JPS5853144A - Triode type ion pump - Google Patents

Triode type ion pump

Info

Publication number
JPS5853144A
JPS5853144A JP14960881A JP14960881A JPS5853144A JP S5853144 A JPS5853144 A JP S5853144A JP 14960881 A JP14960881 A JP 14960881A JP 14960881 A JP14960881 A JP 14960881A JP S5853144 A JPS5853144 A JP S5853144A
Authority
JP
Japan
Prior art keywords
cathode
anode
discharge
ion pump
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14960881A
Other languages
Japanese (ja)
Inventor
Katsuhiro Kageyama
影山 賀都鴻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP14960881A priority Critical patent/JPS5853144A/en
Publication of JPS5853144A publication Critical patent/JPS5853144A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J41/00Discharge tubes for measuring pressure of introduced gas or for detecting presence of gas; Discharge tubes for evacuation by diffusion of ions
    • H01J41/12Discharge tubes for evacuating by diffusion of ions, e.g. ion pumps, getter ion pumps

Landscapes

  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To increase the ventilation speed of a pump and control the change of its exhaust speed and the manifestation of discharge instability by making the potential of the first cathode higher than that of the second cathode and increasing the ion incidence energy into the bar section of the second cathode on which all ions generated by discharge are substantially incident. CONSTITUTION:In the figure 8, is a DC power supply that applies voltage between an anode 1 and the said first cathode 31, 32 is the second cathode, 9 is a DC power supply that applies negative potential to the second cathode 32 from the first cathode 31, and 10 is a magnet that generates a magnetic field 5 that is substantially parallel to its axial center core at the hollow section 2 of the anode. The two cathodes consist of the plate-type section 32a of the anode 1 that is separated from and adjacent to the other opening opposite to one opening in which the first cathode 31 is arranged and that has a shape to cover the other opening, and a bar-type section 32b that separates the hollow section 2 from the anode and passes through the hollow section and at least the surface of which is made of a getter material.

Description

【発明の詳細な説明】 本発明は真空ポンプ、就中三極彰イオンボングに「曙す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to a vacuum pump, particularly a Sankyoku Akira ion bong.

イオンポンプけ、磁場中冷陰極放電を利用してオイルフ
リーな真空を作ることので舞る真空ポンプで、高温ある
いは極低1M部分や機械的運動を必要としiい特徴があ
り、真空の質を問題にする分野では特に有用なものであ
る。
Ion pumps are vacuum pumps that create an oil-free vacuum using cold cathode discharge in a magnetic field. This is particularly useful in the field of concern.

当初欠点とされた希ガス、例先はヘリウムやアルゴンに
対する排気速度の不安定性等は、三極形イすンポンプの
開発により解決され、操作性の良いイすンボンプが製作
されるようになった。
The initial shortcomings, such as the instability of pumping speed for rare gases, such as helium and argon, were resolved with the development of the triode type sink pump, and easy-to-operate sink pumps were now manufactured. .

従来の王権形イオンポンプの例を第1図に断面図として
示す。
An example of a conventional kingship type ion pump is shown in cross-sectional view in FIG.

lは貫通した中空部2を有する陽極、3は陽極1の両開
口端に一関しかつ近接して配設されその開口を覆う形状
を有する2個1組の陰極、4は収集電極である。
1 is an anode having a hollow portion 2 passing through it; 3 is a pair of cathodes disposed adjacent to and close to both open ends of the anode 1 and has a shape that covers the openings; and 4 is a collection electrode.

磁場5が陽極1の中空部2の細心に実質的に平行にこの
中空部2の全体に図示されない磁場発生装置により印加
され、陽極1と陰極3との間には放′鑞電源5によ抄醒
圧Vaが印加される。この例では陽極1および収集電極
4が接地され、陰極3の電位呟−V麿である。
A magnetic field 5 is applied substantially parallel to the hollow part 2 of the anode 1 throughout the hollow part 2 by a magnetic field generator (not shown), and between the anode 1 and the cathode 3 there is provided a magnetic field generator 5. A clearing pressure Va is applied. In this example, the anode 1 and the collecting electrode 4 are grounded, and the potential of the cathode 3 is -V.

