JPS5851690B2 - Gap holding column for surface acoustic wave device - Google Patents

Gap holding column for surface acoustic wave device

Info

Publication number
JPS5851690B2
JPS5851690B2 JP9927278A JP9927278A JPS5851690B2 JP S5851690 B2 JPS5851690 B2 JP S5851690B2 JP 9927278 A JP9927278 A JP 9927278A JP 9927278 A JP9927278 A JP 9927278A JP S5851690 B2 JPS5851690 B2 JP S5851690B2
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
wave device
waves
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9927278A
Other languages
Japanese (ja)
Other versions
JPS5526723A (en
Inventor
光太 小貫
周二 卜部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP9927278A priority Critical patent/JPS5851690B2/en
Publication of JPS5526723A publication Critical patent/JPS5526723A/en
Publication of JPS5851690B2 publication Critical patent/JPS5851690B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6486Coupled resonator filters having crossing or intersecting acoustic tracks, e.g. intersection in a perpendicular or diagonal orientation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02637Details concerning reflective or coupling arrays
    • H03H9/02779Continuous surface reflective arrays

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【発明の詳細な説明】 本発明は、弾性表面波非線形装置の半導体と圧電体との
空隙を保持する弾性表面波装置用空隙保持柱に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gap holding column for a surface acoustic wave device that maintains a gap between a semiconductor and a piezoelectric body of a surface acoustic wave nonlinear device.

半導体基板と圧電性基板を空隙を隔てて保持する弾性表
面波装置で、空隙を保持するために、誘電体の柱や基板
自身に凹凸をつけた柱を用いる場合において、従来では
この柱の配置に関して、(1)規則的に並べる、(2)
1次元的にランダムに並べる方法が行なわれていた。
In a surface acoustic wave device that holds a semiconductor substrate and a piezoelectric substrate with an air gap between them, when a dielectric pillar or a pillar with irregularities on the substrate itself is used to maintain the air gap, conventionally the arrangement of this pillar is Regarding (1) ordering regularly, (2)
A method of arranging them randomly in one dimension was used.

第1図は空隙保持の柱の概念図である。FIG. 1 is a conceptual diagram of a pillar for maintaining air gaps.

ここでは、基板自体にエツチング等により作られた柱を
示している。
Here, pillars made by etching or the like on the substrate itself are shown.

第2図a、bは第1図の平面図であり、図中の黒丸印が
柱を示している。
FIGS. 2a and 2b are plan views of FIG. 1, and black circles in the figures indicate pillars.

第2図aが上記の(1)の場合、第2図すが上記の(2
)の場合である。
If Figure 2a is (1) above, Figure 2a is (2) above.
).

どちらの場合にも、弾性表面波が矢印の方向から入射す
る場合のものである。
In both cases, surface acoustic waves are incident from the direction of the arrow.

第2図aにおいて柱は規則的に配置されており、波の入
射方向のみならず、斜め方向にも規則性を持っており、
入射した波は逆方向へ強く反射されるとともに、規則性
から定まる特定の方向に回折されることになる。
In Figure 2a, the pillars are arranged regularly, and have regularity not only in the direction of wave incidence but also in the diagonal direction.
The incident wave is strongly reflected in the opposite direction, and is also diffracted in a specific direction determined by the regularity.

第2図すにおいて、柱は波の入射方向に周期を持たない
ようにその方向にランダムlこ配置され表面波が逆方向
へ強く反射されにくく、斜め方向の規則性もない構造と
なっている。
In Figure 2, the pillars are arranged randomly in the wave incident direction so that there is no periodicity in that direction, making it difficult for surface waves to be strongly reflected in the opposite direction, and there is no regularity in the diagonal direction. .

以上のような構造を持っているが、表面波の入射方向が
設定された方向からずれた場合や、2つの直交する方向
に表面波を2波入射させたい場合においては、第2図す
の構造でも第2図aの欠点が生じて来ることは明らかで
ある。
Although it has the above structure, if the incident direction of the surface waves deviates from the set direction, or if you want to make two surface waves incident in two orthogonal directions, use the structure shown in Figure 2. It is clear that the structure also suffers from the drawbacks shown in FIG. 2a.

