JPS5851909B2 - Manufacturing method for titanium oxide molded products - Google Patents

Manufacturing method for titanium oxide molded products

Info

Publication number
JPS5851909B2
JPS5851909B2 JP50093466A JP9346675A JPS5851909B2 JP S5851909 B2 JPS5851909 B2 JP S5851909B2 JP 50093466 A JP50093466 A JP 50093466A JP 9346675 A JP9346675 A JP 9346675A JP S5851909 B2 JPS5851909 B2 JP S5851909B2
Authority
JP
Japan
Prior art keywords
titanium oxide
alumina
molded product
acid
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50093466A
Other languages
Japanese (ja)
Other versions
JPS5216507A (en
Inventor
薫一 松下
光 桜田
和彦 小沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP50093466A priority Critical patent/JPS5851909B2/en
Priority to US05/636,983 priority patent/US4061596A/en
Publication of JPS5216507A publication Critical patent/JPS5216507A/en
Publication of JPS5851909B2 publication Critical patent/JPS5851909B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は酸化チタン成型物の製造法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a titanium oxide molded article.

さらに詳しくは、例えば、触媒担体として好適な表面積
、気孔率を有し、かつ実用上充分な強度の酸化チタンを
主成分とする成型物の製造方法に関するものである。
More specifically, the present invention relates, for example, to a method for producing a molded article containing titanium oxide as a main component, which has a suitable surface area and porosity as a catalyst carrier, and has sufficient strength for practical use.

一般に、固体触媒は、適当な形状および粒径の担体上に
触媒成分を担持した形態、あるいは触媒成分自体を適当
な形状および粒径に成型した形態で使用し、固定層、移
動層、流動層等の方式が彩用されるが、いずれの場合に
おいても工業的規模で使用するには一定以上の強度が要
求される。
In general, solid catalysts are used in the form of a catalyst component supported on a carrier with an appropriate shape and particle size, or in the form of a catalyst component itself molded into an appropriate shape and particle size. The following methods are widely used, but in either case, a certain level of strength is required for use on an industrial scale.

強度が充分でない場合は、反応塔への充填時に崩壊した
り、反応中の風圧、熱衝撃などによる粉化や破壊のため
に、閉塞などを起こして実際の使用に耐えることができ
ない。
If the strength is not sufficient, it may collapse during filling into the reaction tower, or it may become clogged due to powdering or destruction due to wind pressure, thermal shock, etc. during the reaction, and cannot withstand actual use.

酸化チタンは触媒担体あるいは触媒自体としで、すぐれ
た性質を有しているが、優れた機械的強度を保持した成
型物を得ることが困難である。
Titanium oxide has excellent properties as a catalyst carrier or as a catalyst itself, but it is difficult to obtain molded products that maintain excellent mechanical strength.

例えば、二酸化チタンを触媒担体用の成型物に成型する
には、通常、微細な粉状の二酸化チタンを水と混線し押
出成型機で押出し、適当な長さに切断後、焼成する方法
が採られるが、この場合、強固な凝集が生起し難く、強
度の高い成型物をうることは困難である。
For example, in order to mold titanium dioxide into a molded product for use as a catalyst carrier, the usual method is to mix fine powdered titanium dioxide with water, extrude it in an extruder, cut it into appropriate lengths, and then sinter it. However, in this case, strong agglomeration is difficult to occur and it is difficult to obtain a molded product with high strength.

一方、二酸化チタンを1000℃以上の高温で焼結処理
することにより、硬度を非常に大きくし、熱衝撃に対し
ても強くすることができるが、得られる焼結体は極めて
緻密となり、表面積も小さく、触媒担体として適当でな
い。
On the other hand, by sintering titanium dioxide at a high temperature of 1000°C or higher, it can be made extremely hard and resistant to thermal shock, but the resulting sintered body becomes extremely dense and has a small surface area. It is small and not suitable as a catalyst carrier.

