JPS59202059A - Probe for ultrasonic tomographic apparatus - Google Patents

Probe for ultrasonic tomographic apparatus

Info

Publication number
JPS59202059A
JPS59202059A JP58076214A JP7621483A JPS59202059A JP S59202059 A JPS59202059 A JP S59202059A JP 58076214 A JP58076214 A JP 58076214A JP 7621483 A JP7621483 A JP 7621483A JP S59202059 A JPS59202059 A JP S59202059A
Authority
JP
Japan
Prior art keywords
probe
electrode
vibrator
piezoelectric material
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58076214A
Other languages
Japanese (ja)
Inventor
Toshiro Kondo
敏郎 近藤
Shinji Kishimoto
真治 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP58076214A priority Critical patent/JPS59202059A/en
Publication of JPS59202059A publication Critical patent/JPS59202059A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/0672Imaging by acoustic tomography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • B06B1/0625Annular array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/004Mounting transducers, e.g. provided with mechanical moving or orienting device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To easily fabricate a probe for an ultrasonic tomographic apparatus without generating the deterioration of capacity and without requiring multiple concentric circle processing, by forming a circular and a ring shaped electrodes so as to cover a large number of vibrators which are provided to a disc shaped piezoelectric material and by forming straight grooves to said piezoelectric material in a crossing state. CONSTITUTION:Crossing straight grooves are provessed to disc shaped piezoelectric ceramic 12 to form vibrator parts 14 in a mozaic pattern. A disc shaped electrode 17a and ring shaped electrodes 17b, 17c, ... concentric to said electrode 17a are provided to the surface of said ceramic 12 to which the grooves are not formed to be adhered to a sound absorbing material 6 while a common earthing electrode 15 is provided to the other surface of the ceramic 12 to form a probe. By this constitution, the probe for an ultrasonic tomographic apparatus which is prevented from the deterioration of capacity and focuses ultrasonic beam to the central point thereof is obtained without subjecting the piezoelectric material to multiple concentric circle processing.

Description

【発明の詳細な説明】 本発明は振動子ないしはその電極を同心円(環)状に分
割してなる超音波断層装置用探触子に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a probe for an ultrasonic tomography apparatus in which a vibrator or its electrode is divided into concentric circles (rings).

従来のこの種の探触子(アニユラ−アレー探触子)は、
第1図に示すように、中心の円板状の、およびその外周
に同心的に配列した複数の環状の、PZT等で作成され
た圧電セラミックからなる振動子1〜5を、各々電気的
および機械的に完全に分離させて吸音材6(第2図参照
)上に配設されてなる。
Conventional probes of this type (annual array probes) are
As shown in FIG. 1, vibrators 1 to 5 made of a piezoelectric ceramic made of PZT or the like, having a central disc shape and a plurality of annular shapes concentrically arranged around its outer circumference, are electrically connected to each other. They are completely mechanically separated and placed on the sound absorbing material 6 (see FIG. 2).

この種の探触子による超音波断層像形成について第2図
を参照して説明する。第2図において、1〜5は振動子
、6は吸音材、P+−Psは振動子1〜5の表、裏面に
各々被着された電極の振動子半径方向の中央点である。
Ultrasonic tomographic image formation using this type of probe will be explained with reference to FIG. 2. In FIG. 2, 1 to 5 are transducers, 6 is a sound absorbing material, and P+-Ps is the center point in the radial direction of the transducers of electrodes attached to the front and back surfaces of the transducers 1 to 5, respectively.

ここで、振動子1〜5の表面(図中下面)の電極は接地
電極として共通接続されて接地され、裏面(図中上面〕
の電極は各々振動子選択駆動電極として電気的に分離し
て各々パルス電圧発生器7の出力端および遅延回路8の
入力端に接続されている。9はタイミング回路、10は
制御回路、11は加算器である。
Here, the electrodes on the front surface (lower surface in the figure) of vibrators 1 to 5 are commonly connected and grounded as ground electrodes, and the electrodes on the back surface (upper surface in the figure)
The electrodes are electrically separated and connected to the output terminal of the pulse voltage generator 7 and the input terminal of the delay circuit 8, respectively, as vibrator selection drive electrodes. 9 is a timing circuit, 10 is a control circuit, and 11 is an adder.

