JPS5851911B2 - Method for manufacturing fiber-reinforced silicon nitride sintered body - Google Patents

Method for manufacturing fiber-reinforced silicon nitride sintered body

Info

Publication number
JPS5851911B2
JPS5851911B2 JP56202074A JP20207481A JPS5851911B2 JP S5851911 B2 JPS5851911 B2 JP S5851911B2 JP 56202074 A JP56202074 A JP 56202074A JP 20207481 A JP20207481 A JP 20207481A JP S5851911 B2 JPS5851911 B2 JP S5851911B2
Authority
JP
Japan
Prior art keywords
sintered body
silicon nitride
silicon carbide
strength
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56202074A
Other languages
Japanese (ja)
Other versions
JPS58104069A (en
Inventor
信幸 玉利
透 小倉
和夫 上野
保夫 樋端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP56202074A priority Critical patent/JPS5851911B2/en
Publication of JPS58104069A publication Critical patent/JPS58104069A/en
Publication of JPS5851911B2 publication Critical patent/JPS5851911B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は繊維強化型窒化ケイ素焼結体、より詳細には強
化材としての繊維状炭化ケイ素により複合強化された窒
化ケイ素焼結体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fiber-reinforced silicon nitride sintered body, and more particularly to a method for manufacturing a silicon nitride sintered body compositely reinforced with fibrous silicon carbide as a reinforcing material.

窒化ケイ素や炭化ケイ素は耐熱性、耐蝕性に極めて優れ
ており、従来の耐熱金属に代って高温ガスタービン用部
材やディーゼルエンジン用構造材として用いられつつあ
る。
Silicon nitride and silicon carbide have extremely excellent heat resistance and corrosion resistance, and are increasingly being used as components for high-temperature gas turbines and structural materials for diesel engines in place of conventional heat-resistant metals.

ところが窒化ケイ素や良化ケイ素は、これ自身では焼結
し難く、従来種種の酸化物や窒化物を数%ないし数10
%添fJOシて焼結を容易ならしめていた。
However, silicon nitride and improved silicon are difficult to sinter by themselves, and conventionally various oxides and nitrides are
% fJO was added to facilitate sintering.

たとえば、窒化ケイ素に対して焼結助剤として酸化マグ
ネシウム、酸化イツトリウム、酸化アルミニウムなど5
〜20%添加して加圧焼結(ホットプレス)すると、は
ぼ理論密度に近い焼結体が得られる。
For example, magnesium oxide, yttrium oxide, aluminum oxide, etc. are used as sintering aids for silicon nitride.
By adding ~20% and performing pressure sintering (hot pressing), a sintered body having a density close to the theoretical density can be obtained.

しかしながら、これら焼結助剤によるガラス相は高温に
おいて軟化し、焼結体の強度は室温値より著るしく低下
する。
However, the glass phase caused by these sintering aids softens at high temperatures, and the strength of the sintered body is significantly lower than the room temperature value.

この高温での強度低下を防止するため、焼結助剤に起因
する粒界のガラスを結晶化させたり、焼結助剤の添加量
をできるだけ少くするなどの検討がなされているが、未
だ完全な解決には至っていない。
In order to prevent this decrease in strength at high temperatures, attempts have been made to crystallize the glass at the grain boundaries caused by the sintering aid, and to reduce the amount of the sintering aid added as much as possible. No solution has been reached.

一方、焼結助剤の検討とは別に、複合化、特に高強度の
繊維によって焼結体の高温強度を高める繊維強化法とい
う考え方もある。
On the other hand, apart from the study of sintering aids, there is also the idea of a fiber reinforcement method that increases the high-temperature strength of the sintered body by using composites, especially high-strength fibers.

こ、の目的のために用いられる繊維は十分な強度を持つ
ことは当然としても、加圧焼結時に破壊されることがな
く、かつ高温においても強度が低下しないことが望まれ
る。
It goes without saying that the fibers used for this purpose have sufficient strength, but it is also desirable that the fibers do not break during pressure sintering and that their strength does not decrease even at high temperatures.

かかる繊維強化剤としては炭素繊維をはじめ、炭化ケイ
素、窒化ケイ素、窒化ホウ素、アルミナなどのセラミッ
ク繊維が有力な候補となる。
Potential candidates for such fiber reinforcing agents include carbon fibers and ceramic fibers such as silicon carbide, silicon nitride, boron nitride, and alumina.