本発明は触媒担体としてとくに好適な表面積、気孔率を
有し、かつ、実用上充分な強度を有する酸化チタンを主
成分とする成型物を得ることを目的として、種々慣討し
た結果、さきに、酸化チタンを無機酸又は低級脂肪族カ
ルボン酸を含む水性媒体と混合し、焼成する方法を提案
した。
The present invention was developed as a result of various studies aimed at obtaining a molded product containing titanium oxide as a main component, which has a particularly suitable surface area and porosity as a catalyst carrier, and has sufficient strength for practical use. proposed a method in which titanium oxide is mixed with an aqueous medium containing an inorganic acid or a lower aliphatic carboxylic acid and then fired.

この方法によれば、強度の優れた酸化チタン成型物を得
ることができるが、触媒担体としての表面積、気孔率に
おいて必ずしも満足しうるものとはいい難い。
According to this method, a titanium oxide molded product with excellent strength can be obtained, but it cannot be said that the surface area and porosity as a catalyst carrier are necessarily satisfactory.

本発明者等は上記事情にもとすき更に検討の結果、ある
種の威型助削を添加することにより表面積、気孔率が高
く、かつ強度においても実用上満足しつる酸化チタン成
型物を得ることができることを見い出し本発明に到達し
た。
In view of the above circumstances, the inventors of the present invention made further studies and obtained a titanium oxide molded product that has a high surface area, high porosity, and is practically satisfactory in terms of strength by adding a certain type of shaping additive. The present invention was achieved by discovering that this can be done.

すなわち、本発明の要旨は、酸化チタンまたは酸化チタ
ンとアルミナの混合物を、水溶性セルロース系化合物、
ポリアクリルアミド、でんぷん、ポリエチレングリコー
ル、ポリ酢酸ビニル、高級脂肪族カルボン酸、ポリエチ
レン、尿素、活性炭から選ばれた少くとも一種と、無機
酸又は低級脂肪族カルボン酸との存在下、水性媒体と混
合し、成型したのち焼成することを特徴とする酸化チタ
ン成型物の製造法に存する。
That is, the gist of the present invention is to combine titanium oxide or a mixture of titanium oxide and alumina with a water-soluble cellulose compound,
At least one selected from polyacrylamide, starch, polyethylene glycol, polyvinyl acetate, higher aliphatic carboxylic acids, polyethylene, urea, and activated carbon is mixed with an aqueous medium in the presence of an inorganic acid or lower aliphatic carboxylic acid. , a method for producing a titanium oxide molded product, characterized in that it is molded and then fired.

以下本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明に使用される酸化チタンとしては、例えば四塩化
チタン、硫酸チタンむどのチタン塩を加水分解し、必要
に応じて中和洗浄することにより得られるが、本発明に
おいてはこのようにして得られる湿ケーキをそのまま、
あるいは、一部脱水もしくは乾燥した粉状で使用される
The titanium oxide used in the present invention can be obtained, for example, by hydrolyzing titanium salts such as titanium tetrachloride and titanium sulfate, and neutralizing and washing as necessary. Leave the wet cake as it is,
Alternatively, it is used in partially dehydrated or dried powder form.

また、乾燥後さらに800℃程度未満の比較的低温で焼
成しして使用することもできる。
Further, after drying, it can be further used by firing at a relatively low temperature of less than about 800°C.

酸化チタンは、単独で使用することができるが、アルミ
ナを混合して使用してもよい。
Titanium oxide can be used alone, or may be used in combination with alumina.

酸化チタンとアルミナから戒る成型物を得る場合に使用
されるアルミナとしては、例えば常法1こよりアルミナ
水和物の熱分解で製造されたγ−アルミナ、θ−アルミ
ナ、θ−アルミナおよびベーマイトなどのアルミナ水和
物が使われるが、更にアルミナゾルや焼成によりアルミ
ナに転化する硝酸アルミニウムのようなアルミニウム塩
が使用される。
Examples of alumina used to obtain a molded product from titanium oxide and alumina include γ-alumina, θ-alumina, θ-alumina, and boehmite produced by thermal decomposition of alumina hydrate using conventional method 1. An alumina hydrate is used, as well as an alumina sol or an aluminum salt such as aluminum nitrate, which is converted to alumina by calcination.