このような超音波断層装置において、探触子前方の点O
に超音波ビームの焦点をおく場合の動作について説明す
る。いま、点Oを中心とし、この点Oと最外周側の環状
振動子5の中央点P5とを結ぶ距離を半径として円弧を
描き、各振動子1〜4の中央点P1〜P4を通る直線O
P+ 、 OF2 、 OPa 、 OF4を延長した
線と上述円弧との交点を各々P’+ r P’2 H¥
s +P’a  とする。
In such an ultrasonic tomography device, a point O in front of the probe
The operation when focusing the ultrasonic beam on is explained below. Now, draw an arc with the point O as the center and the distance connecting this point O and the center point P5 of the outermost annular vibrator 5 as a radius, and draw a straight line passing through the center points P1 to P4 of each of the vibrators 1 to 4. O
P'+ r P'2 H\
Let s + P'a.

上述前提において、PI PS+ P2 P4. Ps
 P≦、 P4 PI3間を各々超音波が伝播するのに
相当する時間だけ遅延を与えて各振動子1〜5を駆動す
れば、点Oには振動子1〜5から送波された超音波が同
一時点で到達し、集束することになる。ここでは制御回
路10よシ制御されるタイミング回路9よシ上述時間遅
延に応じたタイミング信号を発生させ、パルス電圧発生
器7を駆動することにより上述集束動作を行わせる。
Under the above premise, PI PS+ P2 P4. Ps
P≦, P4 If each transducer 1 to 5 is driven with a delay corresponding to the time that the ultrasonic wave propagates between each PI3, the ultrasonic wave transmitted from the transducers 1 to 5 will be at point O. will arrive and converge at the same point in time. Here, the timing circuit 9 controlled by the control circuit 10 generates a timing signal corresponding to the above-described time delay, and drives the pulse voltage generator 7 to perform the above-described focusing operation.

一方、点Oに焦点を合わせてエコー信号を受波するため
には、上述超音波送波時と同じ遅延時間を各振動子1〜
5からの信号に与えた後、加算すればよい。すなわち、
点Oからの信号は同位相で加算器11で加算されるよう
にすれば、この点Oから反射したエコー信号が最大感度
となる。この際の遅延を行うのが遅延回路8であるが、
この遅延回路8は、点O(焦点)の位置を任意に移動可
能とするため、制御回路10からの信号によってその遅
延時間が適宜変更できるようになされている。
On the other hand, in order to focus on point O and receive the echo signal, each transducer 1 to
After applying it to the signal from 5, it can be added. That is,
If the signals from point O are added in the adder 11 in the same phase, the echo signal reflected from point O will have the maximum sensitivity. The delay circuit 8 performs the delay at this time.
This delay circuit 8 is designed so that the position of the point O (focal point) can be moved arbitrarily, so that its delay time can be changed as appropriate by a signal from the control circuit 10.

以上説明したような動作によシアニュラーアレー探触子
はその焦点を任意の点に移動できる利点があり、広い視
野に亘って鮮明な超音波断層像を形成することができる
。また、この種の探触子は、その中心を通る軸に対し、
軸対称に超音波集束されるためアーチファクトが生じ難
いという利点がある。
Through the operations described above, the cyanular array probe has the advantage of being able to move its focal point to an arbitrary point, and can form a clear ultrasonic tomographic image over a wide field of view. In addition, this type of probe has an axis that passes through its center.
Since the ultrasonic waves are focused axially symmetrically, there is an advantage that artifacts are less likely to occur.