特に炭化ケイ素の繊維状結晶、一般にウィスカーと呼ば
れるものは、はぼ単結晶に近いため、強度が極めて高く
、また耐熱性も優れていることから注目されていた。
In particular, fibrous crystals of silicon carbide, commonly called whiskers, have attracted attention because they are close to single crystals and have extremely high strength and excellent heat resistance.

また、近年では有機ケイ素ポリマーから得られる炭化ケ
イ素長繊維も複合強化材として有力と考えられている。
Furthermore, in recent years, silicon carbide long fibers obtained from organosilicon polymers are also considered to be effective as composite reinforcing materials.

しかしながら、これら炭化ケイ素ウィスカーあるいは炭
化ケイ素長繊維を複合させた窒化ケイ素複合焼結体は、
繊維自身の嵩密度が低いために複合処理をしたときに高
密度の焼結体とすることができず、そのため十分な強度
が得られない欠点があった。
However, these silicon nitride composite sintered bodies made of silicon carbide whiskers or silicon carbide long fibers are
Since the bulk density of the fiber itself is low, it is not possible to form a high-density sintered body when it is subjected to composite treatment, which has the disadvantage that sufficient strength cannot be obtained.

そこで本発明はかかる現状にかんがみなされたものであ
り、従来全く得られなかった、はぼ完全に焼結した、す
なわち理論値との相対密度が99%以上にも緻密化でき
た複合焼結体を得ることができ、また1000℃以上の
高温においても優れた強度を保持する焼結体が得られる
などの特長を有するものである。
Therefore, the present invention was conceived in view of the current situation, and provides a composite sintered body which has been completely sintered, that is, the relative density of the theoretical value has been densified to 99% or more. It has the advantage of being able to obtain a sintered body that maintains excellent strength even at high temperatures of 1000° C. or higher.

すなわち本発明は、窒化ケイ素粉末およびこの10〜4
0重量%の繊維状炭化ケイ素を粘結剤中に分散させてペ
ーストとし、これを板状に成形して乾燥したものを積層
して7711圧、焼結することを特徴とする繊維強化型
窒化ケイ素焼結体の製造方法である。
That is, the present invention provides silicon nitride powder and its 10-4
Fiber-reinforced nitriding characterized by dispersing 0% by weight of fibrous silicon carbide in a binder to form a paste, forming this into a plate shape, drying it, stacking it, and sintering it under 7711 pressure. This is a method for manufacturing a silicon sintered body.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明ではまず、窒化ケイ素粉末と、この10〜40重
量%の繊維状炭化ケイ素を粘結剤中に分散させて、十分
に混合してペーストを製造する。
In the present invention, first, silicon nitride powder and 10 to 40% by weight of the fibrous silicon carbide are dispersed in a binder and thoroughly mixed to produce a paste.

ここで繊維状炭化ケイ素とは、炭化ケイ素ウィスカー、
あるいは有機ケイ素ポリマーから得られる炭化ケイ素長
繊維などであり、窒化ケイ素との混合量がその10重量
%に満たないと十分な複合強化効果が得られないので好
ましくなく、また混合量が40重量%を越えると板状成
形物の嵩密度が著るしく小さくなり、緻密な焼結体が得
られにくくなる。
Here, fibrous silicon carbide refers to silicon carbide whiskers,
Alternatively, it is silicon carbide long fibers obtained from organosilicon polymers, and if the amount mixed with silicon nitride is less than 10% by weight, sufficient composite reinforcing effect cannot be obtained, so it is not preferable, and if the amount mixed with silicon nitride is less than 10% by weight, it is not preferable. If it exceeds this value, the bulk density of the plate-shaped molded product will be significantly reduced, making it difficult to obtain a dense sintered body.

また粘結剤としては窒化ケイ素と繊維状炭化ケイ素とか
らのペーストを成形できる粘度を有し、かつ乾燥および
脱脂処理により容易に除去できれば如何なるものであっ
ても良いが、焼結体をより高密度化するためには、ポリ
ビニルアルコール、アクリル樹脂、セルロース、アルギ
ン酸ソーダの水、アルコールその他の有機溶剤溶液など
を粘結剤として使用することが好ましい。
Any binder may be used as long as it has a viscosity that allows molding of a paste made of silicon nitride and fibrous silicon carbide, and can be easily removed by drying and degreasing. For densification, it is preferable to use polyvinyl alcohol, acrylic resin, cellulose, a solution of sodium alginate in water, alcohol or other organic solvent as a binder.

