JPS5852252A - Method for decomposition of addition compound of dipeptide ester and amino acid ester - Google Patents

Method for decomposition of addition compound of dipeptide ester and amino acid ester

Info

Publication number
JPS5852252A
JPS5852252A JP14875681A JP14875681A JPS5852252A JP S5852252 A JPS5852252 A JP S5852252A JP 14875681 A JP14875681 A JP 14875681A JP 14875681 A JP14875681 A JP 14875681A JP S5852252 A JPS5852252 A JP S5852252A
Authority
JP
Japan
Prior art keywords
ester
acid
decomposition method
addition compound
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14875681A
Other languages
Japanese (ja)
Other versions
JPH0212240B2 (en
Inventor
Kiyotaka Koyama
小山 清孝
Shigeaki Irino
入野 滋哲
Norio Hagi
規男 萩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute
Tosoh Corp
Original Assignee
Sagami Chemical Research Institute
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute, Toyo Soda Manufacturing Co Ltd filed Critical Sagami Chemical Research Institute
Priority to JP14875681A priority Critical patent/JPS5852252A/en
Priority to DE8282108116T priority patent/DE3274985D1/en
Priority to EP82108116A priority patent/EP0075160B1/en
Priority to AU88018/82A priority patent/AU554836B2/en
Priority to US06/415,912 priority patent/US4487717A/en
Priority to BR8205516A priority patent/BR8205516A/en
Priority to CA000411792A priority patent/CA1186648A/en
Priority to DD82272585A priority patent/DD232499A5/en
Publication of JPS5852252A publication Critical patent/JPS5852252A/en
Publication of JPH0212240B2 publication Critical patent/JPH0212240B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To decompose the titled compound in high efficiency, by adding an organic solvent and an acid to an aqueous mixture containing the addition compound of dipeptide ester and amino acid ester to effect the decomposition of the addition compound, and separating both components to the organic solvent phase and the aqueous phase. CONSTITUTION:The amino acid ester of formulaI(R1 is lower alkyl; R2 is side chain of amino acid) is made to react with the N-protected carboxylic acid of formula II (X is benzyloxycarbonyl; n is 1 or 2) in an aqueous medium in the presence of proteinase, and the resultant aqueous mixture containing the addition compound of formula III (R4 is R1; R3 is R2) as solid phase is mixed with an organic solvent capable of forming two phases with water (e.g. toluene) and an acid (e.g. inorganic Broensted acid). The amount of the acid is 1-10 equivalent per 1mol of the addition compound. The mixture is separated into the organic solvent phase containing the dipeptide ester of formula IV as a solid and an aqueous phase containing the amino acid ester of formulaI, to complete the decomposition of the addition compound to each component.

Description

【発明の詳細な説明】 本発明は、ジペプチドエステルとアミノ酸エステルとの
付加化合物の分解法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for decomposing an addition compound of a dipeptide ester and an amino acid ester.

更に詳しくはジペプチドエステルとアミノ酸エステルと
の付加化合物を酸で分解し、有機溶媒を用いて両成分を
分離する方法に関するものである。
More specifically, the present invention relates to a method of decomposing an addition compound of a dipeptide ester and an amino acid ester with an acid and separating both components using an organic solvent.

ジペプチドエステル、例えばN−ベンジルオキシカルボ
ニル−α−L−アスパルチルーL−フェニルアラニン低
級アルキルエステルとアミノ酸エステル、例えばフェニ
ルアラニン低級アルキルエステルやバリン低級アルキル
エステルなどとの付加化合物は、甘味剤であるα−L−
アスパルチルーL−7エニルアラニン低級アルキルエス
テルへの中間体として、あるいはラセミ体アミノ酸エス
テルの光学分割の中間体などとして有用な化合物である
Addition compounds of dipeptide esters, such as N-benzyloxycarbonyl-α-L-aspartyl-L-phenylalanine lower alkyl esters, and amino acid esters, such as phenylalanine lower alkyl esters and valine lower alkyl esters, are sweeteners such as α-L-
It is a compound useful as an intermediate to aspartyl-L-7enylalanine lower alkyl ester or as an intermediate for optical resolution of racemic amino acid ester.

この様な付加化合物はN−保繰アミノジカルボン酸とア
ミノ酸エステルを水“性媒体中、蛋白分解酵素の存在下
で反応させることにより(特開昭53−92729.特
開昭54−9226) 、あるいはジペプチドエステル
とアミノ酸エステルとを水などの溶媒中で反応させるこ
と(%開昭55−19234.特開昭55−73644
)などKよシ得られる。
Such an addition compound can be produced by reacting N-carboxylic amino dicarboxylic acid and an amino acid ester in an aqueous medium in the presence of a protease (JP-A-53-92729, JP-A-54-9226). Alternatively, a dipeptide ester and an amino acid ester may be reacted in a solvent such as water (% 19234/1986; 73644/1984).
) etc. can be obtained.

こうして得られる付加化合物は水に難溶性であるが水性
媒体中で酸で処理すると分解し、酸性水溶液にJll溶
性のジペプチドエステルと、易溶性のアミノ酸エステル
塩を与える。そして系はアミノ酸エステル塩を溶質とし
て、かつジペプチドエステルを固相で含む水性混合液と
なる。この水性混合液から分離されるジペプチドエステ
ルはその保獲基を除去することにより直ちにそれ自体有
用な化合物1例えば前述したα−L−アスパルチルーL
−フェニルアラニン低級アルキルエステルなどに変換す
ることができるし、アミノ酸エステルは上述した付加化
合物調製の際にラセミ体を用いても、光学純度の高い状
態で得ることができるので。
The adduct compound thus obtained is sparingly soluble in water, but decomposes when treated with acid in an aqueous medium, giving a Jll-soluble dipeptide ester and an easily soluble amino acid ester salt in an acidic aqueous solution. The system then becomes an aqueous mixture containing the amino acid ester salt as the solute and the dipeptide ester in the solid phase. By removing the covalent group, the dipeptide ester separated from this aqueous mixture immediately becomes a useful compound 1 in itself, such as the above-mentioned α-L-aspartyl-L.
- It can be converted into phenylalanine lower alkyl ester, etc., and the amino acid ester can be obtained in a state of high optical purity even if the racemic form is used in preparing the above-mentioned addition compound.

この分解及び分離をいかに効率よく行うかは極めて重要
な課題である。
How to efficiently perform this decomposition and separation is an extremely important issue.

前述した刊行物中には固体の付加化合物を酸性水溶液と
混合反応させ:・□・反応混合液を固液分離し、ジペプ
チドエステルを固相として回収し、一方他方の成分であ
るアミノ参に垂撃酸エステルヲ水性溶液として分離回収
する方法(%開昭54−9226)や付加化合物と酸性
水溶液の混合液中に酢酸エチルのようなジペプチドエス
テルをよく溶解し、かつ水と二相をなすような有機溶媒
を加え、ジペプチドエステルを有機相に他方の成分を酸
性水相中にそれぞれ均一溶液として分離し1回収する方
法(特開昭53−92729 )が開示されている。
In the above-mentioned publications, a solid addition compound is mixed and reacted with an acidic aqueous solution:・□・The reaction mixture is solid-liquid separated, the dipeptide ester is recovered as a solid phase, and one is added to the other component, aminosulfate. A method for separating and recovering pernicious ester as an aqueous solution (% 9226/1986) and a method in which a dipeptide ester such as ethyl acetate is well dissolved in a mixture of an addition compound and an acidic aqueous solution and form two phases with water. A method is disclosed in which an organic solvent is added and the dipeptide ester is separated into an organic phase and the other component is separated into an acidic aqueous phase as a homogeneous solution and recovered once (Japanese Patent Laid-Open No. 53-92729).