例えば、第2図すにおいて矢印方向と、それと直交する
方向の2つの方向から表面波が入射すると、後者の方向
では周期的な柱の配置によって反射が生じることになる
For example, in FIG. 2, when surface waves are incident from two directions, the direction of the arrow and the direction perpendicular thereto, reflection will occur in the latter direction due to the periodic arrangement of columns.

本発明は、上記の欠点を除去するため、柱の配置を2次
元的にランダムにし、任意の方向から表面波が入射して
も特定の方向に波を反射、回折させない弾性表面波装置
用空隙保持柱を提供するものであって、以下図面を用い
て詳細に説明する。
In order to eliminate the above-mentioned drawbacks, the present invention provides a space for a surface acoustic wave device in which the arrangement of columns is two-dimensionally random, and even if surface waves are incident from any direction, the waves are not reflected or diffracted in a specific direction. The present invention provides a holding column, which will be described in detail below with reference to the drawings.

第3図は本発明の一実施例であって、第2図と同様に平
面図を示している。
FIG. 3 shows an embodiment of the present invention, and shows a plan view similar to FIG. 2.

1は圧電基板、2は柱、3は説明のために基板上に設け
た格子パターン(横軸X、縦軸Y)、Aは説明用の格子
点を示している。
1 is a piezoelectric substrate, 2 is a column, 3 is a lattice pattern provided on the substrate for explanation (horizontal axis X, vertical axis Y), and A is a lattice point for explanation.

図における柱の配置を説明する。図中に示された格子点
において、各格子点を中心としてX軸、y軸を考える。
The arrangement of columns in the figure will be explained. At the lattice points shown in the figure, consider the X-axis and y-axis with each lattice point as the center.

今、格子点Aにおいて、乱数を用いて柱の座標(Xl、
yl)を定める。
Now, at grid point A, the column coordinates (Xl,
yl).

同様に他の格子点についても乱数を用いて柱の座標を定
めて、第3図に示されるような配置を形成する。
Similarly, the coordinates of the pillars for other grid points are determined using random numbers to form an arrangement as shown in FIG.

このような構造になっているから、X軸方向についても
、Y軸方向においても他の方向も同様に規則性を持たず
、任意の方向から波が入射しても特定の方向に波を反射
・回折させないことになる。
Because of this structure, there is no regularity in the X-axis direction, Y-axis direction, or other directions, so even if waves are incident from any direction, the waves will be reflected in a specific direction.・This will prevent diffraction.

第4図も不発明の実施例であって、1は圧電基板、2は
柱、4は説明のために基板上に設けた扇形格子(半径方
向座標r1角度座標θ)、Bは説明用の格子点を示して
いる。
FIG. 4 also shows an embodiment of the invention, in which 1 is a piezoelectric substrate, 2 is a column, 4 is a fan-shaped grid provided on the substrate for explanation (radial direction coordinate r1 angular coordinate θ), and B is an illustration for explanation. Shows grid points.

格子点Bにおいて、乱数を用いて、基準半径r。At grid point B, a reference radius r is set using a random number.

と基準角度θ。からの偏差を求めて、柱の位置を決定す
る。
and the reference angle θ. Determine the position of the pillar by finding the deviation from

他の格子点についても同様に行なって、どの方向にも規
則性を持たない配置を定める。
The same process is performed for other lattice points to determine their arrangement without regularity in any direction.

このような構造であるから、任意の方向から波が入射し
ても特定の方向に波を反射・回折させない。
Because of this structure, even if waves are incident from any direction, the waves will not be reflected or diffracted in a specific direction.

第5図は、本発明の柱の配置を用いたデバイスの例を示
している。
FIG. 5 shows an example of a device using the pillar arrangement of the present invention.