かかる粘結剤の使用量はその種類によっても異なるが、
通常ではペーストを板状に成形できる程度の量、すなわ
ち、窒化ケイ素と繊維状炭化ケイ素の合計量に対して1
〜20重量%である。
The amount of binder used varies depending on the type of binder, but
Normally, the amount is enough to form the paste into a plate shape, that is, 1% for the total amount of silicon nitride and fibrous silicon carbide
~20% by weight.

次にこのペーストを板状に成形し、乾燥する。This paste is then shaped into a plate and dried.

この成形方法としては、紙あるいは布類を使った常圧流
過または加圧濾過、ペーストからのドクターブレード法
、あるいは射出成型法などが用いられる。
Examples of the molding method include normal pressure filtration or pressure filtration using paper or cloth, a doctor blade method from a paste, or an injection molding method.

この成形板の厚さは特に限定されないが、後述する加圧
、焼結を容易にするため、通常では0.5〜3gm、好
ましくは1〜2imの薄板状とする。
Although the thickness of this molded plate is not particularly limited, it is usually a thin plate of 0.5 to 3 gm, preferably 1 to 2 mm in order to facilitate the pressurization and sintering described later.

得られた成形板を通常では加熱あるいは減圧下で乾燥し
、加熱して粘結剤を600℃以下の温度で完全に除去す
る。
The obtained molded plate is usually dried under heat or reduced pressure, and the binder is completely removed by heating at a temperature of 600° C. or less.

次に乾燥終了後、成型板を積層し、これを加圧下に焼結
して焼結体を得る。
After drying, the molded plates are stacked and sintered under pressure to obtain a sintered body.

この加圧、焼結方法としては、いわゆるホットプレス法
、成形板をまず3〜10トンの静水圧でまず予備的な緻
密化を行なったのち、窒化ガス雰囲気下、1600〜1
800℃で焼結する常圧焼結法、さらにはホットプレス
法もしくは常圧焼結法で得られた焼結体を、不活性ガス
の1500〜2000気圧、1600〜1850℃で更
に焼結する熱間静水圧加圧法などが用いられる。
The pressurization and sintering method is the so-called hot press method, in which the molded plate is first densified under a hydrostatic pressure of 3 to 10 tons, and then densified under a nitriding gas atmosphere at a pressure of 1,600 to 1
The sintered body obtained by the normal pressure sintering method, which is sintered at 800°C, or the hot press method or the normal pressure sintering method, is further sintered at 1,500 to 2,000 atmospheres in an inert gas at 1,600 to 1,850°C. A method such as hot isostatic pressing is used.

前述したように、従来の窒化ケイ素複合焼結体では窒化
ケイ素粉末と強化用繊維の混合物を加圧、焼結させても
、高密度の焼結体が得られなかったが、これは混合物の
嵩密度が極めて小さく、焼結操作時の加圧だけでは内部
に気孔が残るためであった。
As mentioned above, in conventional silicon nitride composite sintered bodies, even if a mixture of silicon nitride powder and reinforcing fibers was pressurized and sintered, a high-density sintered body could not be obtained. This was because the bulk density was extremely low, and pores remained inside if only the pressure was applied during the sintering operation.

しかしながら、本発明の板状成形を経由する加圧、焼成
法によれば、ペースト状混合物から板を成形する段階で
、成形法にもよるが理論密度に対する相対値で20〜4
0%程度の密度を得ることができる。
However, according to the pressing and firing method via plate forming of the present invention, at the stage of forming the plate from the paste mixture, the relative value to the theoretical density is 20 to 4, depending on the forming method.
A density of about 0% can be obtained.

このため焼結操作で気孔をほぼ完全に除くことができ、
高密度化が容易に達成されるのである。
For this reason, pores can be almost completely removed through the sintering process.
High density is easily achieved.