以上述べたように上述探触子を用いた超音波断層装置は
優れた性能(利点)をもつが、上述探触子は第1図およ
び第2図に示すように、1つの円板状の振動子1と多数
の環状の振動子2〜5を必要とする。しかし、これら振
動子1〜5は、通常、圧電セラミックを用いるため加工
が困難である。
As mentioned above, the ultrasonic tomography apparatus using the above-mentioned probe has excellent performance (advantages), but the above-mentioned probe has a single disk-shaped structure as shown in Figs. It requires a vibrator 1 and a large number of annular vibrators 2 to 5. However, these vibrators 1 to 5 are difficult to process because they usually use piezoelectric ceramics.

特に、高性能化のため環状振動子の数を多くする場合や
、高周波用としての小口径探触子製造のために各振動子
間の幅を微細とする場合等、極めて加工が困難となった
。すなわち、通常、上述のような加工には超音波加工法
が最も実用的であるとされているが、この加工法によっ
ても加工速度が遅く、加工費が高くなシ、各振動子間の
切断溝幅も十分狭くできず、量産化を困難にしていた。
In particular, processing becomes extremely difficult when increasing the number of annular oscillators to improve performance, or when making the width between each oscillator minute to manufacture small diameter probes for high frequency applications. Ta. In other words, the ultrasonic machining method is usually considered to be the most practical for the above-mentioned machining, but even with this machining method, the machining speed is slow, the machining cost is high, and the cutting between each vibrator is difficult. The groove width could not be made narrow enough, making mass production difficult.

また、振動子としてPZTを用いた場合、環状振動子の
半径方向の幅の設定によっては、振動子の厚み方向の振
動に加えて半径方向の無用な振動が発生することがある
。そこで、その無用な振動を抑えるために、すなわち探
触子の高性能化とは無関係に、より多くの環状振動子の
分割加工を必要とし、従ってよシ一層、製造コストが高
くなり、量産化が困難となった。
Further, when PZT is used as a vibrator, depending on the setting of the radial width of the annular vibrator, unnecessary vibration in the radial direction may occur in addition to vibration in the thickness direction of the vibrator. Therefore, in order to suppress the unnecessary vibrations, it is necessary to divide more annular transducers, regardless of improving the performance of the probe, which further increases the manufacturing cost and reduces mass production. became difficult.

本発明は上記のような実情に鑑みてなされたもので、性
能を劣化させることなく容易に量産が可能となり、製造
コストを大幅に低減させ得る超音波断層装置用探触子を
提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and aims to provide a probe for an ultrasonic tomography device that can be easily mass-produced without deteriorating performance and that can significantly reduce manufacturing costs. purpose.

以下第3図ないし第6図を参照して本発明の詳細な説明
する。第3図は本発明による超音波断層装置用探触子の
一実施例の要部を示す断面図、第4図は第3図中の■−
■線断面図、第5図は第6図中の■−V線断面図で、1
′″引−臥各図において、6は第2図と同様に吸音材を
示゛す。12はPZTやチタン酸鉛系セラミック等から
なる円板状の圧電セラミックで、その−実測の面(第3
図中下面)には直線状の溝16を多数交叉させて設ける
ことによシ振動子部14が多数モザイク状に区分形成さ
れている。ここでは、第5図に示すように、前記溝16
は図中縦方向と横方向に各々多数等間隔で平行に、すな
わち基盤目状に設けられ、多数の正方形状の振動子14
が形成されている。この場合、谷溝13は、第6図に拡
大して示すように圧電セラミック12が溝16によシ切
シ離されない程度の深さで形成される。このように各振
動子部14が溝16により機械的に完全に分離されてい
なくとも、完全に分離した場合と同様に、1の振動子部
14の厚み振動が隣接する他の振動子部14に伝播して
影響を与えることが余りないことが知られている( I
 EEETRANSA −CTION ON 5ONI
C8AND TJLTRASONIC8、VOL 5U
−12。
The present invention will be described in detail below with reference to FIGS. 3 to 6. FIG. 3 is a sectional view showing a main part of an embodiment of a probe for an ultrasonic tomography apparatus according to the present invention, and FIG.
■ Line sectional view, Figure 5 is the ■ - V line sectional view in Figure 6, 1
In each figure, 6 indicates a sound absorbing material as in Fig. 2. 12 is a disk-shaped piezoelectric ceramic made of PZT, lead titanate ceramic, etc. Third
A large number of transducer sections 14 are formed in a mosaic pattern by providing a large number of linear grooves 16 intersecting each other on the lower surface in the figure. Here, as shown in FIG.
A large number of square-shaped vibrators 14 are provided parallel to each other at regular intervals in the vertical and horizontal directions in the figure, that is, in the shape of a base grid.
is formed. In this case, the valley grooves 13 are formed at such a depth that the piezoelectric ceramic 12 is not separated by the grooves 16, as shown in an enlarged view in FIG. In this way, even if each vibrator part 14 is not completely separated mechanically by the groove 16, the thickness vibration of one vibrator part 14 will be affected by the thickness vibration of the other adjacent vibrator part 14, as in the case of complete separation. It is known that there is little chance of propagation and influence on
EEETRANSA-CTION ON 5ONI
C8AND TJLTRASONIC8, VOL 5U
-12.

