にLDPEを用い、」二記圧力差pを300Kg/c
++tとして両ポンピング用歯車1,1′の最小クリア
ランスを種々変えた場合に、接触噛合型歯車によるもの
と比べてポンプ機能は、〔T二100μ〕で99.8%
に、(T=200μ〕で985%に、I:’T=300
μ〕で95%に、(1’ = 400μ〕で88%にそ
れぞれ保たれる。
T3p Therefore, if the viscosity of the material is relatively high and the clearance is small, the amount of leakage can be suppressed to a sufficiently small level, and the pump function will not deteriorate. For example, if LDPE is used as the material to be pumped, the pressure difference p is 300 kg/c.
When the minimum clearance of both pumping gears 1 and 1' is varied as ++t, the pump function is 99.8% with [T2 100μ] compared to a contact mesh type gear.
to 985% at (T=200μ), I:'T=300
μ] and 88% respectively.

このような多少のポンピング機能の低下は、歯車の回転
数をや\早くすることによって充分に補うことができ、
送出口6側に必要な圧力が出なくなノ る等の支障を生ずるようなことはない。
This slight decrease in pumping function can be compensated for by increasing the rotation speed of the gear a little.
There is no problem such as failure of necessary pressure to be generated on the outlet port 6 side.

さらに、このように両ボンピング用歯車1,1′間にク
リアランスが存在することにより、このクリアランスの
値以下の径の異物が混入しても歯車1.1′を損傷する
ことがない。
Furthermore, since there is a clearance between the two pumping gears 1, 1', even if foreign matter with a diameter smaller than this clearance gets mixed in, the gear 1.1' will not be damaged.

なお、上述のように閉込み現象等を防止し、かつ、ポン
プ機能の低下を回転数調整によって充分補い得る範囲と
して、両ポンピング用歯車1.1’の歯部の間の最小ク
リアランスCは100μ〜1000μの範囲に設定して
おくことが望ましい。
In addition, as mentioned above, the minimum clearance C between the teeth of both pumping gears 1.1' is 100μ as a range that can prevent the entrapment phenomenon and sufficiently compensate for the decrease in pump function by adjusting the rotation speed. It is desirable to set it in the range of ~1000μ.