アルミナの添加量は通常、全量に対し0.1〜50重量
%である。
The amount of alumina added is usually 0.1 to 50% by weight based on the total amount.

酸化チタンまたは酸化チタンとアルミナとの混合物の成
型に際し使用される助剤としては、結晶性セルロース、
メチルセルロース、カルボキシメチルセルロースおよび
その塩などの水溶性セルロース:ポリアクリルアミド;
でんぷん;ポリエチレングリコール:ポリ酢酸ビニル;
ステアリン酸、パルミチン酸などの高級脂肪族カルボン
酸:ポリエチレン;尿素および活性炭から選ばれた少な
くとも一種が挙げられる。
Auxiliary agents used in molding titanium oxide or a mixture of titanium oxide and alumina include crystalline cellulose,
Water-soluble cellulose such as methylcellulose, carboxymethylcellulose and its salts: polyacrylamide;
Starch; Polyethylene glycol: Polyvinyl acetate;
Examples include at least one selected from higher aliphatic carboxylic acids such as stearic acid and palmitic acid; polyethylene; urea and activated carbon.

これらは焼成により炭酸ガスと水として焼失されるため
、二酸化チタン担体の本来の特性を損うことはなく、成
型、焼成後の成型物の表面積、気孔率を高くすることが
できるが、とくに水溶性セルロース化合物、ポリアクリ
ルアミドが好ましい。
Since these are burnt off as carbon dioxide gas and water during firing, they do not impair the original properties of the titanium dioxide support and can increase the surface area and porosity of the molded product after molding and firing. Preferred are cellulose compounds and polyacrylamide.

これらの有効な添加量は、通常、酸化チタンまたは酸化
チタンとアルミナの混合物の0.1〜20重量%、好ま
しくは1〜10重量%である。
Their effective addition amount is usually 0.1 to 20% by weight, preferably 1 to 10% by weight of the titanium oxide or the mixture of titanium oxide and alumina.

一方、上述の添加物とともに添加する酸とじては、硫酸
、硝酸、塩酸などが挙げられ、また低級脂肪族カルボン
酸としでは、蟻酸、酢酸、プロピオン酸、蓚酸、酪酸、
マレイン酸、クロル酢酸などが挙げられるが、とくに硝
酸または酢酸による効果が著しい。
On the other hand, examples of acids added with the above-mentioned additives include sulfuric acid, nitric acid, hydrochloric acid, etc., and examples of lower aliphatic carboxylic acids include formic acid, acetic acid, propionic acid, oxalic acid, butyric acid,
Examples include maleic acid and chloroacetic acid, but nitric acid or acetic acid is particularly effective.

これらの添加量は、酸化チタンまたは酸化チタンとアル
ミナの混合物100部に対して0.01〜50部の範囲
から選ばれるが、通常は0.1〜10部程度添加するの
が効果的であり、水溶液として使用される。
The amount of these additives is selected from the range of 0.01 to 50 parts per 100 parts of titanium oxide or a mixture of titanium oxide and alumina, but it is usually effective to add about 0.1 to 10 parts. , used as an aqueous solution.

酸化チタンまたは酸化チタンとアルミナ混合物、前述の
成型助剤および無機酸または低級脂肪族カルボン酸は水
とともに可及的均一に混合した後成型する。
Titanium oxide or a mixture of titanium oxide and alumina, the above-mentioned molding aid, and an inorganic acid or lower aliphatic carboxylic acid are mixed as uniformly as possible with water and then molded.

例えば、押出成型機を使用して押出し、適当な寸法に切
断する。
For example, it is extruded using an extrusion molding machine and cut into appropriate dimensions.

このようにして成型された成型物は乾燥後焼成される。The molded product thus molded is dried and then fired.

焼成は、通常、空気雰囲気下、1000℃未満、好まし
くは500℃から900℃の範囲で行なわれる。
Firing is usually carried out in an air atmosphere at a temperature below 1000°C, preferably in the range from 500°C to 900°C.

加熱温度が1000°Cを越えた場合、強度は増大する
が強固な焼結が起こり、緻密となり表面積、気孔率とも
に著しく減少する。
When the heating temperature exceeds 1000°C, the strength increases, but strong sintering occurs, the material becomes dense, and both the surface area and porosity decrease significantly.

