JPS5851914B2 - Carbon material manufacturing method - Google Patents

Carbon material manufacturing method

Info

Publication number
JPS5851914B2
JPS5851914B2 JP11755880A JP11755880A JPS5851914B2 JP S5851914 B2 JPS5851914 B2 JP S5851914B2 JP 11755880 A JP11755880 A JP 11755880A JP 11755880 A JP11755880 A JP 11755880A JP S5851914 B2 JPS5851914 B2 JP S5851914B2
Authority
JP
Japan
Prior art keywords
alumina
pores
impregnation
carbon material
impregnating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11755880A
Other languages
Japanese (ja)
Other versions
JPS5742581A (en
Inventor
淳一 相沢
賢 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP11755880A priority Critical patent/JPS5851914B2/en
Publication of JPS5742581A publication Critical patent/JPS5742581A/en
Publication of JPS5851914B2 publication Critical patent/JPS5851914B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明はカーボン材料の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing carbon materials.

カーボン材料は、その製法に由来する多くの開気孔(以
後気孔と称する)を有し、その気孔に種種の材料を満た
すことにより耐酸化性の向上対策が行なわれて来た。
Carbon materials have many open pores (hereinafter referred to as pores) derived from their manufacturing method, and measures have been taken to improve oxidation resistance by filling the pores with various materials.

例えばフルフリルアルコールを含浸し硬化させてその気
孔を満たす方法、リン酸塩を含浸する方法、金属塩を含
浸する方法、アルミナゾルを含浸する方法等が知られで
いる。
For example, a method of impregnating with furfuryl alcohol and curing to fill the pores, a method of impregnating with a phosphate, a method of impregnating with a metal salt, a method of impregnating with alumina sol, etc. are known.

これらの方法で耐酸化性を付与されるが用途により不十
分の場合がある。
Although oxidation resistance can be imparted by these methods, it may be insufficient depending on the application.

一方、カーボン材料に存在する開気孔の大きさは種々の
ものがあり、小は数mμ−mから犬は数100μ−mに
わたっている。
On the other hand, there are various sizes of open pores present in carbon materials, ranging from a few micrometers to several hundreds of micrometers.

アルミニウム塩水溶液を真空含浸する方法では、比較的
小さな気孔径(以後小気孔と称する)には有効であり、
含浸処理(以後含浸、熱処理工程を含む呼称とする)に
より小気孔の中にアルミナが残り易いが比較的大きな気
孔(以後大気孔と称する)の場合、熱処理によって含浸
液の浸出が起こり易く気孔径に比し生成されるアルミナ
が小量で耐酸化性が満足出来ない。
The method of vacuum impregnation with an aqueous aluminum salt solution is effective for relatively small pores (hereinafter referred to as small pores);
Alumina tends to remain in small pores due to impregnation treatment (hereinafter referred to as a term that includes impregnation and heat treatment steps), but in the case of relatively large pores (hereinafter referred to as large pores), the impregnating liquid tends to leak out due to heat treatment, and the pore size The amount of alumina produced is small compared to the oxidation resistance.

即ち含浸液量が多いため、熱処理時における含浸液の熱
膨張、蒸気圧や粘度の低下のため、気孔内壁面に働く表
面張力との均衡が破れ、吹き出し現象が起こるものと考
えられる。
That is, because the amount of impregnating liquid is large, the thermal expansion of the impregnating liquid during heat treatment and the decrease in vapor pressure and viscosity break the balance with the surface tension acting on the inner wall surface of the pores, and it is thought that the blow-out phenomenon occurs.

吹き出し現象を押さえる方法として例えばメチルセルロ
ーズ等を添加して含浸液の粘度を大きくする方法がある
が、粘度が太きすぎると小気孔の中まで含浸液が入らな
い欠点がある。
One way to suppress the bubbling phenomenon is to increase the viscosity of the impregnating liquid by adding methylcellulose, for example, but if the viscosity is too thick, the impregnating liquid cannot penetrate into the small pores.

本発明は、このような問題点を解決し、大小両気孔のい
ずれにもアルミナが充填され、耐酸化性の優れたカーボ
ン製品を提供することにある。
The present invention solves these problems and provides a carbon product in which both large and small pores are filled with alumina and has excellent oxidation resistance.