No 4 、0CTOBER1972、PP444. 
EXPE睨凹灯AL I押侶5TGATION OF 
ACAUSTICIMAGINING SΔ5OR8そ
の他参照)。
No. 4, 0CTOBER1972, PP444.
EXPE glare recessed light AL I pusher 5TGATION OF
ACAUSTICIMAGINING SΔ5OR8 and others).

15は上述多数の振動子部14上を覆い形成された1枚
の薄い共通電極で、接地電極として用いられる。16は
圧電セラミック12の後述加工前に一様に被着された電
極である。
A thin common electrode 15 is formed to cover the plurality of vibrator sections 14, and is used as a ground electrode. Reference numeral 16 denotes an electrode that is uniformly deposited on the piezoelectric ceramic 12 before it is processed as described below.

17は振動子選択駆動電極で、前記圧電セラミック12
の他方側の面(第3図中上面)の中心部に覆い形成され
た円形電極17aおよびこの円形電極17aの外周側に
、それと同心的に、かつ各々適宜量隔置いて被着配置さ
れた複数の、ここでは4つの環状電極17b〜17eか
らなる。各電極17a〜17e相互の間隔は、それらが
各々電気的に分離されるのに支障全米たさない範囲で任
意に設定される。
Reference numeral 17 denotes a vibrator selection drive electrode, which connects the piezoelectric ceramic 12
A circular electrode 17a is formed covering the center of the other side surface (upper surface in FIG. 3) of the circular electrode 17a, and a circular electrode 17a is attached to the outer circumferential side of the circular electrode 17a, concentrically therewith and spaced apart from each other by an appropriate amount. It consists of a plurality of annular electrodes 17b to 17e, here four. The mutual spacing between the electrodes 17a to 17e is arbitrarily set within a range that does not interfere with electrical isolation between the electrodes.

18は上記電極17a〜17eよシ各々導出されたリー
ド線である。
Reference numeral 18 denotes lead wires led out from the electrodes 17a to 17e.