しかしながらこの場合抽出を効率よく行うためには水と
二相を形成することができると同時にジペプチドエステ
ルに対する溶解力の大きい有機溶媒を使用する必要があ
るが、この様な有機溶媒は酢酸エチル等のエステル類や
クロロホルム、二塩化エタン等のノ・ロゲン化ア火キル
類等、比較的限られている。ところがエステル類につい
ては加水分解の問題があり、 f7’tノ・ロダン化ア
ルキル類については近年発ガン性が問題になりている折
力・ら責品等の原料となるジペプチドエステルの処理工
程においては極力その使用を避けることが望ましい。一
方ジペプチドエステルに対する溶解力力Ezj1さい有
機溶媒の場合は、大量に使用すること力!必要であり、
経済上も問題がある。
However, in this case, in order to perform extraction efficiently, it is necessary to use an organic solvent that can form two phases with water and has a high dissolving power for dipeptide esters, but such organic solvents such as ethyl acetate Esters, chloroform, dichloroethane, etc., are relatively limited. However, esters have problems with hydrolysis, and f7't-rodanated alkyls have recently become a problem in the treatment process of dipeptide esters, which are raw materials for cracked and damaged products, etc. It is desirable to avoid its use as much as possible. On the other hand, in the case of organic solvents with low dissolving power for dipeptide esters, it is necessary to use large amounts! is necessary,
There are also economic problems.

本発明者らは、この様な問題点を解決するため付加化合
物の分解法について工業的に有利な方法を鋭意検討した
結果、付加化合物を固相として含む水性混合液に酸及び
水と二相を形成することのできる有機溶媒を混合接触さ
せると意外にも付加化合物の分解によって生成するジペ
プチドエステルの実質的部分が有機溶媒相中にスラリー
の形でとり込まれアミノ酸エステルを含む均一水相から
効果的に分離することを見い出し、本発明を完成した。
In order to solve these problems, the present inventors have intensively investigated an industrially advantageous method for decomposing adduct compounds. When organic solvents capable of forming amino acid esters are mixed and contacted, surprisingly, a substantial portion of the dipeptide ester produced by the decomposition of the adduct is incorporated in the organic solvent phase in the form of a slurry, leaving the homogeneous aqueous phase containing the amino acid ester. They discovered that the separation can be carried out effectively and completed the present invention.

即ち本発明は、一般式 で表わされるジペプチドエステルとアミノ酸エステルと
の付加化合物(式中R8及びR1は低級アルキル基、R
2及びR3はアミノ酸の側鎖基、x社核に置換基を有す
ることのあるベンジルオキシカルボニル基であル、nは
1又Fi2である)を同相として含む水性混合液に水と
二相を形成することのできる有機溶媒及び酸を加えて混
合接触させてこの付加化合物を分解し、一般式 で表わされるジペプチドエステル(式中R3,R4。
That is, the present invention provides an addition compound of a dipeptide ester and an amino acid ester represented by the general formula (wherein R8 and R1 are lower alkyl groups, R
2 and R3 are side chain groups of amino acids, x is a benzyloxycarbonyl group that may have a substituent on the nucleus, n is 1 or Fi2). The adduct is decomposed by mixing and contacting an organic solvent and an acid that can be formed to decompose the dipeptide ester of the general formula (wherein R3, R4).

X及びnti前記同様である)の実質的部分を固相で含
む有機溶媒相と、一般式 %式%) で表わされるアミノ酸エステル(式中R□及びへは前記
同様である)を含む水相との二液相を形成させ、有機溶
媒相と水相を分離することを特徴とするジペプチドエス
テルとアミノ酸エステルとの付加化合物の分解法を提供
するものである。
an organic solvent phase containing a substantial portion of X and nti (as above) as a solid phase, and an aqueous phase containing an amino acid ester represented by the general formula (%) (wherein R□ and □ are as above) The present invention provides a method for decomposing an adduct compound of a dipeptide ester and an amino acid ester, which is characterized by forming two liquid phases with the organic solvent and separating the aqueous phase from the organic solvent phase.

文 本発明で出発原料として用いる水性混合・中に含まれる
一般式(1)で表わされる付加化合物は、その式中Uが
1のときアスパラギン酸の、nが2のときグルタミン酸
の骨格を含むものである。
The addition compound represented by the general formula (1) contained in the aqueous mixture used as a starting material in the present invention contains an aspartic acid skeleton when U is 1, and a glutamic acid skeleton when n is 2.

R1及びR4はそれぞれ共通の又は別異のメチル基、エ
チル基、プロピル基婢の低級アルキル基である。
R1 and R4 are each a common or different lower alkyl group such as a methyl group, an ethyl group, or a propyl group.

R3及びRs Fiそれぞれメチル基、イソプロピル基
、イソプデル基、イソアミル基、ベンジル基。
R3 and Rs Fi are each a methyl group, an isopropyl group, an isopdel group, an isoamyl group, and a benzyl group.

p−ヒドロキシベンジル基等のアミノ酸の側鎖基で69
.互に共通のときと別異のときを含む。Rsとして扛ベ
ンジル基が特に好ましい。
69 in side chain groups of amino acids such as p-hydroxybenzyl group
.. Including times when they are common and times when they are different. A benzyl group is particularly preferred as Rs.

)Iベンジルオキシカルボニル基、p−メトキシベンジ
ルオキシカルボニル基の様な核Kt換基ヲ有することの
あるベンジルオキシカルボニル基である。
)I benzyloxycarbonyl group, which may have a nuclear Kt substituent such as p-methoxybenzyloxycarbonyl group.

一般式(1)で表わされる付加化合物を同相で含む水性
混合#LFi、一般式 で表わされるアミノ酸エステルと、一般式で表わされる
N−保獲アミノジカルボン酸(式中X及びu杜前記同様
の意味を表わす)を水性媒体中、蛋白分解酵素の存在下
で反応させて、水性媒体中に一般式(1)で表わされる
付加化合物を析出させることによシ調製することができ
る。この場合R,FiRlと、R4はR□と共通である
。ま九この場合。
An aqueous mixture #LFi containing the addition compound represented by the general formula (1) in the same phase, an amino acid ester represented by the general formula, and an N-polyaminodicarboxylic acid represented by the general formula (in the formula, X and uD are the same as above). It can be prepared by precipitating the addition compound represented by the general formula (1) in the aqueous medium by reacting the compound (representing the meaning) in the presence of a protease in an aqueous medium. In this case, R, FiRl, and R4 are common to R□. In this case.