本発明はカーボン材に、アルミニウム塩溶液とアルミナ
微粉末の分散液(アルミナゾルを含む)を含浸し熱処理
して、開気孔をアルミナで被覆することを特徴とする、
耐酸化性の向上されたカーボン材の製造方法に関する。
The present invention is characterized in that a carbon material is impregnated with an aluminum salt solution and a dispersion of fine alumina powder (including alumina sol) and heat-treated to cover open pores with alumina.
The present invention relates to a method for producing a carbon material with improved oxidation resistance.

本発明は小気孔にアルミニウム塩溶液及び大気孔にアル
ミナ微粉末の分散液やアルミナゾルを含浸させて、大小
両気孔のいずれにもアルミナを充填して耐酸化性を向上
させることにある。
The present invention is to improve oxidation resistance by impregnating small pores with an aluminum salt solution and large pores with a dispersion of fine alumina powder or alumina sol, filling both large and small pores with alumina.

アルミナの充填方法としではアルミニウム塩溶液中にア
ルミナ微粉末やアルミナゾルを分散させたものを含浸処
理する方法と、当初アルミニウム塩溶液を含浸し熱処理
したあと、アルミナ微粉末の分散液を含浸し、熱処理す
る方法とがある。
There are two methods for filling alumina: one is to impregnate fine alumina powder or alumina sol dispersed in an aluminum salt solution, and the other is to first impregnate with an aluminum salt solution and heat treat it, then impregnate with a dispersion of fine alumina powder and heat treat it. There is a way to do this.

アルミニウム塩溶液のみを含浸処理したカーボン材を切
断して組織を調査した結果、10μ−m〜50μ〜mの
気孔径を境界として、これより小さい気孔にはアルミナ
が十分見出されるが、これより大きな気孔にはアルミナ
が殆ど見出されないことが確認されており、従って使用
するアルミナ微粉末やアルミナゾルの粒子の大きさは1
0μ−m以下が望ましい。
As a result of cutting a carbon material impregnated with only an aluminum salt solution and examining its structure, it was found that alumina was sufficiently found in pores smaller than 10 μm to 50 μm, but larger than this. It has been confirmed that almost no alumina is found in the pores, so the particle size of the alumina fine powder or alumina sol used is 1.
It is desirable that the thickness is 0 μm or less.

アルミニウム塩溶液の濃度、添加するアルミナ微粉末や
アルミナゾルの量は、熱処理後、吹き出しが少なく、含
浸率が大きく小気孔にも大気孔にもアルミナが充填され
る組み合わせであれば良く制限はない。
The concentration of the aluminum salt solution and the amount of alumina fine powder or alumina sol to be added are not limited as long as the combination is such that after heat treatment, there is little blowing out, a high impregnation rate, and both small and large pores are filled with alumina.

含浸処理を複数回行ない、1回目、2回目の含浸処理は
アルミニウム塩溶液で3回目、4回目はアルミナ微粉末
の分散液で行なうようにすることは本発明の範囲に含ま
れる。
It is within the scope of the present invention to perform the impregnation treatment multiple times, with the first and second impregnation treatments performed with an aluminum salt solution, and the fourth time with an alumina fine powder dispersion.

またアルミナ微粉末の分散液の含浸法は真空含浸または
浸漬による。
The method for impregnating the fine alumina powder dispersion is vacuum impregnation or immersion.

また含浸液の温度に制限はない。Furthermore, there is no limit to the temperature of the impregnating liquid.

真空含浸の際の真空度は10!llHg以下であれはよ
く、減圧後に含浸液を注入し、注入したあと窒素ガスや
圧縮空気により10k19/cTL以上に加圧するのが
よい。
The degree of vacuum during vacuum impregnation is 10! It is fine as long as it is less than 11 Hg, and it is preferable to inject the impregnating liquid after reducing the pressure, and after injection, pressurize it to 10 k19/cTL or more using nitrogen gas or compressed air.

熱処理条件は、含浸後の溶媒や分散媒、分解揮発分が十
分に揮散し、出来るだけ多くのアルミナが残るような加
熱条件が良く、好ましくは400〜1500℃の範囲で
あり、特に制限はない。
The heat treatment conditions are preferably those in which the solvent, dispersion medium, and decomposed volatiles after impregnation are sufficiently volatilized and as much alumina as possible remains, preferably in the range of 400 to 1500°C, and there are no particular restrictions. .

以下実施例により説明する。This will be explained below using examples.

比較例 1 硝酸アルミニウムの50重量%水溶液を、見掛比重1.
75の人造黒鉛材に真空含浸した。
Comparative Example 1 A 50% by weight aqueous solution of aluminum nitrate was mixed with an apparent specific gravity of 1.
75 artificial graphite material was vacuum impregnated.