上述構成の本発明探触子においては、従来探触子のよう
に円板状の圧電セラミックを同心円状に多数切断するこ
となく、それとほぼ同等の円形お゛  よび環状の音源
(振動子)を構成できる。すなわち、円形および環状の
電極17a〜17eの各位置に対応する振動子部群が1
つの音源として機能するもので、例えば電極17eに電
圧印加された際には第5図中ノ・ツチングを付して示す
領域の振動子部群が励振されることになる。この場合、
各方向の溝13の本数を多くシ、振動子部14を微細に
形成する程、真円に近い円形または環状の音源が形成さ
れることになり、円形または環状振動子によシ近似する
。通常、工業用に用いられているダイシングソーを前記
溝形成に用いれは4.3.5 MHz 〜5.0 MH
zのPZT振動子となる圧電セラミックの円板を0.2
 mm〜0.3mmピッチ、最小釦ミクロンの溝幅での
加工を多量に行うことが困難ではない。従って、本発明
によれば、1つの円板状振動子と多重の環状振動子から
なるアニユラ−アレー探触子に極めて近似した探触子を
工業的に容易に、低コストで得られることになる。
In the probe of the present invention having the above-mentioned structure, a circular or annular sound source (vibrator) that is almost equivalent to the disk-shaped piezoelectric ceramic is not cut into many concentric circles as in conventional probes. Can be configured. That is, there is one group of vibrator parts corresponding to each position of the circular and annular electrodes 17a to 17e.
For example, when a voltage is applied to the electrode 17e, the vibrator group in the area indicated by a notch in FIG. 5 is excited. in this case,
As the number of grooves 13 in each direction increases and the vibrator portion 14 is formed finely, a circular or annular sound source that is close to a perfect circle is formed, and the sound source is approximated to a circular or annular vibrator. Usually, a dicing saw used for industrial purposes is used to form the grooves at a frequency of 4.3.5 MHz to 5.0 MHz.
The piezoelectric ceramic disk that becomes the PZT vibrator of z is 0.2
It is not difficult to process a large amount of grooves with a pitch of mm to 0.3 mm and a minimum button width of microns. Therefore, according to the present invention, a probe very similar to an annular array probe consisting of one disc-shaped vibrator and multiple annular vibrators can be obtained industrially easily and at low cost. Become.

以下、上述本発明探触子の製造方法の一例を説明する。An example of a method for manufacturing the above-mentioned probe of the present invention will be described below.

まず、PzTあるいはチタン酸鉛系セラミック等からな
る円板状の圧電セラミックを用意する。この圧電セラミ
ックの両面には銀電極(16,17)が焼き付けられて
いるが、その一方何の面の銀電極(17)に機械的な切
削を施すことにより第4図に示すような電極17a〜1
7eを形成する。この電極の切断はホトエツチング法に
よって行なってもよい。またこの電極17a〜17eの
形成は、圧電セラミックの片面に銀を含むインクを第4
図に示す形状にスクリーン印刷した後、焼き付けを施す
ことによって行ってもよい。その他電極形状のマスクを
用いた蒸着法によっても可能である。
First, a disk-shaped piezoelectric ceramic made of PzT or lead titanate ceramic is prepared. Silver electrodes (16, 17) are baked on both sides of this piezoelectric ceramic, and by mechanically cutting the silver electrodes (17) on either side, an electrode 17a as shown in FIG. 4 is formed. ~1
Form 7e. This cutting of the electrode may be performed by a photoetching method. In addition, the formation of the electrodes 17a to 17e involves applying a fourth ink containing silver to one side of the piezoelectric ceramic.
This may be done by screen printing the shape shown in the figure and then baking it. It is also possible to use a vapor deposition method using an electrode-shaped mask.

次に、上述方法により電極17a〜17eを形成した圧
電セラミックのそれら電極17a〜17e形成面側に吸
音材6を接合させる。この吸音材乙の接合形成は、エポ
キシ樹脂あるいはシリコンゴム中に金属粉を混入したも
のを型を用いて前記圧電セラミックの電極17a〜17
e形成面上に流し込むことにより行ってもよく、また、
予め成形された金属粉入りシリコンゴムを圧電セラミッ
クの電極17a〜17e形成面上に接着することによっ
てもよい。
Next, the sound absorbing material 6 is bonded to the surface of the piezoelectric ceramic on which the electrodes 17a to 17e are formed by the method described above. The sound absorbing material B is bonded to the piezoelectric ceramic electrodes 17a to 17 using a mold made of epoxy resin or silicone rubber mixed with metal powder.
e It may be carried out by pouring it onto the forming surface, and
Alternatively, a pre-formed silicone rubber containing metal powder may be adhered onto the surfaces of the piezoelectric ceramics on which the electrodes 17a to 17e are formed.