なお、比較的緻密な板状成形物を得る場合には、前述の
ようにセルロース、ポリビニルアルコール、アクリル樹
脂などの粘結剤を用い、緻密化を促進すると同時に、乾
燥時での成形体の強度を適宜高めることが好ましい。
In addition, when obtaining a relatively dense plate-shaped molded product, as mentioned above, a binder such as cellulose, polyvinyl alcohol, or acrylic resin is used to promote densification and at the same time increase the strength of the molded product when dry. It is preferable to increase it appropriately.

かかる粘結剤の添加により、濾過や射出成型なと種々の
高密度化操作を経た成型体は乾燥後も比較的高い密度を
有し、強度もある程度あって後の取扱い操作上に便利で
ある。
By adding such a binder, the molded product that has undergone various densification operations such as filtration and injection molding has a relatively high density even after drying, and has a certain degree of strength, making it convenient for subsequent handling operations. .

ただし、射出成形による板の成形などのように、相当多
重の粘結剤を添加して流動性を持たせたものは、前処理
として板状成形物をいわゆる脱脂処理して粘結剤を気化
、除去しておく必要がある。
However, when molding a plate by injection molding, in which a considerable number of binders are added to give fluidity, the plate-shaped molded product is pretreated with a so-called degreasing process to vaporize the binder. , it is necessary to remove it.

この脱脂処理が不十分であると、炭素分が焼結体中に残
留し、強度の低下をきたす恐れがある。
If this degreasing treatment is insufficient, carbon content may remain in the sintered body, resulting in a decrease in strength.

更に本発明においては、板状成形物を成形する際に、ペ
ーストを一方向に流動させると、この流れに沿った形で
強化用繊維の配向を促進することができる。
Furthermore, in the present invention, when the paste is made to flow in one direction when forming the plate-shaped article, the orientation of the reinforcing fibers can be promoted along this flow.

したがって本発明により得られた焼結体は繊維状炭化ケ
イ素が一次ないし二次的に配向されているので、三次的
にランダムに配向されたものに比較して繊維状炭化ケイ
素の強化剤としての効果を格段に発揮することができ、
著るしく高強度の焼結体となる。
Therefore, in the sintered body obtained according to the present invention, the fibrous silicon carbide is primarily or secondarily oriented, so it is more effective as a reinforcing agent than a sintered body in which the fibrous silicon carbide is oriented in a tertiary or random manner. It can be extremely effective,
The result is a sintered body with significantly high strength.

以上述べた如く、本発明によれば、まず窒化ケイ素粉末
と繊維状炭化ケイ素とのペーストで板状物を成形し、こ
の成形物を積層したのち、加圧、焼結しているので、成
形物に残存する気孔が焼結後には著るしく減少し、高密
度の焼結体が得られる。
As described above, according to the present invention, a plate-like object is first formed from a paste of silicon nitride powder and fibrous silicon carbide, and after the formed objects are laminated, they are pressurized and sintered. The pores remaining in the product are significantly reduced after sintering, resulting in a high-density sintered product.

また、ペーストを一定方向に流動させて板状物を成形す
れば繊維状炭化ケイ素のランダム配向が減少し、従って
焼結体の強度が更に高められる。
Further, if the paste is made to flow in a fixed direction to form a plate-like object, the random orientation of the fibrous silicon carbide is reduced, and therefore the strength of the sintered body is further increased.

すなわち本発明は、従来の窒化ケイ素−繊維状炭化ケイ
素焼結体の欠点を一挙に解決した画期的な発明と云える
That is, the present invention can be said to be an epoch-making invention that solves all the drawbacks of the conventional silicon nitride-fibrous silicon carbide sintered body.

以下、本発明を実施例により説明する。The present invention will be explained below using examples.

実施例 1 窒化ケイ素粉末(5重量%の酸化マグネシウムを含む9
5%のα型窒化ケイ素)に炭化ケイ素ウィスカーを強化
用繊維として夫々10,20,30゜および40重量%
加え、これに水中で超音波照射を行なって繊維の絡まり
を解くと同時に、十分に中本混合した。
Example 1 Silicon nitride powder (9 containing 5% by weight magnesium oxide)
5% α-type silicon nitride) with silicon carbide whiskers as reinforcing fibers at 10, 20, 30° and 40% by weight, respectively.
In addition, this was irradiated with ultrasonic waves in water to untangle the fibers, and at the same time, the fibers were thoroughly mixed.