一般式値)で表わされるアミノ酸エステル及び一般式■
で表わされるN−保護アミノジカルボン酸として、各々
のL一体を用いてもラセミ体を用いても得られる一般式
(1)で表わされる付加化合物のジペプチド部分は常K
LL−型である。アミノ酸エステル部分は用いる一般式
(Vで表わされるアミノ酸エステルがL一体のときはこ
れに従うが、ラセミ体のときはほとんどD−型である。
Amino acid ester represented by general formula value) and general formula■
As the N-protected aminodicarboxylic acid represented by, the dipeptide moiety of the addition compound represented by the general formula (1), which can be obtained either by using each L monomer or by using the racemate, is always K
It is LL-type. The amino acid ester moiety follows the general formula (represented by V) when the amino acid ester is L-unit, but when it is racemic, it is mostly D-type.

なお以下一般式(1)で表わされる付加化合物、同(幻
で表わされるジペノ°テドエステル、同(1)で表わさ
れるアミノ酸エステル及び同(2)で表わされるN−保
護アミノジカルボン酸はそれぞれ付加化合物ジペプチド
エステル、アミノ酸エステル及びN−保護アミノジカル
ボン酸と云う。
In addition, the addition compound represented by general formula (1), the dipenotedoester represented by the general formula (phantom), the amino acid ester represented by the same (1), and the N-protected aminodicarboxylic acid represented by the same (2) are adduct compounds, respectively. They are called dipeptide esters, amino acid esters, and N-protected aminodicarboxylic acids.

上述の方法による付加化合物の調製は特開昭53−92
729号公報等に記載されている公知の条件及び同55
−73644号公報等に開示されている様にジペプチド
エステルを水性溶媒中でアミノ酸エステルと反応させる
ことKよっても調整できる。この場合、ジペプチドエス
テルのLL一体を用いてラセミ体のアミノ@[有]・@
酸エステルと反応させると王にD=体のアミノ・・@0
酸エステルと付加化合物を形成する。このようKして得
られた付加化合物を水性媒体中にm濁させ本発明の原料
とすることができる。この場合には、光学分割をうけた
アミン・・邪[相]酸エステルを水相から、有機相から
は、ジペプチドエステルをそれぞれ分離回収することが
できる。
The preparation of the addition compound by the above-mentioned method is described in JP-A-53-92.
Known conditions described in Publication No. 729, etc. and No. 55
It can also be prepared by reacting a dipeptide ester with an amino acid ester in an aqueous solvent as disclosed in Japanese Patent No. 73644 and the like. In this case, racemic amino@[Yes]・@
When reacted with acid ester, D = body amino...@0
Forms addition compounds with acid esters. The addition compound thus obtained can be turbid in an aqueous medium and used as a raw material for the present invention. In this case, the optically resolved amine acid ester can be separated and recovered from the aqueous phase, and the dipeptide ester can be separated and recovered from the organic phase.

本発明の方法で用いる水性混合液は以上例示した方法に
よって調整された水性混合液に限定されるものでなく、
上記の方法又はその他の方法で得た付加化合物を水に懸
濁した混合液であってよい。
The aqueous mixture used in the method of the present invention is not limited to the aqueous mixture prepared by the method exemplified above,
It may be a mixed solution in which the addition compound obtained by the above method or another method is suspended in water.

本発明で原料として用いる水性混合液の付加化合物の含
有量は、酸を加えた後の水相の量を後述する量とするこ
とのできる含有量の範囲である。
The content of the addition compound in the aqueous mixture used as a raw material in the present invention is within a content range that allows the amount of the aqueous phase after addition of the acid to be the amount described below.

本発明の方法において使用される有機溶媒としては、ト
ルエン、ベンゼン等の芳香族炭化水素類。
The organic solvent used in the method of the present invention includes aromatic hydrocarbons such as toluene and benzene.

n−ヘキサン、n−へブタン、シクロヘキサン等の脂肪
族系炭化水素類、ジェナルエーテル、ジイノプ口ピルエ
ーテル等のエーテル類、又は、これらの混合液を好適な
例として挙げることができる。
Suitable examples include aliphatic hydrocarbons such as n-hexane, n-hebutane, and cyclohexane, ethers such as genal ether and diinopropyl ether, and mixtures thereof.

妨 これら以外の有機溶媒についても二相の形成を跨げない
程度であればこれらの有機溶媒と混合して使用してもさ
しつかえない。
Organic solvents other than these may also be used in combination with these organic solvents as long as they do not interfere with the formation of two phases.

本発明の方法において有機相中にスラリーとして分離さ
れたジペプチドエステルのうちXがベンジルオキシカル
ボニル基の場合には、還元により脱ベンジルオキシカル
ボニルを行うとトルエンを生じる。従って上記溶媒のう
ちトルエンを用いると溶媒の置換を行うことなく還元反
応を行うことが可能でおり、特に有利である。
In the case where X of the dipeptide ester separated as a slurry in the organic phase in the method of the present invention is a benzyloxycarbonyl group, toluene is produced when debenzyloxycarbonyl is removed by reduction. Therefore, among the above solvents, toluene is particularly advantageous because it allows the reduction reaction to be carried out without replacing the solvent.

有!!#媒の使用量は、水性混合液中の付加化合物1重
量部に対して一般的には約1ないし約20重量部、好ま
しくは約2ないし約15重量部、最も好ましくは約3な
いし約10重量部である。
Yes! ! The amount of the solvent used is generally about 1 to about 20 parts by weight, preferably about 2 to about 15 parts by weight, and most preferably about 3 to about 10 parts by weight, per 1 part by weight of the addition compound in the aqueous mixture. Parts by weight.

本発明の方法において化合物■と反応させる酸としては
無機又は有機のブロンステ、ド酸を用いる。無機のブロ
ンステッド酸の例としては塩酸。
In the method of the present invention, an inorganic or organic Bronste acid is used as the acid to be reacted with the compound (1). An example of an inorganic Bronsted acid is hydrochloric acid.

臭化水素酸、硫酸、リン酸等を埜げることができる。有
機のブロンステッド酸の例としては、ギ酸。
Hydrobromic acid, sulfuric acid, phosphoric acid, etc. can be avoided. An example of an organic Bronsted acid is formic acid.

酢酸、クエン酸、トルエンスルホン酸等を挙けることが
できる。これらの酸り水溶液の形で用いることができる
。その濃度には格別の限定はないので、後述水相の量か
ら他律的に定めてよい。
Examples include acetic acid, citric acid, toluenesulfonic acid, and the like. These acids can be used in the form of aqueous solutions. Since there is no particular limitation on its concentration, it may be determined heteronomously from the amount of the aqueous phase described below.

ま7’4.H−型陽イオン交換樹脂等の固体の酸も使用
できる。この場合この様な固体酸は系の最下部に沈降す
る。
Ma7'4. Solid acids such as H-type cation exchange resins can also be used. In this case, such solid acids settle to the bottom of the system.