いずれにしても、その際、各電極17a〜17eからリ
ード線18が各々導出され得るようになされる。
In any case, the lead wires 18 can be led out from each electrode 17a to 17e.

このように裏面に吸音材6が接合された圧電セラミック
は、次工程で、例えば第5図に示すように基盤目状に溝
1ろが切削形成される。その深さは、第6図に示すよう
にその溝切削により圧電セラミックを機械的に分離させ
ない程度に設定される。
In the next step, the piezoelectric ceramic having the sound absorbing material 6 bonded to the back surface thereof is cut into grooves 1 in the shape of the base grain, as shown in FIG. 5, for example. The depth is set to such an extent that the piezoelectric ceramic is not mechanically separated by cutting the groove, as shown in FIG.

上述溝切削により多数の振動子部14が区分形成される
もので、その後、この全振動子部14上、よジ詳しくは
振動子部14の弄面の前記銀電極16上に、1枚の導電
性のプラスチック薄板が接合され、共通電極(接地電極
)15となされるものである。
A large number of vibrator parts 14 are formed in sections by the above-mentioned groove cutting, and then a single sheet is cut on the whole vibrator part 14, more specifically, on the silver electrode 16 on the front surface of the vibrator part 14. A conductive plastic thin plate is joined to form a common electrode (ground electrode) 15.

なお、前記溝13内に、第6図に示すように軟質物質、
例えばシリコンゴム19を充填し、振動子部14を形成
した側の圧電セラミック12面をほぼ平面状になせば、
その平面上に導電性塗料を塗布する等の方法で容易に共
通電極15ヲ形成させ得る。
In addition, as shown in FIG. 6, inside the groove 13, a soft material,
For example, if the surface of the piezoelectric ceramic 12 on the side where the vibrator portion 14 is formed by filling it with silicone rubber 19 is made substantially flat,
The common electrode 15 can be easily formed by applying a conductive paint on the plane.

なお、上述実施例では、直線状の溝1ろを、例えばまず
一方向に多数平行して等間隔に切削し、その後、それと
直交する方向に多数平行して等間隔に切削する等により
基盤目状に形成し、1つの振動子部14が最外周側を除
いて正方形となるようにしたが、これに限定されること
はなく、他の矩ブ杉あるいは三角形さらにはひし形等、
種々の形状に形成してもよい。いずれの形状であっても
上述実施例と同様の効果が得られる。
In the above-mentioned embodiment, the base material is cut by first cutting a large number of straight grooves in parallel at equal intervals in one direction, and then cutting a large number of linear grooves at equal intervals in a direction perpendicular to the first direction. Although one vibrator part 14 is formed into a square shape except for the outermost circumferential side, it is not limited to this, and other shapes such as rectangular cedar, triangle, or rhombus, etc.
It may be formed into various shapes. Regardless of the shape, the same effects as in the above-mentioned embodiments can be obtained.