次いで約5重量%のポリビニルアルコールを粘結剤とし
て加えてペーストとした後、減圧濾過法によって厚さ5
m以下の薄板を成形した。
Next, about 5% by weight of polyvinyl alcohol was added as a binder to make a paste, and then it was made into a paste with a thickness of 5% by vacuum filtration.
A thin plate with a diameter of less than m was molded.

この薄板をホットプレス用黒鉛型の大きさに切り出し、
乾燥後、所定数を積層し、黒鉛型内で加熱脱脂処理を行
なったのち1800℃、4ookg/cr/1で60分
間、ホットプレスを行なった。
Cut this thin plate into the size of a graphite mold for hot press,
After drying, a predetermined number of layers were laminated, heated and degreased in a graphite mold, and then hot pressed at 1800° C. and 4ook/cr/1 for 60 minutes.

かくして得られた4種類の焼結体(試料A−D)につい
て冷却後、密度を測定した。
After cooling, the densities of the four types of sintered bodies (samples A to D) thus obtained were measured.

結果を下記第1表に示す。The results are shown in Table 1 below.

比較のために、薄板成形を経由せず、粉末状態から直接
ホットプレスして得られた焼結体の密度も示した。
For comparison, the density of a sintered body obtained by hot pressing directly from a powder state without going through thin plate forming is also shown.

第1表から明らかなように、本発明の焼結体は粉末状態
でホットプレスしたものに比較して高密度である。
As is clear from Table 1, the sintered body of the present invention has a higher density than that obtained by hot pressing in a powder state.

実施例 2 実施例1と同様にして30重量%の炭化ケイ素ウィスカ
ーを含む焼結体を得た。
Example 2 A sintered body containing 30% by weight of silicon carbide whiskers was obtained in the same manner as in Example 1.

ただし原料窒化**ケイ素としてα相を90%および9
5%含む粉末(A粉末およびB粉末)を用いた。
However, as raw material nitride**silicon, α phase is 90% and 9
Powders containing 5% (A powder and B powder) were used.

得られた焼結i 体の室温、1100℃および1300
℃における曲げ強度を下記第2表に示す。
The room temperature of the obtained sintered i body was 1100°C and 1300°C.
The bending strength at ℃ is shown in Table 2 below.

また、強化用ウィスカーを入れない焼結体についても比
較のために同様に曲げ強度を測定した。
Further, for comparison, the bending strength of the sintered body without reinforcing whiskers was similarly measured.

この第2表から、室温での曲げ強度は実施例2の焼結体
が、A、B粉末ともにウィスカー無添加のものに比較し
て低いが、1100℃以上の高温になると、逆に繊維強
化焼結体の方が高い曲げ強度を示すことが明らかである
From this Table 2, it can be seen that the bending strength of the sintered body of Example 2 at room temperature is lower than that of the sintered body with no whisker added for both A and B powders, but at high temperatures of 1100°C or higher, fiber reinforcement It is clear that the sintered body exhibits higher bending strength.

このことから、本発明の製造方法が窒化ケイ素焼結体の
高温強度の向上に有効であることが実証される。
This proves that the manufacturing method of the present invention is effective in improving the high-temperature strength of silicon nitride sintered bodies.

実施例 3 実施例2のB粉末窒化ケイ素(酸化マグネシウムを5重
量%含む)に炭化ケイ素ウィスカーを30重量%加えた
ものを水中に分散させ、これにアルギン酸ソーダを粘結
剤として約5重量%加え、ドクターブレード法により薄
板を成形し、所定の大きさに切り出し、乾燥後に積み重
ねて1750℃、300に9/cIlで90分間ホット
プレスし、冷却後にこの焼結体の曲げ強度を測定した。
Example 3 B powder silicon nitride of Example 2 (containing 5% by weight of magnesium oxide) with 30% by weight of silicon carbide whiskers added was dispersed in water, and about 5% by weight of sodium alginate was added as a binder. In addition, a thin plate was formed by a doctor blade method, cut into a predetermined size, dried, stacked, and hot pressed at 1750°C and 300°C/cIl for 90 minutes, and after cooling, the bending strength of this sintered body was measured.

結果を第3表に示す。The results are shown in Table 3.

ドクターブレード法を使用せずに、**粉末状態から直
接ホットプレスした焼結体についても比較のために同様
に測定した。
A sintered body directly hot-pressed from a powder state without using the doctor blade method was also measured in the same manner for comparison.