三極形イオンポンプの排気作用は次のように説明される
The pumping action of the triode ion pump is explained as follows.

陽極1の中空部2には直交する電磁場によシ高エネルギ
高密度の電子群が形成され、この“中空部2に飛来し九
分子はイオン化されてイオン7とな抄、加速され、陰極
30表面に高速°で入射し、通常チタンで製作される陰
極30表面の原子をスパッタする。
A group of high-energy, high-density electrons is formed in the hollow part 2 of the anode 1 by orthogonal electromagnetic fields, and the nine molecules that fly into the hollow part 2 are ionized and accelerated into ions 7, which are then transferred to the cathode 30. It is incident on the surface at high speed and sputters atoms on the surface of the cathode 30, which is usually made of titanium.

スパッタされた陰極表面物質は収集電極40表面に付着
し、付着した陰極表1j豐質は気体分子を吸着し、そこ
へ更にスパッタされた陰極表面物質が付着して、吸着さ
れた気体分子収集電極の表面の例えば4′に示したよう
に埋め込まれる。この気相の分子の固相内への埋め込み
が三極形イオンポンプの排気作用である。
The sputtered cathode surface material adheres to the surface of the collecting electrode 40, and the adhering cathode surface material adsorbs gas molecules, and the sputtered cathode surface material further adheres to the adsorbed gas molecule collecting electrode. For example, as shown at 4', it is embedded in the surface of. This embedding of gas phase molecules into the solid phase is the exhaust action of the triode ion pump.

排気*Vを大きくするためには、放電で形成される気体
イオンの量に対する陰極からスパッタされる陰極表面物
質の瞳を多くしなければならない。
In order to increase the exhaust *V, the pupil of the cathode surface material sputtered from the cathode must be increased relative to the amount of gas ions formed by the discharge.

第2図は、第1図に示し九三極形イオ/ポンプにおける
陰極表面物質のスパッタリング量を説明する線図である
FIG. 2 is a diagram illustrating the sputtering amount of the cathode surface material in the nine triode ion/pump shown in FIG.

第2 If!J (a) 、 (b) 、 (c)tD
横軸Lm [[表11iK入射するイオンのエネルギを
示す、第2図(a)の縦軸3は入射イオン1個当りのス
パッタされる陰極物質の原子数で表わされるスパッタ比
、第2図(b)の縦軸fは入射するイオンのエネルギが
U以上、 u+du未滴の亀のが琳位時間に陰極表面に
入射する数はf duであると定義し九イオンエネルギ
分布函数、第2図(C)の縦軸fsは分布函数fとスパ
ッタ比$の積で、fおよびSは共に相対値で示されろ。
2nd If! J (a), (b), (c)tD
The horizontal axis Lm [[Table 11iK shows the energy of incident ions. The vertical axis 3 in FIG. The vertical axis f in b) is defined as the energy of the incident ions is greater than or equal to U, and the number of undropped turtles that are incident on the cathode surface during the resting time is fdu, and is the nine ion energy distribution function, Figure 2. The vertical axis fs in (C) is the product of the distribution function f and the sputtering ratio $, and both f and S are expressed as relative values.

第2図ら)において1分布函数fは0以下、eVa(九
だし、Cは単位電荷を表わす)以上で零でろ秒、更に陰
極降下VOKよる加速エネルギego以下、および陽極
降下の範囲で分布函数fは殆んど零に等しい。
In Figure 2, etc.), the distribution function f is less than 0, it is zero when it is more than eVa (9, C represents unit charge), and the distribution function f is less than ego when the acceleration energy due to the cathode fall VOK and the anode fall range. is almost equal to zero.

第2図(b)に示すように、分布数fはego≦u <
 era でのみ零でない値をとる0分布函数璽は1.エネルギU
がevoを越えかつUが小さな値であるとき大きな値を
と秒、uの値が大きいとfは小さくなる。
As shown in FIG. 2(b), the distribution number f is ego≦u<
The zero distribution function that takes a non-zero value only at era is 1. energy U
When u exceeds evo and U is a small value, a large value is used, and f becomes small when the value of u is large.

