JP2020121891A - Impregnation crucible - Google Patents

Impregnation crucible Download PDF

Info

Publication number
JP2020121891A
JP2020121891A JP2019012902A JP2019012902A JP2020121891A JP 2020121891 A JP2020121891 A JP 2020121891A JP 2019012902 A JP2019012902 A JP 2019012902A JP 2019012902 A JP2019012902 A JP 2019012902A JP 2020121891 A JP2020121891 A JP 2020121891A
Authority
JP
Japan
Prior art keywords
flux
impregnation tank
resistant component
solution
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019012902A
Other languages
Japanese (ja)
Inventor
山本成規
Shigenori Yamamoto
日高健太
Kenta Hidaka
長谷達也
Tatsuya Hase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akechi Ceramics Co Ltd
Original Assignee
Akechi Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akechi Ceramics Co Ltd filed Critical Akechi Ceramics Co Ltd
Priority to JP2019012902A priority Critical patent/JP2020121891A/en
Publication of JP2020121891A publication Critical patent/JP2020121891A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide an impregnation crucible which has improved use life.SOLUTION: A method for manufacturing an impregnation crucible includes: a depressurization step (A) of putting a reduced and fired crucible material 10 into an empty impregnation tank 11 and depressurizing inside of the impregnation tank 11; a filling step (B) of filling the depressurized impregnation tank 11 with a solution 12 of a flux resistant component through a conduit 14 from a solution tank 13; a pressurization step (C) of pressurizing the inside of the impregnation tank 11 filled with the solution 12 of the flux resistant component, and impregnating a pore of the crucible material 10 with the flux resistant component; and an opening step (D) of impregnating the pore with the flux resistant component in the impregnation tank 11 and then opening the impregnation tank 11 to the air, and simultaneously returns the solution 12 of the flux resistant component to the solution tank 13 through the conduit 14 from the impregnation tank 11 and takes out the crucible material 10 from the impregnation tank 11.SELECTED DRAWING: Figure 1

Description

本発明は含浸坩堝に関する。 The present invention relates to an impregnating crucible.

アルミニウムや銅合金等の非鉄金属の溶解精錬や溶融金属の容器として熱伝導性に優れ、耐熱衝撃に強い黒鉛坩堝が用いられている。
黒鉛坩堝は、熱伝導率が高く、熱膨張率が小さい鱗状黒鉛と、熱伝導率の高い炭化珪素からなる骨材に酸化防止成分としてシリコンやガラス成分を添加した坩堝材料をバインダーカーボンとともに混錬し、成形及び還元焼成して製造される。
BACKGROUND ART A graphite crucible that has excellent thermal conductivity and is resistant to thermal shock is used as a container for melting and refining non-ferrous metals such as aluminum and copper alloys and a molten metal.
The graphite crucible is a kneaded crucible material with binder carbon in which scaly graphite having a high thermal conductivity and a small thermal expansion coefficient and an aggregate made of silicon carbide having a high thermal conductivity are added with silicon and a glass component as an antioxidant component. Then, it is manufactured by molding and reduction firing.

坩堝材料の黒鉛は多孔性であるため機械的強度が十分ではなく、容易に酸化される。黒鉛の酸化が進行すると材質の脆化で黒鉛坩堝に変形や割れを来す。 Since graphite as a crucible material is porous, it has insufficient mechanical strength and is easily oxidized. As the oxidation of graphite progresses, the material becomes brittle and the graphite crucible is deformed or cracked.

そこで、黒鉛の酸化を防止するため、坩堝材料を焼成後、気孔中にガラス成分を含浸させ、表面にガラスを塗布し、焼き付けてガラス化しているが、ガラス成分の浸透は坩堝材料の厚みの25パーセント程度であった。 Therefore, in order to prevent the oxidation of graphite, after firing the crucible material, the glass component is impregnated in the pores, the surface is coated with glass and baked to vitrify, but the penetration of the glass component depends on the thickness of the crucible material. It was about 25 percent.