以上述べたように本発明は、圧電材に多重同心円を描く
ように切削等で分離する加工全必要とせず、直線状の溝
形成加工全必要とするに過ぎない構成としたので、容易
に量産が可能となり、製造コスIf犬幅に低減させるこ
とができるという効果がある。しかもこの場合、探触子
の性能としては、前述したように従来探触子とほぼ同等
になし得るという効果もある。
As described above, the present invention does not require any separation process such as cutting to draw multiple concentric circles on the piezoelectric material, but only requires the process of forming linear grooves, making it easy to mass-produce. This has the effect that the manufacturing cost can be reduced to within a certain range. Moreover, in this case, the performance of the probe can be made almost the same as that of the conventional probe, as described above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来探触子の要部正面図、第2図は同探触子が
用いられた超音波断層装置の回路図、第6図は本発明に
よる超音波断層装置用探触子の一実施例の要部を示す断
面図、第4図は第6図中のIV−IV線断面図、第5図
は第6図中の■−V線断面図、第6図は本発明探触子の
他の実施例の要部拡大断面図である。 6・・・吸音材、12・・・圧電セラミック、16・・
・溝、14・・・振動子部、15・・・共通電極、17
.17a〜17e・・・振動子選択駆動電極、18・・
・リード線。 特許出願人  株式会社日立メディコ 代理人 弁理士   秋  本   正  実第6図
Fig. 1 is a front view of the main parts of a conventional probe, Fig. 2 is a circuit diagram of an ultrasonic tomography apparatus in which the same probe is used, and Fig. 6 is a diagram of a probe for an ultrasonic tomography apparatus according to the present invention. 4 is a sectional view taken along the line IV-IV in FIG. 6, FIG. 5 is a sectional view taken along the ■-V line in FIG. 6, and FIG. FIG. 7 is an enlarged cross-sectional view of a main part of another embodiment of the feeler. 6...Sound absorbing material, 12...Piezoelectric ceramic, 16...
・Groove, 14... Vibrator part, 15... Common electrode, 17
.. 17a-17e... Vibrator selection drive electrode, 18...
·Lead. Patent applicant Hitachi Medical Co., Ltd. Agent Patent attorney Tadashi Akimoto Figure 6

Claims (1)

【特許請求の範囲】[Claims] 一方側の面に直線状の溝を多数交叉させて設けることに
よシ多数の振動子部が区分形成された円板状の圧電材と
、この圧電材の一方側の面に形成された前記多数の振動
子部上を覆い形成された共通電極と、前記圧電材の他方
側の面の中心部に覆い形成された円形電極およびこの円
形電極の外周側をそれと同心的に各々被着配置された複
数の環状電極からなシ、かつそれら各電極間が電気的に
分離された振動子選択駆動電極とを具備することを特徴
とする超音波断層装置用探触子。
A disc-shaped piezoelectric material in which a large number of vibrator sections are segmented by providing a large number of intersecting linear grooves on one surface, and a piezoelectric material formed on one surface of the piezoelectric material. A common electrode formed to cover a large number of vibrator parts, a circular electrode formed to cover the center of the other side of the piezoelectric material, and an outer peripheral side of the circular electrode arranged concentrically with the common electrode. 1. A probe for an ultrasonic tomography apparatus, comprising a plurality of annular electrodes, and a transducer selection driving electrode in which the electrodes are electrically separated.
JP58076214A 1983-05-02 1983-05-02 Probe for ultrasonic tomographic apparatus Pending JPS59202059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58076214A JPS59202059A (en) 1983-05-02 1983-05-02 Probe for ultrasonic tomographic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58076214A JPS59202059A (en) 1983-05-02 1983-05-02 Probe for ultrasonic tomographic apparatus

Publications (1)

Publication Number Publication Date
JPS59202059A true JPS59202059A (en) 1984-11-15

Family

ID=13598919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58076214A Pending JPS59202059A (en) 1983-05-02 1983-05-02 Probe for ultrasonic tomographic apparatus

Country Status (1)