焼成時間も、担体の物性および強度に影響を与えるが通
常は1時間ないし10時間で好適に行うことができる。
Although the firing time also affects the physical properties and strength of the carrier, it is usually suitably 1 hour to 10 hours.

このようにして得られた成型物は、工業的使用に耐え得
るに充分な機械的強度を有し、かつ触媒担体として充分
な表面積、気孔率などの物理的諸性質を保持しており、
とくに気相接触反応用触媒または該触媒の担体として好
適である。
The molded product thus obtained has sufficient mechanical strength to withstand industrial use, and maintains sufficient physical properties such as surface area and porosity as a catalyst carrier.
It is particularly suitable as a catalyst for gas phase catalytic reactions or a carrier for the catalyst.

たとえば、本発明によって得られた成型物に、酸化バナ
ジウムのような触媒金属を担持させた触媒は、窒素酸化
物のアンモニア還元分解用触媒として使用した場合、高
度の触媒活性を長時間保持することができ、しかも長時
間の使用により、破砕、粉化等を生ずるおそれがない。
For example, a catalyst obtained by supporting a catalytic metal such as vanadium oxide on a molded product obtained by the present invention maintains a high level of catalytic activity for a long time when used as a catalyst for ammonia reduction and decomposition of nitrogen oxides. Moreover, there is no risk of crushing, pulverization, etc. due to long-term use.

以下、本発明を実施例により説明する。The present invention will be explained below using examples.

なお、実施例および比較例における圧縮強度は本屋式硬
度計により、成型物の長手方向の線耐圧強度として圧縮
強度を測定し、また、表面積はBET法N2ガス吸着に
よって測定した。
The compressive strength in the Examples and Comparative Examples was determined by measuring the compressive strength as the linear compressive strength in the longitudinal direction of the molded product using a Honya type hardness tester, and the surface area was measured by N2 gas adsorption using the BET method.

実施例 1 硫酸チタンを加水分解し、中和、洗浄して得た水酸化チ
タンのウェットケーキを乾燥したのち500℃で3時間
焼成して二酸化チタン粉末を得た。
Example 1 A wet cake of titanium hydroxide obtained by hydrolyzing, neutralizing and washing titanium sulfate was dried and then calcined at 500° C. for 3 hours to obtain titanium dioxide powder.

この二酸化チタン粉末200.9に微結晶セルロース(
アビセルTG−101、旭化戒工業■製品)6g(3重
量%)と5%酢酸溶液116rILlを加えてよく混練
した。
Microcrystalline cellulose (
6 g (3% by weight) of Avicel TG-101 (product of Asahi Kakai Kogyo Co., Ltd.) and 116 rILl of a 5% acetic acid solution were added and kneaded well.

この混合物を押出成型機(不二パウダル■製エツクペレ
ツターEXKF−1)で押出し、カッターで5醋φxi
omiに成型し、乾燥後空気流中で700803時間焼
威した。
This mixture was extruded using an extrusion molding machine (EXKPELLETTER EXKF-1 manufactured by Fuji Paudal ■), and a cutter was used to make 5 mm φxi.
After drying, it was baked in an air stream for 700803 hours.

焼成れた成型物の圧縮強度は8.6 kg、表口積は4
6、11 m/ g、吸水率は46%であった。
The compressive strength of the fired molded product is 8.6 kg, and the surface area is 4.
6, 11 m/g, and the water absorption rate was 46%.

実施例 2 硫酸チタンを加水分解し、中和洗浄した水酸化チタンの
ウェットケーキを乾燥したのち、600℃で6時間焼成
して二酸化チタン粉末を得た。
Example 2 Titanium sulfate was hydrolyzed, a wet cake of titanium hydroxide that had been neutralized and washed was dried, and then calcined at 600° C. for 6 hours to obtain titanium dioxide powder.