米国特許第3227566号公報U.S. Pat. No. 3,227,566

ところで、フラックスを使用する坩堝では、フラックス中のNa成分と坩堝成分が低粘性の溶融物を生成し、割れや穴あきが進行し寿命が短くなるという問題点があった。
本発明は上記問題点に鑑み、使用寿命の向上した含浸坩堝を提供することを目的とする。
By the way, in the crucible using the flux, there is a problem that the Na component and the crucible component in the flux form a low-viscosity melt, and cracks and holes progress to shorten the life.
In view of the above problems, it is an object of the present invention to provide an impregnated crucible having an improved service life.

請求項1に記載の発明に係る含侵坩堝は、
成形して還元焼成した坩堝材料の気孔中に耐フラックス成分を含浸させた含浸坩堝であって、空の含浸槽に前記還元焼成した坩堝材料を入れて含浸槽の内部を減圧する減圧工程と、減圧した含浸槽に前記耐フラックス成分としてアルミナ、シリカのコロイダル溶液又は酢酸ジルコニウムの溶液を充填する充填工程と、耐フラックス成分の溶液を充填した含浸槽の内部を加圧して坩堝材料の気孔中に耐フラックス成分を含浸させる加圧工程と、気孔中に耐フラックス成分を含浸させた後、含浸槽を大気に開放するとともに、含浸槽から耐フラックス成分の溶液を排出して、坩堝材料を取り出す開放工程を経て製造したことを特徴とする。
The impregnated crucible according to the invention of claim 1 is
A pressure-reducing step of reducing the pressure inside the impregnation tank by placing the reduction-calcined crucible material in an empty impregnation tank, which is an impregnating crucible in which the flux-resistant component is impregnated in the pores of the crucible material that has been molded and reduction-fired. A filling step of filling a reduced pressure impregnation tank with the flux-resistant component alumina, a colloidal solution of silica or a solution of zirconium acetate, and pressurizing the inside of the impregnation tank filled with the solution of the flux-resistant component into the pores of the crucible material. Pressurization process to impregnate the flux-resistant component, and after impregnating the flux-resistant component into the pores, open the impregnation tank to the atmosphere, discharge the flux-resistant component solution from the impregnation tank, and take out the crucible material. It is characterized by being manufactured through steps.

請求項2に記載の発明は、請求項1に記載の含浸坩堝において、
前記開放工程で含浸槽から取り出した坩堝材料を乾燥する乾燥工程と、
前記乾燥させた坩堝材料を前記含浸槽に入れて含浸槽の内部を減圧する再減圧工程と、
減圧した含浸槽に前記耐フラックス成分を充填する再充填工程と、
耐フラックス成分の溶液を充填した含浸槽の内部を加圧して坩堝材料の気孔中に耐フラックス成分を含浸させる再加圧工程と、
気孔中に耐フラックス成分を含浸させた後、含浸槽を大気に開放するとともに、含浸槽から耐フラックス成分の溶液を排出して、坩堝材料を取り出す再開放工程を経て製造したことを特徴とする。
The invention according to claim 2 provides the impregnating crucible according to claim 1,
A drying step of drying the crucible material taken out from the impregnation tank in the opening step,
A re-decompression step of putting the dried crucible material into the impregnation tank and decompressing the inside of the impregnation tank,
A refilling step of filling the reduced flux impregnation tank with the flux-resistant component,
A re-pressurizing step of pressurizing the inside of the impregnation tank filled with the solution of the flux-resistant component to impregnate the pores of the crucible material with the flux-resistant component,
After impregnating the pores with the flux-resistant component, the impregnation tank is opened to the atmosphere, the solution of the flux-resistant component is discharged from the impregnation tank, and the crucible material is re-opened. ..

また、好ましくは前記充填工程で充填した耐フラックス成分の溶液とは異なる耐フラックス成分の溶液を含浸槽に充填する。 Further, preferably, a solution of a flux resistant component different from the solution of the flux resistant component filled in the filling step is filled in the impregnation tank.