また、ポンピング用歯車にはへりカルギヤを用いてもよ
く、シングルへりカルギヤを用いる場合、駆動用歯車に
、ポンピング用歯車とスラスト力が逆になるシングルへ
りカルギヤを使用すれば、これらのスラスト力が相殺さ
れる利点がある0以上説明したように、本発明の歯車ポ
ンプは、ケーシング内に配置した一対のポンピング用歯
車とは別に、ケーシング外部において、上記各ポンピン
グ用歯車にそれぞれ連結した回転軸に互いに完全に噛合
する駆動用歯車を取付け、かつ、」二記両ボンピング用
歯車を噛み合い部分においても互いに接触することなく
一定以上のクリアランスを有するように形成しているた
め、上記ポンピング用歯車と駆動叫歯車とでポンプ送り
機能と駆動力伝達機能とが分担され、各歯車の寸法、形
状設定等が容易となり、製作性、耐久性等を高めるとと
もに、高粘稠材料に対して良好なポンプ機能を有しなが
ら、上記クリアランスの存在により、ポンピング用歯車
の噛合部分における閉込み現象を防止し得、しかも、従
来の閉込み対策にみられる材料の滞留あるいは製作困難
性等の弊害をきたすこともなく、その上、異物が混入し
てもポンピング用歯車を傷めることがない等、数多くの
すぐれた効果を奏するものである。
Additionally, a helical gear may be used as the pumping gear, and if a single helical gear is used, these thrust forces can be reduced by using a single helical gear for the driving gear, whose thrust force is opposite to that of the pumping gear. As described above, in addition to the pair of pumping gears disposed inside the casing, the gear pump of the present invention has a rotating shaft connected to each of the pumping gears outside the casing. The driving gears are installed to completely mesh with each other, and the pumping gears are formed so that they have a clearance above a certain level without contacting each other even at the meshing portions, so that the pumping gear and the driving gear are not in contact with each other. The pumping function and driving force transmission function are shared between the screaming gear and the dimensions and shape settings of each gear, etc., which improves manufacturability, durability, etc., and provides good pumping function for highly viscous materials. However, due to the existence of the above-mentioned clearance, it is possible to prevent the entrapment phenomenon in the meshing part of the pumping gear, but it also prevents the disadvantages such as material retention and manufacturing difficulties that are seen in conventional entrapment countermeasures. Furthermore, even if foreign matter gets mixed in, the pumping gear will not be damaged, and has many excellent effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)乃至同(C)は従来の歯車ポンプの基本的
な構造における閉じ込み現象を示す説明図、第2図は本
発明歯亨ポンプの実施例を示す概略横断面図、第6図は
第2図のIII −III線に沿った断面図、第4図は
この歯車ポンプにおけるポンピング用歯車噛合部分の拡
大図である。 1.1′・・・ポンピング用歯車、2・・・ケーシング
、6.6′・・・回転軸、4.4’・・・駆動用歯車。 1.5 許出願人 株式会社神戸製鋼所代理人 弁理士
 小 谷  悦  司、。 第  1  図 (a)(″)))     (C) 第  2  図 口■ 第  4  図
1(a) to 1(C) are explanatory diagrams showing the confinement phenomenon in the basic structure of a conventional gear pump, FIG. 2 is a schematic cross-sectional view showing an embodiment of the gear pump of the present invention, and FIG. 6 is a sectional view taken along the line III--III in FIG. 2, and FIG. 4 is an enlarged view of the meshing portion of the pumping gear in this gear pump. 1.1'... Pumping gear, 2... Casing, 6.6'... Rotating shaft, 4.4'... Drive gear. 1.5 Applicant: Kobe Steel, Ltd., Patent Attorney: Etsushi Kotani. Figure 1 (a) (''))) (C) Figure 2 Opening■ Figure 4

Claims (1)

【特許請求の範囲】 1、互いに噛合う位置に配置された一対のポンピング用
歯車と、該両歯車を囲むケーシングとを有する歯車ポン
プにおいて、上記各ポンピング用歯車にそれぞれ連結さ
れた二本の回転軸がケーシングを貫いて外部に突出する
部分に、互いに完全に噛合する一対あ駆動用歯車を配設
して、駆動源によって駆動される一方の回転軸の回転を
両部動用歯車を介して他方の回転軸に伝えるように両回
転軸を連動させ、一方、上記両ポンピング用歯車を、互
いの噛み合い部分でも歯部が接触することなく一定以上
のクリアランスを有するように形成したことを特徴とす
る歯車ポンプ。 2、 上記両ポンピング用歯車の歯部が最も接近する部
分でのクリアランスを100μ〜1000μとしたこと
を特徴とする特許請求の範囲第1項記載の歯【1(ポン
プ。 6、 ポンピング用歯車をシングルへりカルギヤとし駆
動用歯車を前記歯車とスラスト力が逆向きになるシング
ルへりカルギヤとしたことを特徴とする特許請求の範囲
第1項記載の歯車ポンプ◇
[Claims] 1. In a gear pump having a pair of pumping gears disposed in meshing positions with each other and a casing surrounding the two gears, two rotating gears respectively connected to each of the pumping gears are provided. A pair of driving gears that completely mesh with each other are disposed in the part where the shaft penetrates the casing and protrudes to the outside, so that the rotation of one rotational shaft driven by the drive source is transferred to the other through the two driving gears. Both rotating shafts are interlocked so as to transmit information to the rotating shaft of the pumping gear, and both pumping gears are formed so that the teeth do not come into contact with each other and have a clearance above a certain level even in the meshing portions. gear pump. 2. The teeth according to claim 1, characterized in that the clearance at the part where the teeth of both pumping gears are closest to each other is 100μ to 1000μ [1 (pump). 6. The pumping gear The gear pump according to claim 1, wherein the driving gear is a single helical gear and the thrust force is in the opposite direction to that of the gear.
JP15178181A 1981-09-24 1981-09-24 Gear pump Pending JPS5853688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15178181A JPS5853688A (en) 1981-09-24 1981-09-24 Gear pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15178181A JPS5853688A (en) 1981-09-24 1981-09-24 Gear pump