本発明の酸の使用i1は本発明が本質的に付加化合物の
アミノ≠=≠;療エステルの部分を酸によって電離させ
、その塩の水□溶液とするものである(ただし固体酸を
用いるときはアミノ酸エステルは固体酸の水素イオンと
イオン交換されて液相系外に出る−から、化学量論量又
は、それ以上即ち付加化合物1モルに対して約1ないし
約100当量。
Use i1 of the acid of the present invention is that the present invention essentially ionizes the amino≠=≠; therapeutic ester part of the addition compound with an acid to form a solution of its salt in water (however, when a solid acid is used, Since the amino acid ester is ion-exchanged with hydrogen ions of the solid acid and exits the liquid phase system, the amount is stoichiometric or more, that is, about 1 to about 100 equivalents per mole of the addition compound.

好ましくは約1ないし約20当量、最も好ましく必要と
しない場合もあり得るので、その様な場合は化学量論以
下の量を用いることを妨げるものでない。
Preferably from about 1 to about 20 equivalents, most preferably not required in some cases, and this does not preclude the use of substoichiometric amounts in such cases.

本発明の方法は水性混合液の水性媒体及び酸咎に由来す
る水相の童が付加化合物1m蓋部に対して通常的0.3
ないし約20重量部、好ましくは約0.5ないし約15
重量部、最も好ましくは約1ないし約101i量部の範
囲内となる様にして行なう。
The method of the present invention is characterized in that the amount of water phase derived from the aqueous medium and acid salt of the aqueous mixture is typically 0.3 m/m of addition compound.
from about 20 parts by weight, preferably from about 0.5 to about 15 parts by weight
Parts by weight, most preferably within the range of about 1 to about 101 parts by weight.

本発明の方法において付加化合物を分解し、相分離を行
なうときの温度は通常的Oないし約100℃、好ましく
は約5ないし約80℃である。付加化合物の分解反応は
攪拌が十分であれば1通常10分以内程度で終結する。
In the method of the present invention, the temperature at which the adduct is decomposed and the phase separation is carried out is generally from 0 to about 100°C, preferably from about 5 to about 80°C. The decomposition reaction of the addition compound is usually completed within about 10 minutes if stirring is sufficient.

但し保嚢基Xが比較的加水分解され易い基1例えばp−
メトキシベンジルオキシカルボニル基の様な場合は、積
極的にこれらの基の離脱を同時に行なう場合及びその離
脱を許しても支障のない場合を除き、。これらの基の離
脱を起さない様1反応時間及び反応温度に注意する必要
がある。
However, the cystic group X is a relatively easily hydrolyzed group 1, such as p-
In the case of a methoxybenzyloxycarbonyl group, this is not the case unless these groups are actively removed at the same time or there is no problem in allowing the removal. It is necessary to pay attention to the reaction time and reaction temperature so as not to cause separation of these groups.

付加化合物は、固体であるが酸(酸性水溶液)との接触
によって分解されてジペプチドエステルと、アミノ酸エ
ステルの酸との塩となる。ジペプチドエステルIIi、
酸性水浴液に対する溶解度が小さいのでその実質的部分
がスラリーとし゛C有機溶媒相に存在する。一方アミノ
酸エステルの塩は酸性水溶液によく溶解するので固体酸
を用いたとき以外は水相中に溶は込む。固体酸を用いた
ときはその塩として沈殿する。こうして反応系はジペプ
チドエステルのスラリーを含む有機相とアミノ酸うこと
ができる。アミノ酸エステル固体酸塩からの回収も慣用
の手段で容易にできる。
Although the addition compound is a solid, it is decomposed by contact with an acid (acidic aqueous solution) to become a dipeptide ester and a salt of an amino acid ester with an acid. dipeptide ester IIi,
Because of its low solubility in acidic water baths, a substantial portion of it exists as a slurry in the organic solvent phase. On the other hand, salts of amino acid esters dissolve well in acidic aqueous solutions, so they dissolve into the aqueous phase unless a solid acid is used. When a solid acid is used, it precipitates as its salt. Thus, the reaction system can include an organic phase containing a slurry of dipeptide esters and amino acids. Recovery from amino acid ester solid acid salts can also be easily performed by conventional means.

有機スラリー相からは慣用の方法1例えばt”過、遠心
沈降もしくFi溶媒を留去する等のj5法によシジペグ
チドエステルを回収することができる。
The cydipegtide ester can be recovered from the organic slurry phase by a conventional method such as t'' filtration, centrifugal sedimentation, or distillation of the Fi solvent.

ま良有機スラリー相は、そのまま次工程において脱係鏝
基反応等を行うことができる。特にジペプチドエステル
の一般式(鳳)のXがベンジルオキシカル、f?ニル基
で有機溶媒がトルエンの場合には、こに移るので効果的
にN−保護基の離脱を行なうことができると同時に、離
脱した保護基はトルエンとな夛、これは溶媒のトルエン
と共通であるので。
The organic slurry phase can be directly subjected to a debinding reaction in the next step. In particular, in the general formula (Otori) of dipeptide ester, X is benzyloxycal, f? When the organic solvent is toluene for a nyl group, the N-protecting group can be effectively removed because the organic solvent is transferred to this, and at the same time, the removed protecting group is converted to toluene, which is the same as the solvent toluene. Because it is.

この離脱反応で溶媒を汚染することがない。それ故こう
して使用された溶媒トルエンは容品に回収され、再使用
できる。
This elimination reaction does not contaminate the solvent. The solvent toluene thus used can therefore be collected in a container and reused.

この方法は付加化合物の一般式(1)中の8□及びへが
メデル基、nが1の場合に適用して低カロリー甘味剤で
めるアスパルテームを製造する工業的方法として特に有
効である。
This method is particularly effective as an industrial method for producing aspartame as a low-calorie sweetener when applied to the case where 8□ and he is a Medel group in the general formula (1) of the addition compound, and n is 1.

本発明の方法において有機スラリー相から分離した酸性
水相からは慣用の方法1例えばこれを鏝縮してアミノ酸
エステルを塩の形で晶出させるとか、或は液性をアルカ
リ性とした後、適当な有機溶媒で抽出する等の方法によ
ってアミノ濠エステルを回収することができる。
In the method of the present invention, the acidic aqueous phase separated from the organic slurry phase is prepared by a conventional method 1, for example, by condensing it to crystallize the amino acid ester in the form of a salt, or by making the liquid alkaline and then using a suitable method. The amino moat ester can be recovered by a method such as extraction with a suitable organic solvent.

なお本発明で用いる原料の成分である付加化合物を前述
した特開昭53−92729号の方法で得た場合にはそ
のジペプチドエステル部分は、LL−型であるが、アミ
ノ酸エステル部分はL−型の場合。
Note that when the addition compound, which is a component of the raw material used in the present invention, is obtained by the method described in JP-A No. 53-92729, the dipeptide ester portion thereof is of the LL-type, but the amino acid ester portion is of the L-type. in the case of.

D−型の場合及び両者の混合型の場合があり得る。There may be a D-type case or a mixed type of both.

本発明の方法はこのいずれの場合にも適用可能である。The method of the present invention is applicable to any of these cases.

またジペプチドエステル部分がDD−型、DL−型又は
LD−型の場合にも適用可能である。
It is also applicable when the dipeptide ester moiety is DD-type, DL-type or LD-type.