ドクターブレード法により、強化用繊維の配向を促進し
た実施例3の焼結体は、無配向状態である粉末からホッ
トプレスしたものに比べ、いずれの温度でも、より高い
曲げ強度を示した。
The sintered body of Example 3, in which the orientation of the reinforcing fibers was promoted by the doctor blade method, exhibited higher bending strength at any temperature than that hot-pressed from non-oriented powder.

このことから強化用繊維配向の効果が明らかである。This clearly shows the effect of reinforcing fiber orientation.

Claims (1)

【特許請求の範囲】[Claims] 1 窒化ケイ素粉末と、この10〜40重量%の繊維状
炭化ケイ素を粘結剤中に分散させてペーストを形威し、
これを板状に成形して乾燥したものを積層して加圧、焼
結することを特徴とする繊維強化型窒化ケイ素焼結体の
製造方法。
1 Disperse silicon nitride powder and 10 to 40% by weight of the fibrous silicon carbide in a binder to form a paste,
A method for producing a fiber-reinforced silicon nitride sintered body, which is characterized by forming this into a plate shape, drying it, stacking it, pressurizing it, and sintering it.
JP56202074A 1981-12-14 1981-12-14 Method for manufacturing fiber-reinforced silicon nitride sintered body Expired JPS5851911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56202074A JPS5851911B2 (en) 1981-12-14 1981-12-14 Method for manufacturing fiber-reinforced silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56202074A JPS5851911B2 (en) 1981-12-14 1981-12-14 Method for manufacturing fiber-reinforced silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPS58104069A JPS58104069A (en) 1983-06-21
JPS5851911B2 true JPS5851911B2 (en) 1983-11-18

Family

ID=16451512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56202074A Expired JPS5851911B2 (en) 1981-12-14 1981-12-14 Method for manufacturing fiber-reinforced silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPS5851911B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212671A (en) * 1985-07-10 1987-01-21 株式会社日立製作所 Fiber reinforced ceramics
EP2058287A4 (en) 2006-08-30 2011-01-19 Ngk Spark Plug Co Aluminum oxide-based composite sintered material and cutting insert

Also Published As

Publication number Publication date
JPS58104069A (en) 1983-06-21

Similar Documents

Publication Publication Date Title
JP3096716B1 (en) Method for producing fiber-reinforced silicon carbide composite
US5470806A (en) Making of sintered silicon carbide bodies
KR890002247B1 (en) Ceramic compact and a process for the production of the same
JPS6364968A (en) Silicon carbide base composite ceramics
US4795673A (en) Composite material of discontinuous silicon carbide particles and continuous silicon matrix and method of producing same
EP0045134B1 (en) A composite material of silicon carbide and silicon and method of producing the material
KR100307509B1 (en) Ceramic-Containing Carbon / Carbon Composites and Manufacturing Method Thereof
CN114685169A (en) Preparation method of fiber-reinforced silicon carbide ceramic matrix composite based on slurry lamination design
JPS59102861A (en) Silicon carbide composite oxide sintered ceramics
JPH0822782B2 (en) Method for producing fiber-reinforced ceramics
JPS5851911B2 (en) Method for manufacturing fiber-reinforced silicon nitride sintered body
JPH0157075B2 (en)
US5928583A (en) Process for making ceramic bodies having a graded porosity
JPH06199578A (en) Ceramic-base composite material, its production and ceramic fiber for composite material
JPH06340475A (en) Fiber reinforced ceramic composite material and its production
US5273941A (en) Fiber reinforced silicon carbide ceramics and method of producing the same
KR100299099B1 (en) Manufacturing Method of Silicon Carbide Ceramic Seals by Liquid Phase Reaction Sintering
JPH0224789B2 (en)
JPS63277563A (en) Fiber-reinforced silicon carbide ceramics and production thereof
JPS6034515B2 (en) Manufacturing method of silicon carbide ceramic sintered body
JPS60195064A (en) Fiber reinforced composite ceramics and manufacture
JP3443634B2 (en) High temperature composite material and method for producing the same
JPS63107864A (en) Silicon carbide base composite ceramics
Tanaka et al. Fabrication of SiC-SiC whisker composite by repeated infiltration of polycarbosilane
JPH0610115B2 (en) Manufacturing method of composite ceramics