スパッタされる陰極物質の単位時間嶋妙の原子の数Qは で与えられ、この被積分函数fsが・第2図(e)に示
されている。この第2図(C)から明らかなように。
The number Q of atoms per unit time of the sputtered cathode material is given by Q, and the integrand fs is shown in FIG. 2(e). As is clear from this Figure 2 (C).

スパッタ比Sが大きい値をとるためのエネルギUと、分
布函数fが大きい値をとるとヒろのエネルギUが大きく
異なるために、スパッタされる陰極パ□物質の瞼は多く
できない。
Since the energy U required for the sputtering ratio S to take a large value and the energy U for the leakage to take a large value for the distribution function f are greatly different, it is not possible to increase the amount of sputtered cathode paste material.

ここにおいて、本発明の目的は、5E−ec放電を乱す
程度の非常に少ない構成によ〉スパッタされる陰極物質
の1を増加し、もって排気速度を増加したイオンポンプ
を提供するKある0本発明の第二の目的はこのような新
規な三極形イオンポンプO排気−1tifの変化および
放電不安定性の発現を抑制する構成を得るKある。
It is therefore an object of the present invention to provide an ion pump with an increased amount of sputtered cathode material and thus increased pumping speed with very little configuration that disturbs the 5E-ec discharge. A second object of the invention is to obtain a structure that suppresses changes in the exhaust gas and discharge instability of such a novel triode ion pump.

すなわち第一の陰極の電位を第二の陰極の電位より^<
して、放電で生成されたイオンの実質的に全てが入射す
る第二の陰極の棒状部へのイオン入射エネルギを大きく
するととて第一の目的を達成し、陽極の主要部は苓体と
翼片で構成することによ抄第二つ目的を違或し九。
In other words, the potential of the first cathode is lower than the potential of the second cathode ^<
The first objective is achieved by increasing the ion incident energy to the rod-shaped part of the second cathode, into which substantially all of the ions generated by the discharge enter, and the main part of the anode is By composing it with wing pieces, the second purpose of the extract was violated.

以下本発明の実権例について詳細に説明する。Practical examples of the present invention will be explained in detail below.

第3図は本発明の構成を示す三極形イオンポンプブロッ
ク図である。以下各図面に共通する部分(は同一称号を
符し、説明の重複を避仕る。
FIG. 3 is a block diagram of a triode ion pump showing the configuration of the present invention. Below, parts common to each drawing are given the same title to avoid duplication of explanation.

1は貫通した中空部2を有する陽極、31は陽極の一開
口に畦間かつ近接して配役され該−一〇を覆う形状を有
する第一の陰極、8は陰極1と該第−の陰極310間に
電圧を印加する直流電源、32は第二の陰極、9け第二
の陰極32に第一の陰極31より負の電位を与える直流
電源、10は陽極の中空部(2)にその軸心に実質的に
平行な磁場5を発生する磁石であり、この!#l成によ
って本発明の三極形イオンポンプが実現できる。第4乃
至!!46図は本発明の二つの実施例の主要部を示す。
1 is an anode having a hollow portion 2 passing through it; 31 is a first cathode disposed in a furrow and close to one opening of the anode and has a shape that covers the -10; 8 is the cathode 1 and the -1 cathode; 310 is a DC power supply that applies a voltage between 310, 32 is a second cathode, 9 is a DC power supply that applies a negative potential to the second cathode 32 than the first cathode 31; It is a magnet that generates a magnetic field 5 substantially parallel to the axis, and this! The triode ion pump of the present invention can be realized by #l formation. 4th~! ! Figure 46 shows the main parts of two embodiments of the invention.

いずれも三極形イオンポンプ主要部断面図である。Both are sectional views of the main parts of the triode ion pump.

第4乃至第6図に於て、31は第一の陰極、32は第二
の陰極で、陽極1或社1の、第一の陰極31が配設され
る一関口と反対側の、他の開口に離間かつ近接して配設
され他の開口を覆う形状を有する板状部32aと、陽極
の中空部2を陽極と離間して貫通する少くともその表面
はゲッタ物質で形成され丸棒状部32bとで形成される
In Figures 4 to 6, 31 is a first cathode, 32 is a second cathode, and the other side of the anode 1 or 1 is opposite to the first entrance where the first cathode 31 is disposed. A plate-shaped part 32a is disposed close to and spaced apart from the opening of the anode and has a shape that covers other openings, and a plate-shaped part 32a that penetrates the hollow part 2 of the anode while being spaced apart from the anode, and at least its surface is formed of a getter material and has a round bar shape. 32b.