溶液含浸率は13重量%であった。The solution impregnation rate was 13% by weight.

これを箱に入れて周**囲に詰粉を充填して空気を遮断
して、1200℃まで毎時50℃の速度で加熱後放冷し
て、0.6重量%のアルミナ含浸黒鉛材(以下黒鉛材と
略称)を得た。
This was placed in a box, filled with powder around the periphery to shut off air, heated to 1200°C at a rate of 50°C per hour, and left to cool. (hereinafter abbreviated as graphite material) was obtained.

比較例 2 実施例1の含浸処理を2回実施して、1.1重量%のア
ルミナ含浸黒鉛材を得た。
Comparative Example 2 The impregnation treatment of Example 1 was carried out twice to obtain a graphite material impregnated with 1.1% by weight of alumina.

実施例 1 比較例に用いたものと同質の人造黒鉛材について、上記
硝酸アルミニウム50重量%水溶液に、アルミナゾルを
10重量%混合攪拌した分散液を真空含浸し、比較例と
同様の熱処理を施して含浸率2.1重量%の黒鉛材を得
た。
Example 1 An artificial graphite material of the same quality as that used in the comparative example was vacuum impregnated with a stirred dispersion of 10% by weight alumina sol in the 50% by weight aqueous solution of aluminum nitrate, and subjected to the same heat treatment as in the comparative example. A graphite material with an impregnation rate of 2.1% by weight was obtained.

実施例 2 比較例1の含浸処理品に実施例1のアルミナゾル分散液
を含浸処理して、含浸率2.5重量%の黒鉛材を得た。
Example 2 The impregnated product of Comparative Example 1 was impregnated with the alumina sol dispersion of Example 1 to obtain a graphite material with an impregnation rate of 2.5% by weight.

実施例 3 見掛比重1675の人造黒鉛材にアルミニウム・ハイド
ロキシ・クロライドA72(OH)、CJ’・2〜3H
20の20重量%水溶液に、アルミナゾル10重量%を
加えた溶液を含浸処理し、含浸率3.2重量%の黒鉛材
を得た。
Example 3 Aluminum hydroxy chloride A72 (OH), CJ' 2-3H on artificial graphite material with apparent specific gravity 1675
A graphite material with an impregnation rate of 3.2% by weight was obtained by impregnation treatment with a solution in which 10% by weight of alumina sol was added to a 20% by weight aqueous solution of No. 20.

次に比較例と実施例で得たアルミナ含浸黒鉛材について
耐酸化性を比較するため、酸化消耗率の試験を実施した
Next, in order to compare the oxidation resistance of the alumina-impregnated graphite materials obtained in Comparative Examples and Examples, an oxidation consumption rate test was conducted.

即ち、上記7種のサンプルを500℃の電気炉中に自然
対流のまま、20時間保持後冷却し、試験前後の重量変
化率を求めたところ第1表の値を得た。
That is, the seven types of samples mentioned above were kept in an electric furnace at 500° C. under natural convection for 20 hours and then cooled, and the weight change rates before and after the test were determined, and the values shown in Table 1 were obtained.

的大きな気孔(大気孔)にはアルミナが入り難かったが
、本発明のように、アルミナ微粉末の分散液と併用含浸
処理することにより、大気孔にもアルミナが充填され、
含浸率と耐酸化性が改善された。
It was difficult for alumina to enter the large pores (large pores), but as in the present invention, by impregnating with a dispersion of fine alumina powder, even the large pores are filled with alumina.
Impregnation rate and oxidation resistance were improved.

従って本発明は耐酸化性を要する高温で使用される、黒
鉛製品(黒鉛発熱体、ガラス封着治具、ルツボ、冶金用
・電気用・機械用摺動部品等)に適用すると効果がある
Therefore, the present invention is effective when applied to graphite products (graphite heating elements, glass sealing jigs, crucibles, metallurgical, electrical, mechanical sliding parts, etc.) that are used at high temperatures that require oxidation resistance.