なお本発明の方法は付加化合物を有機溶媒中へ懸濁させ
て含む懸濁液から出発し、これに水と酸を加えることに
よっても達成できるので1本発明はこの様な方法をも含
むものである。このことはこの様な手法で原料の混合を
行な−)九とき1本発明の一般的に述べた手法で得られ
る状態と同一の状態が達成できることから自明である。
Note that the method of the present invention can also be achieved by starting from a suspension containing the addition compound in an organic solvent and adding water and an acid thereto, so the present invention also includes such a method. . This is obvious from the fact that by mixing the raw materials in this manner, the same conditions as those obtained by the generally described technique of the present invention can be achieved.

本発明で得られるジペプチドエステルは、ペグチド合成
での中間体としてそれ自体有用であるが。
Although the dipeptide esters obtained in the present invention are themselves useful as intermediates in pegtide synthesis.

そのアミノ基の保護基Xを離脱させて得られるジペプチ
ドエステルも分有用な化合物である。例えばすでに述べ
た様にα−L−アスパルチルーL−フェニルアラニンメ
チルエステルは甘味剤として有用である。また、ジペプ
チドエステルとラセミ体アミノ参社ホー酸エステルとを
混合して形成した付加化合物からは、光学分割を受けた
アミノ#sac&=酸エステルを得ることができるので
光学分チドエステルを溶解する必要がないので、少量の
有機溶媒を用いて効果的に付加化合物の分解並びに生成
するジペプチドエステル及びアミノ酸エステルの分離を
行うことができるので工業的に極めて有利である。
A dipeptide ester obtained by removing the protecting group X from the amino group is also a useful compound. For example, as mentioned above, α-L-aspartyl-L-phenylalanine methyl ester is useful as a sweetening agent. Furthermore, from the addition compound formed by mixing a dipeptide ester and a racemic aminosansha foronic acid ester, an optically resolved amino #sac&=acid ester can be obtained, so it is not necessary to dissolve the optically resolved tide ester. Therefore, it is extremely advantageous industrially because it is possible to effectively decompose the adduct and separate the produced dipeptide ester and amino acid ester using a small amount of organic solvent.

実施例1 N−ベンジルオキシカルボニル−L−アスノ(ラギン酸
53.45fとDI、−7エニルアラニンメテルエステ
ル塩酸塩107.84Fを21のフラスコにと夛蒸留水
400d、5N−水酸化ナトリウム水溶液100wL1
.および粗製サーモライシン(サーモアーゼPg−16
0,商標、大和化成■製)7.21.酢酸力ルシクムー
水塩1.3tを加え、40℃ で攪拌しながら反応させ
た。8時間後、懸濁状の水性混合液から固形物を一部サ
ンプリングし、冷水で充−ターと一致することから、N
−ベンジルオキシカルボニル−α−L −−Tスパルテ
ルーL−フェニルアラニンメチルエステル(以下Z−A
PMと云う)と主にD一体の7エニルアラニンメチルエ
ステルの1=1付加付加物であることを確認した。
Example 1 N-benzyloxycarbonyl-L-asuno (lagic acid 53.45f and DI, -7 enylalanine mether ester hydrochloride 107.84F were added to 21 flasks, distilled water 400d, 5N sodium hydroxide aqueous solution 100wL1
.. and crude thermolysin (Thermoase Pg-16
0, Trademark, manufactured by Daiwa Kasei ■) 7.21. 1.3 t of acetic acid hydrate was added, and the mixture was reacted at 40°C with stirring. After 8 hours, some of the solids were sampled from the suspended aqueous mixture, and since it matched the charger with cold water, N
-Benzyloxycarbonyl-α-L--T Spartel-L-phenylalanine methyl ester (hereinafter referred to as Z-A
It was confirmed that it is a 1=1 addition adduct of 7-enylalanine methyl ester (referred to as PM) and 7-enylalanine methyl ester, which is mainly composed of D.

反応混合液である水性混合液にトルエン60rliuお
よび濃塩酸1001Llを加え60℃で1時間攪拌混合
した。約20分間静置したのち固形分を含むトルエン相
を均一透明な水相から分離した。トルエン相は、200
11Jの蒸留水を用いて60℃で2回洗浄後、室温まで
冷却し、トルエン相の結晶をガラスフィルターによル減
圧下に1取し、乾燥後2−APM74.452 (原料
からの総合収率86.3チ、純度99.31を得た。
60 rliu of toluene and 1001 liters of concentrated hydrochloric acid were added to the aqueous reaction mixture, and the mixture was stirred and mixed at 60° C. for 1 hour. After standing for about 20 minutes, the toluene phase containing solids was separated from the homogeneous transparent aqueous phase. The toluene phase is 200
After washing twice at 60°C with 11 J of distilled water, it was cooled to room temperature, the toluene phase crystals were collected under reduced pressure through a glass filter, and after drying, 2-APM74.452 (total yield from raw materials) was obtained. A yield of 86.3% and a purity of 99.31 were obtained.

実施例2 実施例1においてDL−7エニルアラニンメチルエステ
ル塩酸塩のかわシにL−フェニルアラニンメチルエステ
ル塩酸塩を用い粗製サーモライシン7.2tのかわシに
同3.6t、酢陵カルシウムー水塩1.3tのかわりに
同0.6Fを使用し九以外は実施例1と同様にして反応
を行った。8時間後懸濁状の水性混合液から固形物を一
部サンプリングし。
Example 2 In Example 1, L-phenylalanine methyl ester hydrochloride was used as a substitute for DL-7 enylalanine methyl ester hydrochloride, 7.2 tons of crude thermolysin was substituted with 3.6 tons of crude thermolysin, 1. The reaction was carried out in the same manner as in Example 1 except for using 0.6F instead of 3t. After 8 hours, a portion of the solid matter was sampled from the suspended aqueous mixture.

dご オキシカルボニルサζ−アスパルチル−L−7zニルア
ラニンメチルエステル(Z−APM)とL−フェニルア
ラニンメチルエステルとのx:i付加化合物であること
を確認した。
It was confirmed that it was an x:i addition compound of d-oxycarbonyl-ζ-aspartyl-L-7znylalanine methyl ester (Z-APM) and L-phenylalanine methyl ester.

反応混合液である水性混合液は、実施例1と同様に処理
しトルエン相から濾過によりZ−APMを乾燥後収量7
4. s6y (原料からの総合収率86,4%純度9
9.3チ)1に得た。
The aqueous reaction mixture was treated in the same manner as in Example 1, and after drying Z-APM by filtration from the toluene phase, the yield was 7.
4. s6y (total yield from raw materials 86.4% purity 9
9.3 Ch) Obtained in 1.