1は圧電基板、5は2次元的にランダムに配置された柱
の領域(この領域に半導体装置かれる)、6,7は弾性
表面液入カドランスジューサである。
1 is a piezoelectric substrate, 5 is a two-dimensionally randomly arranged pillar region (a semiconductor device is placed in this region), and 6 and 7 are elastic surface liquid-filled quadrant transducers.

6/、 7/は弾性表面液出カドランスジューサである
6/, 7/ are elastic surface liquid extraction quadrant juicers.

出力は、6z7tの弾性表面液出カドランスジューサに
よって、あるいは、半導体側の電極から得られるが、い
ずれにしても、表面波は直交する2つの波であるが、2
次元的にランダムに配置された柱によって特定方向に回
折されることなく一様に作用しあうことになる。
The output is obtained by a 6z7t elastic surface liquid ejection transducer or from an electrode on the semiconductor side, but in any case, the surface waves are two orthogonal waves.
Due to the dimensionally randomly arranged pillars, the light is not diffracted in a specific direction and interacts uniformly with each other.

第6図は、本発明の柱の配置を用いたデバイスの例であ
り、1は圧電基板、5は2次元的にランダムに配置され
た柱の領域(ここに半導体装置かれるのは第5図と同じ
である。
FIG. 6 shows an example of a device using the pillar arrangement of the present invention, where 1 is a piezoelectric substrate, 5 is a region of pillars arranged two-dimensionally at random (semiconductor devices are placed here, as shown in FIG. 5). is the same as

)6,7.8は弾性表面液入カドランスジューサ、6’
、 7’、 8’は弾性表面液出カドランスジューサで
ある。
) 6, 7.8 is an elastic surface liquid filled quadrant juicer, 6'
, 7', 8' are elastic surface liquid extraction quadrant juicers.

出力は第5図と同様に、6′、7′、8′より得られる
が、あるいは半導体側の電極から得られる。
The output is obtained from 6', 7', and 8' as in FIG. 5, or alternatively from the electrode on the semiconductor side.

表面波は3つの波として入力されるが、第5図と同様に
、特定方向に回折されることなく一様に作用しあうこと
になる。
The surface waves are input as three waves, but as in FIG. 5, they act uniformly on each other without being diffracted in a specific direction.

以上説明したように本発明によれば、空隙保持のための
柱の配置を、2次元的にランダムにするのであるから、
任意の方向から表面波が入射しても特定の方向に表面波
を反射・回折させない利点がある。
As explained above, according to the present invention, the arrangement of the pillars for maintaining the air gap is two-dimensionally random.
It has the advantage of not reflecting or diffracting surface waves in a specific direction even if the surface waves are incident from any direction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は弾性表面波装置の空隙保持の柱の概念図、第2
図aは従来の弾性表面波装置の規則的に並べられた柱の
配置を示す平面図、第2図すは従来の弾性表面波装置の
1次元的にランダムに並べられた柱の配置を示す平面図
、第3図は本発明の一実施例を示す平面図、第4図は本
発明の他の実施例を示す平面図、第5図及び第6図は夫
々本発明に係る弾性表面波装置の例を示す構成図である
。 1・・・・・・圧電基板、2・・・・・・柱、3・・・
・・・説明のための格子パターン、4・・・・・・説明
のための扇形格子パターン、5・・・・・・2次元的に
配置された柱の領域、6.7,8・・・・・・弾性表面
液入カドランスジューサ、6/、 7/、 8/・・・
・・・弾性表面液出カドランスジューサ。
Figure 1 is a conceptual diagram of the gap-maintaining pillar of the surface acoustic wave device, Figure 2
Figure a is a plan view showing the arrangement of regularly arranged pillars of a conventional surface acoustic wave device, and Fig. 2 shows the arrangement of pillars arranged randomly in one dimension in a conventional surface acoustic wave device. 3 is a plan view showing one embodiment of the present invention, FIG. 4 is a plan view showing another embodiment of the present invention, and FIGS. 5 and 6 are surface acoustic waves according to the present invention, respectively. FIG. 1 is a configuration diagram showing an example of a device. 1... Piezoelectric substrate, 2... Pillar, 3...
... Lattice pattern for explanation, 4... Fan-shaped grid pattern for explanation, 5... Area of pillars arranged two-dimensionally, 6.7, 8... ...Elastic surface liquid filled quadrant juicer, 6/, 7/, 8/...
...Elastic surface liquid extraction cadence juicer.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板と圧電性基板を空隙を隔てて保持し、前
記半導体基板と対向させる圧電体基板の主面上に空隙を
保持するため、金属あるいは誘電体の柱および基板自体
に凹凸をつけることによる柱を形成させてスペーサとし
た弾性表面波装置用空隙保持柱において、前記柱が二次
元的にランダムに配置する事を特徴とする弾性表面波装
置用空隙保持柱。
1. By holding the semiconductor substrate and the piezoelectric substrate with a gap between them, and by creating irregularities on the metal or dielectric pillars and the substrate itself in order to maintain the gap on the main surface of the piezoelectric substrate facing the semiconductor substrate. A gap maintaining column for a surface acoustic wave device in which columns are formed as spacers, wherein the columns are two-dimensionally arranged at random.
JP9927278A 1978-08-15 1978-08-15 Gap holding column for surface acoustic wave device Expired JPS5851690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9927278A JPS5851690B2 (en) 1978-08-15 1978-08-15 Gap holding column for surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9927278A JPS5851690B2 (en) 1978-08-15 1978-08-15 Gap holding column for surface acoustic wave device