第4図に於て、陽極1けつば何円°筒状でTo秒、棒状
部32bの陽極の中空部2の外部(は値蔽体14が取着
される。
In FIG. 4, the anode 1 has a cylindrical shape and a value shield 14 is attached to the outside of the hollow part 2 of the anode of the rod-shaped part 32b.

第5図に於て陽極1は質通し丸中空部を有する円管状の
基体11と、基体に固着された円環状端部材13と、端
部材13を介して基体11に固着され、基体の軸心に向
って延在し、かつ相互に接触しない8個の翼片12で構
成されている。
In FIG. 5, the anode 1 includes a cylindrical base body 11 having a pawn-through round hollow part, an annular end member 13 fixed to the base body, and an anode 1 fixed to the base body 11 via the end member 13. It consists of eight wings 12 that extend toward the center and do not touch each other.

第4乃至第6図に於て、各電極は導電路を兼ねる支柱に
より絶縁物製の支持体15に固着され、支持体15には
図示しない電源からの導線を接続する接続部が形成され
ている。
In FIGS. 4 to 6, each electrode is fixed to an insulating support 15 by a support that also serves as a conductive path, and a connection portion for connecting a conductor from a power source (not shown) is formed on the support 15. There is.

以上第3乃至第6図を用いて説明した実施例を参照して
本発明の効果を述べると、第7図は本発明の三極形イオ
ンポンプに於けるスパッタI7’7グ量を説明する線図
で、従来の三極形イオンポンプに対する第2図と対比し
て説明する。第2図で使用し九記号等の説明はここでは
省略する。
The effects of the present invention will be described with reference to the embodiments described above using FIGS. 3 to 6. FIG. 7 will explain the amount of spatter I7'7 in the triode ion pump of the present invention. The diagram will be explained in comparison with FIG. 2 for a conventional triode ion pump. Explanation of the symbol 9 used in FIG. 2 will be omitted here.

陽極の中空部(2)の内部には電子群が形成され、電子
によりイオン化された気体分子は実際上全てスパッタ電
極15に衝突し、その表面のゲッタ物質をスパッタする
A group of electrons is formed inside the hollow part (2) of the anode, and virtually all of the gas molecules ionized by the electrons collide with the sputtering electrode 15, sputtering the getter material on its surface.

イオンの入射エネルギUに対するスパッタ比Sは第7図
(a)に示される通9、第2図(a)と同一である。
The sputtering ratio S with respect to the ion incident energy U is the same as that shown in FIG. 7(a) and FIG. 2(a).

陽極1の電位は零でちゃ、陰極3の電位を第2図(b)
の場合と同様に−Vaとし、第一の陰極31と第二の陰
極υの電位差をVsとすると、第二の陰極32の電位は
−(Va+Vs)で′/b抄、第二の陰極32に入射す
るイオンのエネルギ分布函数fは、′第5図(b)に示
されるように、−第2図伽)(表わされる従来の三極形
イオンポンプの陰極へ入射するイオンのエネルギ分布函
数よ〉高エネルギ側へ移動し丸形をとる。
The potential of anode 1 is zero, and the potential of cathode 3 is shown in Figure 2 (b).
As in the case of -Va, and the potential difference between the first cathode 31 and the second cathode υ is Vs, the potential of the second cathode 32 is -(Va+Vs), '/b, and the second cathode 32 The energy distribution function f of the ions incident on the cathode of the conventional triode ion pump is expressed by the energy distribution function f of the ions incident on the cathode of the conventional triode ion pump. yo> Move to the high energy side and take on a round shape.