実施例3 N−ベンジルオキシカルボニル−a−L−7スパルチル
ーL−フェニルアラニンメチルエステル(2−APM)
 とD−フェニル7ラーLンメチルエステル(以下D−
PMと云う)との1:1付加化合物和O2を蒸留水20
1111に懸濁させた液にトルエン35−とIN−塩酸
水溶液ioyを加え60℃で30分間攪拌した。約20
分間静置後固形分を含むトルエン相を均一透明な水相か
ら分離した。トルエン相は2ONlの蒸留水で2回洗浄
後ロータリーエバポレーターで溶媒を留出させz−Ap
M3,49r(純度99.5チ)を得た。
Example 3 N-benzyloxycarbonyl-a-L-7 spartyl-L-phenylalanine methyl ester (2-APM)
and D-phenyl methyl ester (hereinafter D-
A 1:1 addition compound (referred to as PM) with O2 in distilled water
Toluene 35- and IN-hydrochloric acid aqueous solution IOY were added to the suspension in 1111, and the mixture was stirred at 60°C for 30 minutes. Approximately 20
After standing for a minute, the toluene phase containing solids was separated from the homogeneous transparent aqueous phase. The toluene phase was washed twice with 2ONl of distilled water, and the solvent was distilled off using a rotary evaporator.
M3,49r (purity 99.5%) was obtained.

実施例4 トルエンのかわりにジイソプロピルエーテルを用いた以
外は、実施例3と同様にして操作を行った。Z−APM
3.36tC7iIJA度97.4%)ヲ411゜実施
例5 付加化合物の懸濁水溶液とトルエンおよび塩酸水溶液と
の攪拌混合の温度および時間を25℃および60分に変
更した以外は実施例3と同様にして操作を行った。Z−
APM3.4!V(純度99.7慢)を得た。
Example 4 The operation was carried out in the same manner as in Example 3, except that diisopropyl ether was used instead of toluene. Z-APM
3.36tC7iIJA degree 97.4%)ヲ411゜Example 5 Same as Example 3 except that the temperature and time of stirring and mixing of the suspended aqueous solution of the addition compound and the toluene and hydrochloric acid aqueous solution were changed to 25°C and 60 minutes. The operation was performed as follows. Z-
APM3.4! V (purity 99.7%) was obtained.

実施例6 塩酸のかわりに951硫酸10111jを用い、蒸留水
201Ltのかわりに同30−を使用した以外は実施例
3と同様にして操作を行った。Z−APM3,42f(
純度99.5%)を得た。
Example 6 The operation was carried out in the same manner as in Example 3, except that 951 sulfuric acid 10111j was used instead of hydrochloric acid, and 30-951 was used instead of 201 Lt of distilled water. Z-APM3, 42f (
A purity of 99.5% was obtained.

実施例7 95チ硫酸のかわりに酢酸x、0+jを用いた以外は実
施例6と同様にして操作を行った。Z−APMを3.2
1f (純度91.896)を%fb実施例8 トルエンのかわりにn−ヘプタンを用いた以外は実施例
3と同様にして操作を行った。Z−APMを3.21r
(純度91.8チ)を得た。
Example 7 The operation was carried out in the same manner as in Example 6 except that acetic acid x, 0+j was used instead of 95-thiosulfuric acid. Z-APM 3.2
1f (purity 91.896) as % fb Example 8 The same procedure as in Example 3 was carried out except that n-heptane was used instead of toluene. Z-APM 3.21r
(purity 91.8%) was obtained.

実施例9 Z−APMとD−PMの1:1付加化合物のかわりにN
−ベンジルオキシカルボニル−、−L−アスパルチル−
L−フェニルアラニンエチルエステル(Z−APR)と
D−PMの1:1付加化合物を5.00?用いた以外は
、実施例3と同様の操作を行ッfc。Z−APE i 
3,389 (純度99.1%)iた。
Example 9 N instead of 1:1 addition compound of Z-APM and D-PM
-benzyloxycarbonyl-, -L-aspartyl-
A 1:1 addition compound of L-phenylalanine ethyl ester (Z-APR) and D-PM at 5.00? The same operation as in Example 3 was performed except that fc was used. Z-APE i
3,389 (purity 99.1%).

実施例10 Z−APMとD−PMのl二1付加化合物の懸濁液のか
わりにN−p−メトキシベンジルオキ7カルボニルーα
−L−アスパルチル−L−フェニルアラニンメチルエス
テル(PMZ−APM)とD−PMの1:1付加化合物
5,001の懸濁液を用い、この懸濁水溶液とトルエン
および塩酸水溶液との接触温度を20℃にした以外は実
施例3と同様にして操作を行った。PMZ−APMを3
.41 f (N度98.4チ)得た。
Example 10 N-p-methoxybenzylox7carbonyl-α instead of the suspension of the l21 addition compound of Z-APM and D-PM
- Using a suspension of 5,001 of a 1:1 addition compound of -L-aspartyl-L-phenylalanine methyl ester (PMZ-APM) and D-PM, the contact temperature of this aqueous suspension with toluene and an aqueous hydrochloric acid solution was set to 20 The operation was carried out in the same manner as in Example 3 except that the temperature was changed to ℃. PMZ-APM 3
.. 41 f (N degree 98.4 inches) was obtained.

実施例11 1)L−フェルアラニンメチルエステル6.66gの8
0mt熱酢酸エチル溶液とN−べ/ジルオキシカルボニ
ルーα−L−7スパルチルーL−フェニルアラニンメチ
ルエステル’1.729の200d熱酢酸エチル溶液と
を混合し、−夜室温に放置した後生成した付加化合物を
濾過、分離乾燥して付加化合物を得た。こうして得た付
加化合物5,001を蒸留水201に懸濁でせて水性混
合液を得た。この水性混合液にトルエy35m/とIN
−塩酸水溶液1011を加え、60℃で30分間攪拌し
、20分間靜装置た。
Example 11 1) 6.66 g of L-feralanine methyl ester 8
The addition formed after mixing a 0 mt hot ethyl acetate solution and a 200 d hot ethyl acetate solution of N-be/zyloxycarbonyl-α-L-7 spartyl-L-phenylalanine methyl ester '1.729 and leaving it at room temperature overnight. The compound was filtered, separated and dried to obtain an additional compound. The thus obtained addition compound 5,001 was suspended in distilled water 201 to obtain an aqueous mixture. To this aqueous mixture, add 35m of toluray and IN.
- Aqueous hydrochloric acid solution 1011 was added, stirred at 60°C for 30 minutes, and kept in a quiet device for 20 minutes.

固形分を含むトルエン相を均一透明な水相から分離した
。トルエン相を20dの蒸留水で2回洗浄した後、ロー
タリーエバポレーターで溶媒を留去し、Z−APM3.
47F (純度99.6%)を得た。
The toluene phase containing solids was separated from the homogeneous clear aqueous phase. After washing the toluene phase twice with 20 d of distilled water, the solvent was distilled off using a rotary evaporator, and Z-APM3.
47F (purity 99.6%) was obtained.

一方トルエン相と分離した水相とトルエン相の洗液を合
併し、炭酸ナトリウムを加えて液性をpH8としたのち
、ジクロルメタンで抽出した。ジクロルメタン相は無水
硫酸マグネシウムで乾燥し、塩化水素カスを吹込んだの
ち濃縮した。更にこれにジエチルエーテルを加えて結晶
を析出させこれtP取シflニー。D−7エニルアラニ
ンメチルエステル塩酸塩の結晶1.58 f (光学純
度97s)を得た。
On the other hand, the toluene phase, the separated aqueous phase, and the washing liquid of the toluene phase were combined, sodium carbonate was added to adjust the liquid pH to 8, and the mixture was extracted with dichloromethane. The dichloromethane phase was dried over anhydrous magnesium sulfate, hydrogen chloride gas was blown into it, and then concentrated. Furthermore, diethyl ether was added to this to precipitate crystals, which were then treated with tP. Crystals of D-7 enylalanine methyl ester hydrochloride 1.58 f (optical purity 97s) were obtained.