請求項1に記載の発明によれば、耐フラックス成分の溶液を充填した含浸槽に坩堝材料を入れて加圧する加圧工程に先行して、空の含浸槽に坩堝材料を入れて減圧し、その後加圧するので、耐フラックス成分が坩堝材料の気孔中に十分浸透する。そのため、耐フラックス成分を坩堝材料の厚みの80%以上に浸透させることも可能となり、坩堝材料の気孔率を低下させ、坩堝材料の高密度化を図ることができ、強度向上、耐フラックス性を向上させることができる。
また、耐フラックス成分がNa成分と高粘性の溶融物を生成し、フラックスの浸透を抑えることができる。
According to the invention described in claim 1, prior to the pressurizing step of putting the crucible material in the impregnation tank filled with the solution of the flux-resistant component and pressurizing the crucible material, the crucible material is put in the empty impregnation tank to reduce the pressure, Since pressure is applied thereafter, the flux-resistant component sufficiently penetrates into the pores of the crucible material. Therefore, it becomes possible to infiltrate the flux-resistant component into 80% or more of the thickness of the crucible material, reduce the porosity of the crucible material, and increase the density of the crucible material, thereby improving the strength and the flux resistance. Can be improved.
In addition, the flux-resistant component forms a highly viscous melt with the Na component, and flux penetration can be suppressed.

請求項2に記載の発明によれば、減圧工程、充填工程、加圧工程及び開放工程を経て耐フラックス成分を気孔中に含浸させた坩堝材料を乾燥した後、再度、減圧工程、充填工程、加圧工程及び開放工程を実施するのでより一層、耐フラックス成分を厚みの奥深くまで浸透させることができる。 According to the invention of claim 2, after drying the crucible material having the pores impregnated with the flux-resistant component through the depressurizing step, the filling step, the pressurizing step and the opening step, the depressurizing step, the filling step, Since the pressurizing step and the releasing step are performed, the flux-resistant component can be further penetrated deep into the thickness.

本発明の一実施例に係る含浸坩堝の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the impregnation crucible which concerns on one Example of this invention.

以下に本発明を図面に基づき説明する。図1には鱗状黒鉛と炭化珪素からなる骨材に酸化防止成分を添加し、バインダーカーボンとともに混錬し、成形及び還元焼成した坩堝材料の気孔中に耐フラックス成分を含浸させる含浸坩堝の製造工程の一実施例が示されている。 The present invention will be described below with reference to the drawings. FIG. 1 shows a process of manufacturing an impregnated crucible in which an antioxidant component is added to an aggregate composed of scaly graphite and silicon carbide, kneaded with a binder carbon, and the pores of a crucible material formed and reduced and fired are impregnated with a flux-resistant component. One example is shown.

当該製造工程は、含浸槽11と耐フラックス成分の溶液12を溜める溶液タンク13を使用し、含浸槽11と溶液タンク13が管路14で接続され、含浸槽は加熱・冷却ジャケット15で包まれている。
溶液タンク13には耐フラックス成分としてアルミナ、シリカのコロイダル溶液又は酢酸ジルコニウムの溶液のいずれかの水溶液が充填されている。
The manufacturing process uses an impregnation tank 11 and a solution tank 13 that stores a solution 12 of a flux-resistant component. The impregnation tank 11 and the solution tank 13 are connected by a pipeline 14. The impregnation tank is wrapped with a heating/cooling jacket 15. ing.
The solution tank 13 is filled with an aqueous solution of either a colloidal solution of alumina or silica or a solution of zirconium acetate as a flux resistant component.

製造工程は、空の含浸槽11に還元焼成した坩堝材料10を入れて含浸槽11の内部を減圧する減圧工程(A)と、減圧した含浸槽11に溶液タンク13から管路14を通して耐フラックス成分の溶液12を充填する充填工程(B)と、耐フラックス成分の溶液12を充填した含浸槽11の内部を加圧して坩堝材料10の気孔中に耐フラックス成分を含浸させる加圧工程(C)と、含浸槽11で気孔中に耐フラックス成分を含浸させた後、含浸槽11を大気に開放するとともに、含浸槽11から管路14を通して耐フラックス成分の溶液12を溶液タンク13に戻し、含浸槽11から坩堝材料10を取り出す開放工程(D)からなる。
しかして本実施例の減圧工程(A)では真空度15kPa以下まで減圧している。また、加圧工程(B)では0.5MPa以上に加圧している。
The manufacturing process includes a depressurization step (A) in which the reduced and fired crucible material 10 is put into an empty impregnation tank 11 to depressurize the inside of the impregnation tank 11, and a flux-resistant flux is passed from the solution tank 13 to the pipeline 14 in the depressurized impregnation tank 11. The filling step (B) of filling the solution 12 of the component and the pressurizing step (C) of pressurizing the inside of the impregnation tank 11 filled with the solution 12 of the flux-resistant component to impregnate the pores of the crucible material 10 with the flux-resistant component. ), and after impregnating the pores with the flux-resistant component in the impregnation tank 11, the impregnation tank 11 is opened to the atmosphere, and the flux-resistant component solution 12 is returned from the impregnation tank 11 to the solution tank 13 through the line 14. It comprises an opening step (D) of taking out the crucible material 10 from the impregnation tank 11.
However, in the depressurizing step (A) of this embodiment, the degree of vacuum is reduced to 15 kPa or less. In the pressurizing step (B), the pressure is 0.5 MPa or more.