Publications (2)

Publication Number Publication Date
JPS5526723A JPS5526723A (en) 1980-02-26
JPS5851690B2 true JPS5851690B2 (en) 1983-11-17

Family

ID=14243039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9927278A Expired JPS5851690B2 (en) 1978-08-15 1978-08-15 Gap holding column for surface acoustic wave device

Country Status (1)

Country Link
JP (1) JPS5851690B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3314725A1 (en) * 1983-04-22 1984-10-25 Siemens AG, 1000 Berlin und 8000 München SURFACE WAVE RESONATOR FILTER
US7889025B1 (en) * 2008-06-10 2011-02-15 The United States Of America As Represented By The Secretary Of The Army Anti-reflective acoustic diffuser for SAW and BAW devices

Also Published As

Publication number Publication date
JPS5526723A (en) 1980-02-26

Similar Documents

Publication Publication Date Title
KR100542801B1 (en) Grid Transducer for Acoustic Touch Screen
US3924259A (en) Array of multicellular transducers
JPS58170211A (en) Electronic device moved by sound wave
US8033997B2 (en) Interdigitated geometry transducer for optimizing the irradiated acoustic beam
JPS5851690B2 (en) Gap holding column for surface acoustic wave device
JP6569740B2 (en) Speaker device and speaker device manufacturing method
US4055820A (en) Reflective dot array for acoustic wave processing
US3962673A (en) System for reading acoustic images
AU2023226679A1 (en) Waterborne sound transducer
US4399387A (en) Ultrasonic wave transducer
JPH03270282A (en) Composite piezo-electric body
JPS59202059A (en) Probe for ultrasonic tomographic apparatus
KR20120047599A (en) Cell and channel of ultrasonic transducer, and ultrasonic transducer including the channel
US2777997A (en) Ultrasonic delay lines
JPS583215B2 (en) Onkiyo Kougakoshi no Seizouhou
Green A new liquid-surface-relief method of acoustic image conversion
JPS63281125A (en) Hologram for optical scanning
JPS5938908U (en) ultrasonic probe
JPS60136719A (en) Acoustooptic device
JPS62131700A (en) Ultrasonic wave probe and its manufacture
CN219245885U (en) Large-broadband acousto-optic filter
SU1078314A1 (en) Piezoelectric converter for receiving second symmetrical lamb wave in metals
JPS5821989B2 (en) ultrasonic probe
JPH07162054A (en) Method of forming piezoelectric thin film
JPS60125100A (en) Ultrasonic probe