実施例12〜15 Z−APMとD−PM(7)1:1付加化合物のかわ、
D K、 Z −APMとフェニルアラニンメチルエス
テル以外の他のアミノ酸エステルとの1=1付加化合物
5.0Ofを用い実施例3と同様にして操作を行った。
Examples 12-15 Z-APM and D-PM (7) 1:1 addition compound glue,
The operation was carried out in the same manner as in Example 3 using 5.0Of a 1=1 addition compound of DK,Z-APM and an amino acid ester other than phenylalanine methyl ester.

その結果を次表に示した。The results are shown in the table below.

実施例  付加化合物   回収Z−APM(純度)1
2  L−バリンエテルエステル   3.58f(9
9,2U13  D−7う=ンlfルxxチル  3.
92f(99,3%)14  L−ロイシンエチルエス
テル  3.41f(99,1%)15  D−チロシ
ンメチルエステル  3.13f(98,8チ)特許出
願人 東洋曹達工業株式会社
Example Addition compound Recovered Z-APM (purity) 1
2 L-valine ether ester 3.58f (9
9,2U13 D-7 U=nlf xx chill 3.
92f (99,3%) 14 L-leucine ethyl ester 3.41f (99,1%) 15 D-tyrosine methyl ester 3.13f (98,8 thi) Patent applicant Toyo Soda Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】 中 一般式 で表わされるジペプチドエステルとアミノ酸エステルと
の付加化合物(式中B、及びR4は低級アルキル基、B
、及びR1はアミノ酸の側鎖基、Xは核に置換基を有す
ることのあるベンジルオキシカルボニル基でTon、m
は1又は2である)を固相として含む水性混合液に水と
二相を形成することのできる有機溶媒及び酸を加えて混
合接触させてこの付加化合物を分解し、一般式 で表わされるジペプチドエステル(式中R,。 R4,X及びnFi前記同様である)の実質的部分を同
相で含む有機溶媒相と、一般式 で表わされるアミノ酸エステル(式中8□及びR2は前
記同様である)を含む水相との二液相全形成させ、有機
溶媒相と水相を分離することを特徴とするジペプチドエ
ステルとアミノ酸エステルとの付加化合物の分解法。 (2)  水と二相を形成することのできる有機溶媒が
脂肪族系もしくは芳香族系の炭化水素類又はエーテル類
である特許請求の範囲第1項記載の分解法。 (3)水と二相を形成することのできる有機溶媒として
トルエンを用いる特許請求の範囲第1項記載の分解法 (4)水と二相を形成することのできる有機溶媒を、付
加化合物を完全に溶解できる量未満の量で用いる特許請
求の範囲第1項ないし第3項のいずれかの項記載の分解
法。 (5)水と二相を形成することので睡る有機溶媒を付加
化合物1重量部に対して約1ないし約20重量部用いる
特許請求の範囲第1項表いし第3項のいずれかの項記載
の分解法。 (6)酸として無機のプロンステ、ド酸を用いる特許請
求の範囲第1項表いし第5項のいずれかの項記載の分解
法。 (7)酸として有機のプロンステ、ド酸を用いる特許請
求の範囲第1項ないし第6項のいずれかの項記載の分解
法。 (8)  酸の使用量が付加化合物1モル当夛約1ない
し約10当量である特許請求の範囲第1項ないし第7項
のいずれかの項記載の分解法。 (9)酸を水溶液の形で用いる特許請求の範囲第6項な
いし第8項のいずれかの項記載の分解法。 (6)水相の量が付加化合物1重量部に対して約1ない
し約10重量部となる量の水性混合液及び酸を用いる特
許請求の範囲第1項ないし第9項のいずれかの項記載の
分解法。 I 付加化合物のジペプチドエステル部分がLL−型で
ある特許請求の範囲第1項ないし第10項のいずれかの
項記載の分解法。 Q3  R□及びR4がメチル基又はエチル基、町がベ
ンジル基& R,がメチル基、イソブチル基。 イソブチル基、ベンジル基又#′ip−ヒドロギシヘ:
/’)IL’−# Xがベンジルオキシカルボニル基又
#′ip−メトキシベンジルオキシカルボニル基であL
mが1である特許請求の範囲第1項ないし第11項のい
ずれかの項記載の分解法。 0 水性混合液が、一般式 %式% で表わされるアミノ酸エステル(式中R1は低級アルキ
ル基、R2はアミイ酸の側鎖基である)と 一般式 %式% で表わされるN−保護アミノジカルボン酸式中Xは置換
基を有することのあるベンジルオキシカルボニル基であ
りnは1又は2である)を水性媒体中、蛋白分解酵素の
存在下で反応させて一般式 で表わされるジペプチドエステルとアミノ酸エステルと
の付加化合物(式中R1,R2,X及びmは前記同様で
めシ% R3及びR4はそれぞれR1及びR8と同一め
基である)t−生成させた反応生成液である特許請求の
範囲第1項ないし第11項のいずれかの項記載分解法。 I 付加化合物、ジペプチドエステル、アミノ酸エステ
ル及びN−保護アミノジカルボン酸の一般式中のR1及
びR4がメチル基又はエチル基、R2及びR3がベンジ
ル基、Xがベンジルオキシカルボニル基又はp−メトキ
シベンジルオキシカルボニル基であり、nが1である特
許請求の範囲第13項記載の分解法。 aθ 用いるアミノ酸エステル及びN−保護アミノジカ
ルボン酸がそれぞれ独立にL−型又はL−型とD−型一
の混合物である特許請求の範囲第11項又扛第12項記
載の分解法。 α0 分離した有機溶媒相をジペプチドエステルの脱離
反応に用いる特許請求の範囲第1項なiし第13項のい
ずれかの項記載の分解法、J(ロ)分離した水相からア
ミノ酸エステルを回収する特許請求の範囲第1項ないし
第14項のいずれかの項記載の分解法
[Scope of Claims] An addition compound of a dipeptide ester and an amino acid ester represented by the general formula (in the formula, B and R4 are lower alkyl groups, B
, and R1 is a side chain group of an amino acid, X is a benzyloxycarbonyl group that may have a substituent on the nucleus, and Ton, m
is 1 or 2) as a solid phase, an organic solvent capable of forming two phases with water and an acid are added and brought into contact with each other to decompose the adduct, thereby producing a dipeptide represented by the general formula An organic solvent phase containing a substantial portion of an ester (in the formula R, R4, 1. A method for decomposing an addition compound of a dipeptide ester and an amino acid ester, which comprises completely forming a two-liquid phase with an aqueous phase containing a dipeptide ester and an aqueous phase, and separating the organic solvent phase and the aqueous phase. (2) The decomposition method according to claim 1, wherein the organic solvent capable of forming two phases with water is an aliphatic or aromatic hydrocarbon or an ether. (3) The decomposition method according to claim 1, in which toluene is used as the organic solvent capable of forming two phases with water. (4) The organic solvent capable of forming two phases with water is used as an addition compound. The decomposition method according to any one of claims 1 to 3, which is used in an amount less than the amount that can be completely dissolved. (5) Any one of claims 1 to 3, in which about 1 to about 20 parts by weight of an organic solvent is used based on 1 part by weight of the addition compound because it forms two phases with water. Decomposition method described. (6) The decomposition method according to any one of claims 1 to 5, in which an inorganic pronste acid is used as the acid. (7) The decomposition method according to any one of claims 1 to 6, in which an organic pronste acid is used as the acid. (8) The decomposition method according to any one of claims 1 to 7, wherein the amount of acid used is about 1 to about 10 equivalents per mole of the addition compound. (9) A decomposition method according to any one of claims 6 to 8, in which the acid is used in the form of an aqueous solution. (6) Any one of claims 1 to 9 in which the aqueous mixture and acid are used in an amount such that the amount of the aqueous phase is about 1 to about 10 parts by weight per 1 part by weight of the addition compound. Decomposition method described. The decomposition method according to any one of claims 1 to 10, wherein the dipeptide ester moiety of the I addition compound is LL-type. Q3 R□ and R4 are methyl or ethyl groups, town is benzyl group & R, is methyl group or isobutyl group. Isobutyl group, benzyl group or #'ip-hydrogen group:
/')IL'-#X is a benzyloxycarbonyl group or #'ip-methoxybenzyloxycarbonyl group, L
The decomposition method according to any one of claims 1 to 11, wherein m is 1. 0 An aqueous mixture contains an amino acid ester represented by the general formula % (in which R1 is a lower alkyl group and R2 is a side chain group of amic acid) and an N-protected amino dicarbonate represented by the general formula %. In the acid formula, X is a benzyloxycarbonyl group that may have a substituent, and n is 1 or 2) in an aqueous medium in the presence of a protease to produce a dipeptide ester represented by the general formula and an amino acid. An addition compound with an ester (in the formula, R1, R2, X and m are the same as above, and R3 and R4 are the same groups as R1 and R8 respectively) A decomposition method described in any one of the ranges 1 to 11. I In the general formula of addition compounds, dipeptide esters, amino acid esters and N-protected aminodicarboxylic acids, R1 and R4 are methyl or ethyl groups, R2 and R3 are benzyl groups, and X is benzyloxycarbonyl group or p-methoxybenzyloxy 14. The decomposition method according to claim 13, wherein the decomposition method is a carbonyl group and n is 1. aθ The decomposition method according to claim 11 or claim 12, wherein the amino acid ester and the N-protected amino dicarboxylic acid used are each independently of the L-type or a mixture of the L-type and the D-type. α0 The decomposition method according to any one of claims 1 to 13, in which the separated organic solvent phase is used for the elimination reaction of the dipeptide ester, The decomposition method described in any one of claims 1 to 14 to be recovered
JP14875681A 1981-09-21 1981-09-22 Method for decomposition of addition compound of dipeptide ester and amino acid ester Granted JPS5852252A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP14875681A JPS5852252A (en) 1981-09-22 1981-09-22 Method for decomposition of addition compound of dipeptide ester and amino acid ester
DE8282108116T DE3274985D1 (en) 1981-09-21 1982-09-02 Process for recovering a dipeptide derivative
EP82108116A EP0075160B1 (en) 1981-09-21 1982-09-02 Process for recovering a dipeptide derivative
AU88018/82A AU554836B2 (en) 1981-09-21 1982-09-03 Process for recovering a dipeptide derivative
US06/415,912 US4487717A (en) 1981-09-21 1982-09-08 Process for recovering a dipeptide derivative
BR8205516A BR8205516A (en) 1981-09-21 1982-09-20 PROCESS FOR RECOVERING A DIPEPTIDE DERIVATIVE
CA000411792A CA1186648A (en) 1981-09-21 1982-09-20 Process for recovering a dipeptide derivative
DD82272585A DD232499A5 (en) 1981-09-21 1982-09-21 PROCESS FOR OBTAINING A DIPEPTIDE DERIVATIVE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14875681A JPS5852252A (en) 1981-09-22 1981-09-22 Method for decomposition of addition compound of dipeptide ester and amino acid ester