上述した製造工程により耐フラックス成分を含浸させた坩堝材料10で製造した含浸坩堝の物性調査の結果を表1に示す。
フラックス浸透試験結果
アルミ溶湯800℃でNaF、NaClのフラックスを□30のサンプルバーに1h浸透させた際の浸透具合の比較
Table 1 shows the results of the physical property investigation of the impregnated crucible manufactured from the crucible material 10 impregnated with the flux-resistant component by the above-described manufacturing process.
Flux Penetration Test Results Comparison of penetration of NaF and NaCl fluxes permeated into the sample bar of □30 for 1 h at 800℃ aluminum melt

Figure 2020121891
Figure 2020121891

未実施品を100とした場合の指数
各耐フラックス溶液の含浸浸は未含浸と比べてフラックスの浸透を大きく抑制している。
The index when the unimplemented product is 100 The impregnation and immersion of each flux-resistant solution greatly suppresses the penetration of flux as compared with the unimpregnated product.

本実施例に係る含浸坩堝の製造工程によれば、耐フラックス成分の溶液12を充填した含浸槽11に坩堝材料10を入れて加圧する加圧工程(B)に先行して、空の含浸槽11に坩堝材料10を入れて減圧し、その後加圧するので、耐フラックス成分が坩堝材料10の気孔中に十分浸透する。そのため、耐フラックス成分を坩堝材料10の厚みの80%以上浸透させることも可能となり、坩堝材料10の気孔率を低下させ、坩堝材料10の高密度化を図ることができるので、含浸坩堝の使用寿命が大きく向上する。 According to the manufacturing process of the impregnated crucible according to the present embodiment, the empty impregnation tank is preceded by the pressurizing step (B) in which the crucible material 10 is put into the impregnation tank 11 filled with the solution 12 of the flux-resistant component and the pressure is applied. Since the crucible material 10 is put in 11 to reduce the pressure and then the pressure is applied, the flux-resistant component sufficiently penetrates into the pores of the crucible material 10. Therefore, 80% or more of the thickness of the crucible material 10 can be permeated with the flux-resistant component, the porosity of the crucible material 10 can be reduced, and the density of the crucible material 10 can be increased. Therefore, use of the impregnated crucible The life is greatly improved.

上記実施例では、減圧工程(A)、充填工程(B)、加圧工程(C)及び開放工程(D)を各1回実施するが、開放工程で取り出した坩堝材料を乾燥した後、減圧工程(A)、充填工程(B)、加圧工程(C)及び開放工程(D)を再度実施することにより、より一層耐フラックス成分を坩堝材料10の厚みの奥深くまで含浸させることができる。その場合、先の製造工程で使用した耐フラックス成分の溶液12とは異なる耐フラックス成分の溶液を使用することもできる。 In the above example, the depressurizing step (A), the filling step (B), the pressurizing step (C), and the releasing step (D) are performed once, but after the crucible material taken out in the releasing step is dried, the depressurizing step is performed. By performing the step (A), the filling step (B), the pressurizing step (C), and the releasing step (D) again, the flux-resistant component can be further impregnated deeply into the thickness of the crucible material 10. In that case, it is also possible to use a solution of the flux resistant component different from the solution 12 of the flux resistant component used in the previous manufacturing process.