Publications (1)

Publication Number Publication Date
JPS5853688A true JPS5853688A (en) 1983-03-30

Family

ID=15526155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15178181A Pending JPS5853688A (en) 1981-09-24 1981-09-24 Gear pump

Country Status (1)

Country Link
JP (1) JPS5853688A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60252183A (en) * 1984-05-28 1985-12-12 Shimadzu Corp High circumferential speed gear pump
JPS61124507A (en) * 1984-11-22 1986-06-12 Ube Ind Ltd Production of magnetic metallic powder
JPS6352983U (en) * 1986-09-26 1988-04-09
JPH0462383U (en) * 1990-10-05 1992-05-28
US5505591A (en) * 1993-07-30 1996-04-09 Tynan; Daniel G. Apparatus for processing materials
CN105697365A (en) * 2016-03-21 2016-06-22 常州大学 Processing method of cord wheels and non-contact type pump using cord wheel rotors

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60252183A (en) * 1984-05-28 1985-12-12 Shimadzu Corp High circumferential speed gear pump
JPS61124507A (en) * 1984-11-22 1986-06-12 Ube Ind Ltd Production of magnetic metallic powder
JPS6352983U (en) * 1986-09-26 1988-04-09
JPH0433433Y2 (en) * 1986-09-26 1992-08-11
JPH0462383U (en) * 1990-10-05 1992-05-28
US5505591A (en) * 1993-07-30 1996-04-09 Tynan; Daniel G. Apparatus for processing materials
CN105697365A (en) * 2016-03-21 2016-06-22 常州大学 Processing method of cord wheels and non-contact type pump using cord wheel rotors

Similar Documents

Publication Publication Date Title
CN1179129C (en) Toothed rotor set
US7976297B2 (en) Gear pump including introduction paths and return paths
US5641281A (en) Lubricating means for a gear pump
EP2035708B1 (en) Moineau pump
EP1550542A1 (en) Curved teeth for gear pump
JPS5853688A (en) Gear pump
US6213745B1 (en) High-pressure, self-lubricating journal bearings
EP1261806B1 (en) Inverse toothed rotor set
EP1852612B1 (en) Gear pump
JP2743616B2 (en) Gear pump
US3668947A (en) Gearwheel machine
JP2004509787A (en) Screw extruder and gear pump device for highly viscous media
KR100610524B1 (en) High efficiency gear pump for pumping highly viscous fluids
JPS5853689A (en) Gear pump
US4770617A (en) Gear pump with leakage fluid intermittently communicated to expanding fluid cells
US3247580A (en) Method of making screw pumps
JP2585707Y2 (en) Gear pump
JP3109734B1 (en) Gear pump
RU2669634C1 (en) Method of operation of discharge pump of gas turbine engine (gte) oil pump unit and discharge pump of gte oil pump unit operating therewith, gear wheel of discharge pump of gte oil pump unit, block of thrust bearings of discharge pump of gte oil pump unit
US3253550A (en) Screw pumps
JPH0650113B2 (en) Internal gear machine
JPH11210646A (en) Self-lubricating strengthening type of gear type quantitative pump
WO1998059171A1 (en) Gear pump
JPS58122385A (en) Gear pump for extruding viscous material
JPH0647686U (en) Gear pump offset prevention structure