Publications (2)

Publication Number Publication Date
JPS5852252A true JPS5852252A (en) 1983-03-28
JPH0212240B2 JPH0212240B2 (en) 1990-03-19

Family

ID=15459928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14875681A Granted JPS5852252A (en) 1981-09-21 1981-09-22 Method for decomposition of addition compound of dipeptide ester and amino acid ester

Country Status (1)

Country Link
JP (1) JPS5852252A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115348975A (en) 2020-04-03 2022-11-15 旭化成株式会社 Conjugated diene polymer, method for producing conjugated diene polymer, conjugated diene polymer composition, and rubber composition

Also Published As

Publication number Publication date
JPH0212240B2 (en) 1990-03-19

Similar Documents

Publication Publication Date Title
EP0127411B1 (en) Method of preparing alpha-l-aspartyl-l-phenylalanine methyl ester and its hydrochloride
US5936104A (en) Process for producing 1,2-epoxy-3-amino-4-phenylbutane derivatives
EP0075160B1 (en) Process for recovering a dipeptide derivative
JPH10237030A (en) Purification of branched chain amino acid
CA2075307C (en) Method for recovery of .alpha.-l-aspartyl-l-phenylalanine methyl ester, l-phenylalanine and l-aspartic acid
JPS5852252A (en) Method for decomposition of addition compound of dipeptide ester and amino acid ester
IE841258L (en) L-aspartyl-l-phenylalanine methyl ester
CA1155453A (en) Method of producing n-benzyloxycarbonyl-l-aspartic acid
JPS62192357A (en) Production of n-phthaloyl-p-nitro-l-phenylalanine
JP2988019B2 (en) Method for producing sodium N-alkylaminoethanesulfonate
US5206430A (en) Method for obtaining high-purity cinnamic acid
JPH052665B2 (en)
JPS5950663B2 (en) Method for producing γ-amino-β-hydroxybutyric acid
JPS5852251A (en) Treatment of addition compound of dipeptide ester and amino acid ester
JPH05279325A (en) Production of optically active 3-hydroxypyrolidine
JP3888402B2 (en) Process for producing optically active N-carbobenzoxy-tert-leucine
JP2897274B2 (en) Method for producing dipeptides
JP4035856B2 (en) Method for producing high optical purity optically active amino acid ester
JPS6257318B2 (en)
JPH0212238B2 (en)
JPH07238063A (en) Method for recovering and purifying 5-aminolevulinic acid
JPH0285295A (en) Separation of alpha-l-aspartyl-l-phenylalanine methyl ester
KR880000038B1 (en) Process for refining of alpha-l-aspartyl-l-phenylalanine
JPS62142143A (en) Purification and separation of dl-phenylalanine
JPH07165686A (en) Method for recovering l-phenylalanine