Country Link
JP (1) JPS59202059A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4006718A1 (en) * 1989-03-07 1990-09-13 Mitsubishi Mining & Cement Co PIEZOELECTRIC CONVERTER
DE4008768A1 (en) * 1989-03-27 1990-10-04 Mitsubishi Mining & Cement Co PIEZOELECTRIC CONVERTER
EP0565380A2 (en) * 1992-04-09 1993-10-13 General Electric Company Repair of nuclear reactor incore housings and ultrasonic examination
WO2012141682A1 (en) * 2011-04-11 2012-10-18 Halliburton Energy Services, Inc. Piezoelectric element and method to remove extraneous vibration modes
CN103048387A (en) * 2011-10-14 2013-04-17 通用电气公司 Ultrasonic tomography systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254415A (en) * 1975-10-29 1977-05-02 Oki Electric Ind Co Ltd Ultrasonic transmitter and receiver
JPS52153471A (en) * 1976-06-16 1977-12-20 Oki Electric Ind Co Ltd Ultrasonic transmitter and receiver
JPS5670000A (en) * 1979-11-10 1981-06-11 Toray Ind Inc Ultrasonic wave transducer using high molecular piezoelectric body
JPS5732200A (en) * 1980-06-25 1982-02-20 Commissariat Energie Atomique Method of producing composite ultrasonic wave converter
JPS57132497A (en) * 1981-02-10 1982-08-16 Yokogawa Hokushin Electric Corp Ring type probe and its manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254415A (en) * 1975-10-29 1977-05-02 Oki Electric Ind Co Ltd Ultrasonic transmitter and receiver
JPS52153471A (en) * 1976-06-16 1977-12-20 Oki Electric Ind Co Ltd Ultrasonic transmitter and receiver
JPS5670000A (en) * 1979-11-10 1981-06-11 Toray Ind Inc Ultrasonic wave transducer using high molecular piezoelectric body
JPS5732200A (en) * 1980-06-25 1982-02-20 Commissariat Energie Atomique Method of producing composite ultrasonic wave converter
JPS57132497A (en) * 1981-02-10 1982-08-16 Yokogawa Hokushin Electric Corp Ring type probe and its manufacture

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4006718A1 (en) * 1989-03-07 1990-09-13 Mitsubishi Mining & Cement Co PIEZOELECTRIC CONVERTER
DE4008768A1 (en) * 1989-03-27 1990-10-04 Mitsubishi Mining & Cement Co PIEZOELECTRIC CONVERTER
EP0565380A2 (en) * 1992-04-09 1993-10-13 General Electric Company Repair of nuclear reactor incore housings and ultrasonic examination
EP0565380A3 (en) * 1992-04-09 1994-09-14 Gen Electric Repair of nuclear reactor incore housings and ultrasonic examination
WO2012141682A1 (en) * 2011-04-11 2012-10-18 Halliburton Energy Services, Inc. Piezoelectric element and method to remove extraneous vibration modes
US9224938B2 (en) 2011-04-11 2015-12-29 Halliburton Energy Services, Inc. Piezoelectric element and method to remove extraneous vibration modes
CN103048387A (en) * 2011-10-14 2013-04-17 通用电气公司 Ultrasonic tomography systems
US9354204B2 (en) 2011-10-14 2016-05-31 General Electric Company Ultrasonic tomography systems for nondestructive testing

Similar Documents

Publication Publication Date Title
EP0142215A2 (en) Ultrasound transducer with improved vibrational modes
US4217516A (en) Probe for ultrasonic diagnostic apparatus
US4424465A (en) Piezoelectric vibration transducer
US4371805A (en) Ultrasonic transducer arrangement and method for fabricating same
JPH0239251B2 (en)
US4704774A (en) Ultrasonic transducer and method of manufacturing same
GB2232321A (en) Focusing piezoelectric transducer
JPS59202059A (en) Probe for ultrasonic tomographic apparatus
US4477892A (en) Surface acoustic wave device having a pyramid shaped tip for recording video information on a substrate
JPH03270282A (en) Composite piezo-electric body
JP2554468B2 (en) Ultrasonic probe and method of manufacturing the same
JPS6031437B2 (en) Annular probe and its manufacturing method
JPH03270599A (en) Composite piezoelectric body
JPS6153562A (en) Ultrasonic probe
JPS6031435B2 (en) Manufacturing method of ultrasonic probe
JP2633549B2 (en) Ultrasonic probe
JPH0538335A (en) Ultrasonic probe and manufacture thereof
JPS63287200A (en) Array type ultrasonic probe and its production
JPS63160499A (en) Ultrasonic probe
JPS599514Y2 (en) Electrostrictive ultrasonic vibrator
JPH0787595A (en) Array type ultrasonic vibrator
JPH06254089A (en) Ultrasonic probe device
JP3101461B2 (en) Ultrasonic probe
JPS6133923Y2 (en)
JP3171715B2 (en) Array type ultrasonic probe for high frequency