この姑果、スパッタされるスパッタ電極物質の琳位時間
あたりの原子数Qは、 であり、その被積分函数fsが第7図(e)K−示され
るように第2図(C)に表わされるもの、よ〉大t&な
値をと抄、従来の三極形イオンポンプにおけるよ)スパ
ッタされる物質の量を増加させることができ、もって排
気速度の大きいイオンポンプを実現できる。これが本発
明の目的である第1の効果の実現である。
As a result of this, the number of atoms Q of the sputtered electrode material per incubation time is as follows, and its integral function fs is expressed in FIG. 2(C) as shown in FIG. 7(e)K. If the value of t& is large, it is possible to increase the amount of material sputtered (compared to the conventional triode ion pump), thereby realizing an ion pump with a high pumping speed. This is the realization of the first effect which is the objective of the present invention.

本発明が効果を奏する丸めには放電が管部に維持されな
ければならない、スパッタ電極15は陽極1の中空部の
軸心上にあ抄かつ貫通して−るので、軸線方向には陰極
面近傍を除いてm一様な放電が維持され、これが放電の
安定性に寄与する。第二の陰極32の電位−(Vl!−
18)は第一の陰極31の電位−Vaに比べて負の充分
大きな電位に保たれルノで、第一の陰極31に穿設され
第二の陰極の棒状部(32b)が貫通する貫通孔14の
放電におよぼす影響は無視でき、貫通孔14は放電不安
定の原因とならない。
In order for the present invention to be effective, the discharge must be maintained in the tube part.Since the sputter electrode 15 is formed on the axis of the hollow part of the anode 1 and penetrates through it, the cathode surface is A uniform discharge is maintained except in the vicinity, which contributes to the stability of the discharge. Potential of second cathode 32 -(Vl!-
18) is a through-hole which is maintained at a sufficiently negative potential compared to the potential -Va of the first cathode 31 and which is formed in the first cathode 31 and through which the rod-shaped part (32b) of the second cathode passes. The influence of the through hole 14 on the discharge can be ignored, and the through hole 14 does not cause instability of the discharge.

次〈第5図および第6図に実施例を示した陽極1−12
)lI#tのも九らす効果を慮べろ。翼片13の内側表
面と交わる磁力線と第−及び第二の陰極の陽 ′極1偶
の表面は円柱を形成し、放電を維持する電子群は円柱内
だけに存在する。互に隣抄合う翼片13の間の空間へ入
った電子は磁場に沿って翼片12に衝突し吸収されるの
で、翼片13及び基体11により三方向を囲まれ、他の
一方向は陽極の中空部の軸心に面する空間には放電は生
成されない、既に述ぺ九如く、放電で生成され九イオン
は実際上全て第二の陰蝋の棒状部32bに衝突する。
Next〈Anode 1-12 whose embodiment is shown in Figs. 5 and 6
) Consider the negative effect of lI#t. The lines of magnetic force that intersect with the inner surface of the blade 13 and the surfaces of the anodes of the first and second cathodes form a cylinder, and the electron group that maintains the discharge exists only within the cylinder. Electrons that enter the space between the adjacent blades 13 collide with the blades 12 along the magnetic field and are absorbed, so they are surrounded in three directions by the blades 13 and the base 11, and the other direction is surrounded by the blades 13 and the base 11. No discharge is generated in the space facing the axis of the hollow part of the anode.As already mentioned, all of the ions generated by the discharge actually collide with the second negative wax rod-shaped part 32b.

イオン衝突によりスパッタされた棒状部のゲッタ物質の
僅かの部分は二個の陰極のいずれかに衝突するが、スパ
ッタされたゲッタ物質の大部分は陽極1の内面のどこか
に衝突して捕獲され堆積する。
A small portion of the getter material in the rod-shaped part sputtered by ion bombardment collides with either of the two cathodes, but most of the sputtered getter material collides somewhere on the inner surface of the anode 1 and is captured. accumulate.