この二酸化チタン粉末190gにγ−アルミナ10gと
アゼヒル6gを加え、さらに1%酢酸溶液1287Vl
!を加えて混練した。
Add 10 g of γ-alumina and 6 g of Azehil to 190 g of this titanium dioxide powder, and add 1287 Vl of 1% acetic acid solution.
! was added and kneaded.

続いて実施例1と同様に押出成型し、乾燥後空気流通下
800℃で3時間焼成した。
Subsequently, extrusion molding was performed in the same manner as in Example 1, and after drying, the product was baked at 800° C. for 3 hours under air circulation.

得られた成型物の圧縮強度はs、 i kllであり、
触媒担体として充分使用しうる強度を有し、表面積は3
7.96 m1g、吸水率は53%であった。
The compressive strength of the obtained molded product is s, i kll,
It has sufficient strength to be used as a catalyst carrier, and has a surface area of 3
7.96 ml/g, water absorption rate was 53%.

実施例 3 実施例4と同じ二酸化チタン粉末200gをとり、これ
にポリアクリルアマイド1gと5%酢酸溶液128−を
加え混線した。
Example 3 200 g of the same titanium dioxide powder as in Example 4 was taken, and 1 g of polyacrylamide and 128 g of a 5% acetic acid solution were added thereto for crosstalk.

続いて実施例1と同様に押出成型し、乾燥後空気流通下
700℃で3時間焼成した。
Subsequently, extrusion molding was performed in the same manner as in Example 1, and after drying, the product was baked at 700° C. for 3 hours under air circulation.

得られた成型物の圧縮強度は10.1kg、表面積は4
3.15m7g、吸水率は42%であった。
The compressive strength of the molded product obtained was 10.1 kg, and the surface area was 4.
3.15m7g, water absorption rate was 42%.

実施例 4 実施例1と同じ二酸化チタン粉末20(lとステアリン
酸11をとり、これに1%酢酸溶液110M加えて混疎
し、ついで実施例1と同様に押出し成型し、乾燥後空気
流中で800℃3時間焼成した。
Example 4 20 (l) of the same titanium dioxide powder as in Example 1 and 11 stearic acid were taken, 110M of 1% acetic acid solution was added thereto, mixed, and then extrusion molded in the same manner as in Example 1. After drying, the mixture was molded in an air stream. It was fired at 800°C for 3 hours.

得られた成型物の圧縮強度は10.9kg、表面積は3
3.11m/g、吸水率は37%であった。
The compressive strength of the obtained molded product was 10.9 kg, and the surface area was 3
The water absorption rate was 3.11 m/g and 37%.

実施例 5 実施例1と同じ二酸化チタン粉末190.9をとり、こ
れに活性炭(成田薬品工業■製白鷺A)を11添加し、
さらに5%酢酸溶液137mA’77pえて混練し、実
施例1と同様にして押出成型した。
Example 5 190.9% of the same titanium dioxide powder as in Example 1 was taken, and 11% of activated carbon (Shirasagi A manufactured by Narita Pharmaceutical Co., Ltd.) was added thereto.
Further, 137mA'77p of 5% acetic acid solution was added, kneaded, and extrusion molded in the same manner as in Example 1.

乾燥後これを空気流中でSOO℃3時間焼成した。After drying, it was calcined for 3 hours at SOO° C. in a stream of air.

得られた成型物の圧縮強度は9.7 kg、表面積は3
0、51 rrt/ 9、吸水率は38%であった。
The compressive strength of the molded product obtained was 9.7 kg, and the surface area was 3
0.51 rrt/9, water absorption rate was 38%.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化チタンまたは酸化チタンとアルミナの混合物を
、水溶性セルロース系化合物、ポリアクリルアミド、で
んぷん、ポリエチレングリコール、ポリ酢酸ビニル、高
級脂肪族カルボン酸、ポリエチレン、尿素、活性炭から
選ばれた少なくとも−と無機酸または低級脂肪族カルボ
ン酸との存在下、水性媒体と混合し、成型したのち焼成
することを特徴とする酸化チタン成型物の製造法。
1. Titanium oxide or a mixture of titanium oxide and alumina is mixed with at least one selected from water-soluble cellulose compounds, polyacrylamide, starch, polyethylene glycol, polyvinyl acetate, higher aliphatic carboxylic acids, polyethylene, urea, and activated carbon and an inorganic acid. Alternatively, a method for producing a titanium oxide molded product, which comprises mixing it with an aqueous medium in the presence of a lower aliphatic carboxylic acid, molding it, and then firing it.
JP50093466A 1974-12-02 1975-07-31 Manufacturing method for titanium oxide molded products Expired JPS5851909B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP50093466A JPS5851909B2 (en) 1975-07-31 1975-07-31 Manufacturing method for titanium oxide molded products
US05/636,983 US4061596A (en) 1974-12-02 1975-12-02 Process for preparing titanium oxide shaped carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50093466A JPS5851909B2 (en) 1975-07-31 1975-07-31 Manufacturing method for titanium oxide molded products