例えばアルミニウム真空蒸着用黒鉛ルツボの場合、溶融
アルミが気孔内に浸透して炭化アルミニウムを生成し、
侵食されてゆくが、気孔表面にアルミナが存在すると、
溶融アルミの浸透を防止することが知られており、本発
明による含浸処理によって得られたルツボは、アルミニ
ウム塩溶液を含浸処理しただけのルツボより、寿命が1
.5倍に改善されることが可能となった。
For example, in the case of a graphite crucible for aluminum vacuum deposition, molten aluminum penetrates into the pores to produce aluminum carbide.
It is eroded, but if alumina is present on the pore surface,
It is known to prevent penetration of molten aluminum, and the crucible obtained by the impregnation treatment according to the present invention has a lifespan of 100% longer than a crucible that has been simply impregnated with an aluminum salt solution.
.. It has become possible to achieve a five-fold improvement.

Claims (1)

【特許請求の範囲】[Claims] 1 カーボン材に、アルミニウム塩溶液とアルミナ微粉
末の分散液(アルミナゾルを含む)を含浸し、熱処理し
て、開気孔をアルミナで被覆することを特徴とする耐酸
化性の向上されたカーボン材の製造法。
1. A carbon material with improved oxidation resistance characterized by impregnating a carbon material with an aluminum salt solution and a dispersion of fine alumina powder (including alumina sol), heat-treating the material, and coating the open pores with alumina. Manufacturing method.
JP11755880A 1980-08-25 1980-08-25 Carbon material manufacturing method Expired JPS5851914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11755880A JPS5851914B2 (en) 1980-08-25 1980-08-25 Carbon material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11755880A JPS5851914B2 (en) 1980-08-25 1980-08-25 Carbon material manufacturing method

Publications (2)

Publication Number Publication Date
JPS5742581A JPS5742581A (en) 1982-03-10
JPS5851914B2 true JPS5851914B2 (en) 1983-11-18

Family

ID=14714783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11755880A Expired JPS5851914B2 (en) 1980-08-25 1980-08-25 Carbon material manufacturing method

Country Status (1)

Country Link
JP (1) JPS5851914B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935677A (en) * 1982-07-26 1984-02-27 Hitachi Chem Co Ltd Graphite crucible for aluminum vapor deposition
DE3429794A1 (en) * 1984-08-13 1986-02-20 Siemens AG, 1000 Berlin und 8000 München METHOD FOR PRODUCING GLASS CARBON
JP2796631B2 (en) * 1989-03-13 1998-09-10 イビデン株式会社 Graphite crucible for aluminum deposition
JP2020121892A (en) * 2019-01-29 2020-08-13 明智セラミックス株式会社 Impregnation crucible
JP2020121890A (en) * 2019-01-29 2020-08-13 明智セラミックス株式会社 Impregnation crucible
JP2020121891A (en) * 2019-01-29 2020-08-13 明智セラミックス株式会社 Impregnation crucible

Also Published As

Publication number Publication date
JPS5742581A (en) 1982-03-10

Similar Documents

Publication Publication Date Title
US4285895A (en) Method of densifying a reaction bonded silicon nitride article
US3853635A (en) Process for making carbon-aluminum composites
US3814699A (en) Solutions for the treatment of amorphous carbon or graphite manufactured articles for improving their resistance to oxidation
CN112853260B (en) Preparation method of powder embedding infiltration coating
JP2001515008A (en) Carbon-carbon fiber composition material
EP0455362B1 (en) Powder and electrorheological fluid
JPS5851914B2 (en) Carbon material manufacturing method
US2885301A (en) Chromizing coating
US4461806A (en) Shaped articles of non-fibrous carbonaceous material
RU2243855C1 (en) Method of manufacturing products from tungsten/copper pseudoalloy
JP7047239B1 (en) Manufacturing method of graphite material
US3741734A (en) Metal products and process of preparation
CN114300210A (en) Rare earth hydrogenated metal powder, neodymium iron boron magnet and preparation method thereof
RU2675711C1 (en) Method for aluminum coating iron powder
RU2344105C2 (en) Carbon-bearing fire-resistant material and method of production thereof
US3085886A (en) Method of preparing silicon nitride foam material
CN110156446A (en) The production method of ceramic mold for casting hollow turbo blade
CN110776338A (en) Microcrystalline graphite antioxidant and preparation method and application thereof
RU2349678C2 (en) Safety method against high-temperature oxidation of internal cavity surface of cooled turbine blades made of carbon-free heat-resistance alloy on basis of nickel
SU1219237A1 (en) Method of producing graphite open-end mould
JP3038489B2 (en) Method for producing metal composite carbon material
US3261698A (en) Refractory shapes
US5885379A (en) Tempered powdered metallurgical construct and method
RU2775770C1 (en) Method for coating casting ceramic molds for casting titanium alloys
JPS62223063A (en) Manufacture of graphitic crucible