10…坩堝材料
11…含浸槽
12…耐フラックス成分の溶液
13…溶液タンク

10... crucible material 11... impregnation tank 12... flux-resistant component solution 13... solution tank

Claims (4)

成形して還元焼成した坩堝材料の気孔中に耐フラックス成分を含浸させた含浸坩堝であって、
空の含浸槽に前記還元焼成した坩堝材料を入れて含浸槽の内部を減圧する減圧工程と、
減圧した含浸槽に前記耐フラックス成分の溶液を充填する充填工程と、
耐フラックス成分の溶液を充填した含浸槽の内部を加圧して坩堝材料の気孔中に耐フラックス成分を含浸させる加圧工程と、
気孔中に耐フラックス成分を含浸させた後、含浸槽を大気に開放するとともに、含浸槽から耐フラックス成分の溶液を排出して、坩堝材料を取り出す開放工程を経て製造したことを特徴とする含浸坩堝。
An impregnated crucible in which flux-resistant components are impregnated into the pores of a crucible material that has been molded and reduction-fired,
A decompression step of putting the reduction-fired crucible material in an empty impregnation tank to decompress the inside of the impregnation tank;
A filling step of filling the reduced pressure impregnation tank with the solution of the flux-resistant component,
A pressurizing step of pressurizing the inside of the impregnation tank filled with the solution of the flux resistant component to impregnate the pores of the crucible material with the flux resistant component;
After impregnating the pores with the flux-resistant component, the impregnation tank is opened to the atmosphere, the flux-resistant component solution is discharged from the impregnation tank, and the crucible material is taken out through an opening process. crucible.
前記開放工程で含浸槽から取り出した坩堝材料を乾燥する乾燥工程と、
前記乾燥させた坩堝材料を前記含浸槽に入れて含浸槽の内部を減圧する再減圧工程と、
減圧した含浸槽に前記耐フラックス成分を充填する再充填工程と、
耐フラックス成分の溶液を充填した含浸槽の内部を加圧して坩堝材料の気孔中に耐フラックス成分を含浸させる再加圧工程と、
気孔中に耐フラックス成分を含浸させた後、含浸槽を大気に開放するとともに、含浸槽から耐フラックス成分の溶液を排出して、坩堝材料を取り出す再開放工程を経て製造したことを特徴とする請求項1に記載の含浸坩堝。
A drying step of drying the crucible material taken out from the impregnation tank in the opening step,
A re-decompression step of putting the dried crucible material into the impregnation tank and decompressing the inside of the impregnation tank,
A refilling step of filling the reduced flux impregnation tank with the flux-resistant component,
A re-pressurizing step of pressurizing the inside of the impregnation tank filled with the solution of the flux-resistant component to impregnate the pores of the crucible material with the flux-resistant component,
After impregnating the pores with the flux-resistant component, the impregnation tank is opened to the atmosphere, the solution of the flux-resistant component is discharged from the impregnation tank, and the crucible material is re-opened. The impregnated crucible according to claim 1.
前記耐フラックス成分として、アルミナ、シリカのコロイダル溶液又は酢酸ジルコニウムの溶液を使用したことを特徴とする請求項1に記載の含浸坩堝。 The impregnated crucible according to claim 1, wherein a colloidal solution of alumina or silica or a solution of zirconium acetate is used as the flux-resistant component. 前記充填工程で充填した耐フラックス成分の溶液とは異なる耐フラックス成分の溶液を含浸槽に充填したことを特徴とする請求項2に記載の含浸坩堝。

The impregnating crucible according to claim 2, wherein a solution of a flux resistant component different from the solution of the flux resistant component filled in the filling step is filled in the impregnating tank.

JP2019012902A 2019-01-29 2019-01-29 Impregnation crucible Pending JP2020121891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019012902A JP2020121891A (en) 2019-01-29 2019-01-29 Impregnation crucible

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019012902A JP2020121891A (en) 2019-01-29 2019-01-29 Impregnation crucible

Publications (1)

Publication Number Publication Date
JP2020121891A true JP2020121891A (en) 2020-08-13

Family

ID=71992105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019012902A Pending JP2020121891A (en) 2019-01-29 2019-01-29 Impregnation crucible

Country Status (1)