Publications (2)

Publication Number Publication Date
JPS5216507A JPS5216507A (en) 1977-02-07
JPS5851909B2 true JPS5851909B2 (en) 1983-11-18

Family

ID=14083102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50093466A Expired JPS5851909B2 (en) 1974-12-02 1975-07-31 Manufacturing method for titanium oxide molded products

Country Status (1)

Country Link
JP (1) JPS5851909B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5395892A (en) * 1977-02-03 1978-08-22 Mizusawa Industrial Chem Titanium oxide catalyst carrier mold product and manufacture thereof
JPS56117637A (en) * 1980-02-21 1981-09-16 Sumitomo Rubber Ind Ltd Manufacture of reclaimed tyre
US4547487A (en) * 1983-05-19 1985-10-15 Gulf Research & Development Company Process for preparing catalysts
FR2633605B1 (en) * 1988-07-01 1991-07-12 Rhone Poulenc Chimie PROCESS FOR THE PREPARATION OF TITANIUM OXIDE AND TITANIUM OXIDE ARTICLES
JP2001096154A (en) * 1999-09-29 2001-04-10 Yamada Sangyo Kk Vanadium oxide/titania hybrid photocatalyst and its manufacturing method

Also Published As

Publication number Publication date
JPS5216507A (en) 1977-02-07

Similar Documents

Publication Publication Date Title
US4061596A (en) Process for preparing titanium oxide shaped carrier
EP1478458B1 (en) Catalyst carriers
KR100483574B1 (en) Carrier for manufacturing ethylene oxide, catalyst for manufacturing ethylene oxide, and method for manufacturing ethylene oxide
US5733842A (en) Method of making porous catalyst carrier without the addition of pore forming agents
US4900703A (en) Method for producing ceramics with thermal shock resistance
EP2226308B1 (en) Molded porous article, method for production thereof, catalyst carrier, and catalyst
US4260524A (en) Hollow catalyst carrier and hollow catalyst made of transition-alumina and process for production thereof
JPS63240945A (en) Catalyst based on cerium oxide and treatment of industrial gas containing sulfur compound
JP2003225570A (en) Supported catalyst, production method therefor, use of the catalyst, and molding of the catalyst
JPS5940057B2 (en) Catalyst for ethylene production from ethanol
JPS5851909B2 (en) Manufacturing method for titanium oxide molded products
JP2652680B2 (en) Silica extrudate
WO1997012670A1 (en) Process for preparing alumina support
JPH0952053A (en) Preparation of molded catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
US4370310A (en) Zinc aluminate prepared using an alumina hydrate
JP3091219B2 (en) Method for producing acid-resistant catalyst for direct hydrogenation to produce alcohol from carboxylic acid
WO2014178290A1 (en) Denitration catalyst and method for producing same
JPH0114809B2 (en)
JPH0925119A (en) Production of heat resistant transition alumina
JP4588183B2 (en) Ceramic body, catalyst carrier, production method thereof, ethylene oxide production catalyst using the carrier, production method thereof, and ethylene oxide production method
JPH0114807B2 (en)
JPH0114810B2 (en)
JP3636912B2 (en) Method for producing catalyst for producing ethylene oxide
JP2001062291A (en) Carrier of ethylene oxide production catalyst, ethylene oxide production catalyst and production of ethylene oxide
JPS62871B2 (en)