本発明の陽極の構成によ抄スパッタされ九ゲッタ物質の
大部分は基体11の内面か翼片13の側面に堆積し、そ
こに吸着されてい九電体分子の埋込み作用を伴って堆積
噛を形成する。S体11及び翼片13の四面は上述の如
く放電を維持する電子群から隔離されているので、基体
11及び翼片13に形成された堆積曖は放電によに破壊
されることがなく、堆積−が破壊され、なV%儲果放電
の安定性は非常に良好となる。
According to the configuration of the anode of the present invention, most of the sputtered nine-getter material is deposited on the inner surface of the base 11 or the side surface of the wing piece 13, and is adsorbed there, and the deposition is accelerated by the embedding action of nine-electric molecules. Form. Since the four surfaces of the S-body 11 and the wing pieces 13 are isolated from the electron group that maintains the discharge as described above, the deposits formed on the base body 11 and the wing pieces 13 are not destroyed by the discharge. The deposits are destroyed and the stability of the V% discharge becomes very good.

翼片13の端面にも、スパ′ツタされ九ゲッタ物質の一
部が衝突し堆積する。堆積したゲッタ物質の一部は電子
群によ抄空間へ放出され、その際。
A part of the spattered getter material also collides with and deposits on the end face of the blade 13. A part of the deposited getter material is ejected into the paper space by the electron group.

放題電流の急増等放電の、不安定をひき起すが、上記円
柱側面の面積に占める翼片13の端一の面積の割合が非
常に小さいので、不安定がひき起こされる割合は軽微な
ものである。更に電子群により空間へ放出され九翼片1
3の端面からの物質の大、部分は、基体11及び翼片1
3の側11に堆積するので、翼片13の端面へのゲッタ
物質の堆積による寸法変化は非常に小さなものとなり、
寸法変化による放電状態の変化にともなうイオンポンプ
の排気速賓の変化を非常に遅くすることができる。
A rapid increase in unrestricted current may cause instability in the discharge, but since the ratio of the area of the end of the blade 13 to the area of the cylindrical side surface is very small, the rate of instability caused is negligible. be. Furthermore, nine winglets 1 are emitted into space by a group of electrons.
A large portion of the material from the end face of the base body 11 and the wing piece 1
Since the getter material is deposited on the side 11 of the blade 13, the dimensional change due to the deposition of the getter material on the end face of the wing piece 13 is very small.
Changes in the exhaust speed of the ion pump due to changes in the discharge state due to dimensional changes can be made very slow.

これが本発明の目的である第二の効果の実現である。This is the realization of the second effect which is the object of the present invention.

【図面の簡単な説明】 第1図は従来の三極形イオンポンプを示す断面図、第2
図は第1図の三極形イオンポンプにおける陰極表面物質
のスパッタリング址を説明する線図、Jla図は本発明
の一実癩例を示す三極形イオンポンプの縦断面図、第4
図はその具体的実施例の横断面図、第5図は本発明の他
の実施例を示す縦断面図1.第6図は第5図のMM断面
図、第7図は本発明の二極形イオンポンプにおけるスパ
ッタリ/グ1を説明する線図である。 1・・・陽極s2・・・陽極の中空部、3・・・陰極、
4・・・収集電極、5・・・磁場、8,9・・・直流電
源6.10・・・磁石、11・・・4i体、13・・・
翼片、31・・・第1の陰極、32・・・第二の陰極、
32a・・・板状部、32b・・・棒状部。 第 1  図            1( ど2 第2図 兵1 第6図 !
[Brief explanation of the drawings] Figure 1 is a sectional view showing a conventional triode ion pump;
The figure is a line diagram explaining the sputtering site of the cathode surface material in the triode ion pump of Figure 1, the Jla diagram is a longitudinal sectional view of the triode ion pump showing an example of the present invention, and the fourth
The figure is a cross-sectional view of a specific embodiment, and FIG. 5 is a longitudinal cross-sectional view showing another embodiment of the present invention. FIG. 6 is a MM cross-sectional view of FIG. 5, and FIG. 7 is a diagram illustrating the sputtering/gating 1 in the bipolar ion pump of the present invention. 1... Anode s2... Hollow part of the anode, 3... Cathode,
4... Collection electrode, 5... Magnetic field, 8, 9... DC power supply 6.10... Magnet, 11... 4i body, 13...
wing piece, 31... first cathode, 32... second cathode,
32a...Plate-shaped part, 32b... Rod-shaped part. Figure 1 Figure 1 ( Do 2 Figure 2 Soldier 1 Figure 6!