Country Link
JP (1) JP2020121891A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158176A (en) * 1979-05-24 1980-12-09 Showa Denko Kk Manufacture of boron nitride filled carbon product
JPS5742581A (en) * 1980-08-25 1982-03-10 Hitachi Chemical Co Ltd Manufacture of carbon material
JPS62223063A (en) * 1986-03-25 1987-10-01 東海カ−ボン株式会社 Manufacture of graphitic crucible
JPS62246888A (en) * 1986-02-27 1987-10-28 工業技術院長 Oxidation-resistant carbon material
JPS62297281A (en) * 1986-06-17 1987-12-24 川崎製鉄株式会社 Oxidation-resistant high density high strength graphite material and manufacture
JPS6452687A (en) * 1987-08-25 1989-02-28 Toshiba Ceramics Co Impregnation of ceramic form
JPH04300247A (en) * 1990-12-05 1992-10-23 Toyo Tanso Kk Oxidation-resistant carbon material
JP2017173033A (en) * 2016-03-22 2017-09-28 日本碍子株式会社 Induction heating furnace crucible and method for manufacturing induction heating furnace crucible

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158176A (en) * 1979-05-24 1980-12-09 Showa Denko Kk Manufacture of boron nitride filled carbon product
JPS5742581A (en) * 1980-08-25 1982-03-10 Hitachi Chemical Co Ltd Manufacture of carbon material
JPS62246888A (en) * 1986-02-27 1987-10-28 工業技術院長 Oxidation-resistant carbon material
JPS62223063A (en) * 1986-03-25 1987-10-01 東海カ−ボン株式会社 Manufacture of graphitic crucible
JPS62297281A (en) * 1986-06-17 1987-12-24 川崎製鉄株式会社 Oxidation-resistant high density high strength graphite material and manufacture
JPS6452687A (en) * 1987-08-25 1989-02-28 Toshiba Ceramics Co Impregnation of ceramic form
JPH04300247A (en) * 1990-12-05 1992-10-23 Toyo Tanso Kk Oxidation-resistant carbon material
JP2017173033A (en) * 2016-03-22 2017-09-28 日本碍子株式会社 Induction heating furnace crucible and method for manufacturing induction heating furnace crucible

Similar Documents

Publication Publication Date Title
JP6078885B2 (en) Composite refractory and method for producing composite refractory
WO2017022012A1 (en) Aluminum-silicon-carbide composite and method of manufacturing same
JP2020121891A (en) Impregnation crucible
JP5031711B2 (en) Porous body, metal-ceramic composite material, and production method thereof
JP2017014033A (en) Reinforcing fiber material and manufacturing method thereof, and fiber reinforced ceramics composite
JPH08501523A (en) Method of manufacturing fiber composite material
JP2020121890A (en) Impregnation crucible
JP2020121892A (en) Impregnation crucible
JP5320132B2 (en) Porous body, metal-ceramic composite material, and production method thereof
US11040913B1 (en) Ceramic-metallic composites devoid of porosity and their methods of manufacture
JP2015071825A (en) Method for producing aluminum alloy-ceramic composite material
CN110465627B (en) Method for manufacturing surface-layer compact internal loose ceramic core for precision casting of hollow turbine blade
CN108129169B (en) Metal ceramic product and preparation method thereof
JPH05163065A (en) Silicon-free infiltrate-forming composite material of silicon carbide and molybdenum silicide
JP2009050915A (en) Composite member and its manufacturing method
JP2002249832A (en) Ceramics/metal composite material and its manufacturing method
JP2013010669A (en) Method for producing composite material
JP5859850B2 (en) Composite material and manufacturing method thereof
RU2167132C2 (en) Method of preparing composite material
JP2006152324A (en) FIBER-REINFORCED Ti-Al COMPOSITE MATERIAL AND MANUFACTURING METHOD THEREFOR
JPH07138087A (en) Metal-impregnated ceramics, ceramic metal composite material comprising the same metal-impregnated ceramics inserted into various metals and their production
JPH0570854A (en) Suction degasser provided with ceramic partition member
JP4279366B2 (en) Method for producing metal-ceramic composite material
JP5856743B2 (en) Method for producing metal-ceramic composite material
JP2002371330A (en) Method for manufacturing metal-ceramic composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230404