Claims (1)

【特許請求の範囲】 11)貢通し喪中空部を有する陽極と誼陽極の両開口に
離間、かつ近接して配設され該−開口を覆う形状を有す
る第一の陰極と、該陽極と諌陽極と該第−の陰極間に電
圧を印加する手段と、該陽極の他の開口に離間かつ近接
して配設され誼砺の開口を覆う形状を有する板状部と該
陽極の中空部を鋏陽極と離間して貫通する少くともその
表面はゲッタ物質で形構され丸棒状部とで形成される第
二の陰極と、該第二の陰極に該第−の陰極よ)負の電位
を与える手段と、該陽極の中空部にその軸心に実質的に
平行な磁場を発生する手段と、を有することを特徴とす
る三極形イオンポンプ。 12)陽極+d1田通した中空部を有する基体と、該基
体に固着され該基体の軸心に向って延在し、かつ相互に
接触しない複数の翼片と、を有することを特徴とする特
許請求の範囲第1項に記載の三極形イオンポンプ。
[Scope of Claims] 11) A first cathode having a shape that covers the openings of the anode and the anode, the first cathode having a shape that covers the openings of the anode and the anode having a hollow part; a means for applying a voltage between the anode and the second cathode; a plate-like part disposed apart from and close to the other opening of the anode and having a shape that covers the opening of the anode; and a hollow part of the anode; a second cathode formed of a round rod-shaped part whose surface is made of getter material and which penetrates the scissor anode and is spaced apart from the scissor anode; and means for generating a magnetic field substantially parallel to the axis of the anode in the hollow portion of the anode. 12) A patent characterized in that it has a base body having a hollow portion through which an anode + d1 is passed, and a plurality of wing pieces that are fixed to the base body, extend toward the axis of the base body, and do not come into contact with each other. A triode ion pump according to claim 1.
JP14960881A 1981-09-24 1981-09-24 Triode type ion pump Pending JPS5853144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14960881A JPS5853144A (en) 1981-09-24 1981-09-24 Triode type ion pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14960881A JPS5853144A (en) 1981-09-24 1981-09-24 Triode type ion pump

Publications (1)

Publication Number Publication Date
JPS5853144A true JPS5853144A (en) 1983-03-29

Family

ID=15478920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14960881A Pending JPS5853144A (en) 1981-09-24 1981-09-24 Triode type ion pump

Country Status (1)

Country Link
JP (1) JPS5853144A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018056117A (en) * 2016-09-08 2018-04-05 エドワーズ バキューム リミテッド ライアビリティ カンパニー Ion trajectory manipulation architecture in ion pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018056117A (en) * 2016-09-08 2018-04-05 エドワーズ バキューム リミテッド ライアビリティ カンパニー Ion trajectory manipulation architecture in ion pump

Similar Documents

Publication Publication Date Title
US4710283A (en) Cold cathode ion beam source
JP3397786B2 (en) Magnetron sputter ion plating
JPS59133370A (en) Magnetron sputtering device
JPH01168862A (en) Apparatus and method for especially producing glass sheet for adhesion of membrane to transparent support
JPS5853144A (en) Triode type ion pump
JPH0423400B2 (en)
JPS5822855B2 (en) Triode ion pump
JPH024979B2 (en)
WO2001092595A1 (en) Unbalanced plasma generating apparatus having cylindrical symmetry
WO2023169135A1 (en) Ion generation device for straight tube square electromagnetic ion implantation equipment
JPH10275566A (en) Ion source
JP3213135B2 (en) Fast atom beam source
JP4647476B2 (en) Deposition equipment
JP3409881B2 (en) RF discharge ion source
JPS58157046A (en) Triple-pole ion pump
JP2835383B2 (en) Sputter type ion source
JPS5996266A (en) Sputtering device
JPS5875751A (en) Ion pump
JPS5924186B2 (en) sputtering equipment
EP0095879B1 (en) Apparatus and method for working surfaces with a low energy high intensity ion beam
JPS58155638A (en) Ion pump
JPH01201467A (en) Ion source
JP2000080470A (en) Sputtering device having deflecting system
JPH1064437A (en) Ion beam generating device
JPS5854466B2 (en) Magnetic field discharge device