JPS5850511A - Illumination optical system of integrated circuit pattern transfer device - Google Patents
Illumination optical system of integrated circuit pattern transfer deviceInfo
- Publication number
- JPS5850511A JPS5850511A JP56149849A JP14984981A JPS5850511A JP S5850511 A JPS5850511 A JP S5850511A JP 56149849 A JP56149849 A JP 56149849A JP 14984981 A JP14984981 A JP 14984981A JP S5850511 A JPS5850511 A JP S5850511A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- light
- optical system
- groups
- collimation lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 33
- 238000005286 illumination Methods 0.000 title claims abstract description 25
- 150000001875 compounds Chemical class 0.000 claims abstract description 29
- 230000004907 flux Effects 0.000 abstract description 8
- 239000002131 composite material Substances 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 2
- 101100506443 Danio rerio helt gene Proteins 0.000 abstract 1
- 101100506445 Mus musculus Helt gene Proteins 0.000 abstract 1
- 239000002699 waste material Substances 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 13
- 238000000034 method Methods 0.000 description 9
- 230000008859 change Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000004075 alteration Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B19/00—Condensers, e.g. light collectors or similar non-imaging optics
- G02B19/0004—Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
- G02B19/0028—Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B19/00—Condensers, e.g. light collectors or similar non-imaging optics
- G02B19/0033—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
- G02B19/0047—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Microscoopes, Condenser (AREA)
- Light Sources And Details Of Projection-Printing Devices (AREA)
Abstract
Description
【発明の詳細な説明】
−この発明は、一般にIC回路と呼ばれる集積回路を製
造するために、フォトマスク(以下単にマスク°と云う
)に形成された微細なパターンをウェー・−などのフォ
トレジスト上に投影して感光させるための照明光学系に
関するものである。DETAILED DESCRIPTION OF THE INVENTION - This invention provides a method for manufacturing integrated circuits, generally called IC circuits, by using a photoresist such as This relates to an illumination optical system for projecting light onto an object and exposing it to light.
この種の投影感光による転写方式には密着方式(フンタ
クト法)ト半接触方式(プロキシミテイ法)とがある。This type of transfer method using projection exposure includes a contact method (hand-tact method) and a semi-contact method (proximity method).
コンタクト法によれば、原理的にはマスクのパターンが
そのま\正確に転写されることになるが、現実にはマス
クやウェー−の密着光したとしても元の回折現象を伴な
い、その部分で二次極大の影響を受けて解像力は低下し
、鮮鋭なパターン像を転写することができず映像の乱れ
や不鮮明々転写結果を来たし易い。またマスクとウェー
ハとの密着作業の際にマスクやウェーハに損傷を与え易
いという作業上の難点もあ?て、必ずしも有効な転写手
段とはならない。According to the contact method, in principle, the pattern on the mask can be accurately transferred as is, but in reality, even if the light comes into close contact with the mask or wafer, the original diffraction phenomenon will occur, and that part will be The resolution is lowered due to the influence of the secondary maximum, making it impossible to transfer a sharp pattern image, which tends to cause image disturbances and blurred transfer results. Also, there is the problem that it is easy to damage the mask and wafer when working in close contact with the mask and wafer. Therefore, it is not necessarily an effective transfer means.
その結果、昨今は、寧ろマスクとウェーハとをN接的に
接触さザずに数μ乃至十数μ程度の微細な隙間を隔て\
直接々触によって生じ易いマスクやウェーへの損傷を防
ぎ、°できるだけ平行度の高い平行光線を投光して光の
回折現象による影響を防ぐという考え方により、前述の
プロキシミティ法が採用されて来ている。As a result, these days, rather than contacting the mask and wafer in an N-contact manner, they are separated by a minute gap of several microns to more than ten microns.
The aforementioned proximity method has been adopted with the idea of preventing damage to masks and wafers that can easily occur due to direct contact, and emitting parallel light beams with as high a degree of parallelism as possible to prevent the effects of light diffraction. ing.
ウェーハ上にマスクを占位させ、マスク及ヒウェーへに
投光照明する上で必ILL−&要請としては、1、照明
光が明るく無駄のないこと
2、照明はむらなく均一に行なわれること3、光の回折
現象を可及的に少なくすることが挙けられる。 。When placing a mask on a wafer and floodlighting the mask and wafer, the following requirements are: 1. The illumination light must be bright and efficient; 2. The illumination must be even and uniform. 3. , to reduce the light diffraction phenomenon as much as possible. .
照明光が暗かったり、光源光が充分に被熱射面に達しな
いときは、転写作業に時間がか\シ生産性に影響するこ
とは明らかであり、また均一な照明がなされないと、部
分的なむらが微細パターンの線幅偉の転写結果を悪くし
てその部分に乱れ十”むらを生ずることとなる。光の回
折現象による像の乱れや不鮮明な投影転写を防ぐ為には
マスク及びウェーハを照明する照射光の平行性を高め、
平行光束以外の光の入射をできるだけ少くしてやる・
−仁とが必要とされる。ヒの為に、第1のコリメーショ
ンレンズによる平行光束中に7ライアイレンズ(fl7
eye 1ens−蝿の眼レンズと通称されている)
のような収斂性の複眼し/ズをおき、これによってその
焦点位置に生ずる多数の二次光源を用い、第2のコリメ
ーションレンズの焦点をこの二次光源に合致させて、第
2のコリメーションレンズより射出する光を二盗光源の
数に応じた多数の平行光線としてマスク及びウェー・・
上に1置設7元することが既に行なわれて来ている。前
記2.及び3.0目的を達成するための新たな技術的手
段と開発については、同時に出願し九特許願(1)によ
って明らかにしたが、本発明では光源からの光を第1の
コリメーションレンズによって平行光線の光束とする上
で、第1のコリメーションレンズに入射する一足の入射
光に対し、同人射角内の元のすべてを有効に使用し、被
照射体たるマスク及びウェーハの大きさに応じてオプテ
ィカルインチグレーター、としての複眼レンズに入射さ
せる平行光線束の直径を変化させ、前記1.の目的を達
成することを主目的とし、これに附帯する構成金以って
副次的に前記2.及び3.0目的にも適合させるように
したものである。より具体的に述べれば、楕円鏡の第1
焦点に位置する光源の光は、楕円反射面によってその第
2焦点に向けて進むが、楕円鏡の大きさ、楕円反射面の
形状によって、第2焦点面を通過する光の最大入射角は
決定づけられる。またよって制限される。゛そこで、最
終的にマスク及びウェー・・に投射させる光は、第1の
コリメーションレンズに入射させ得る前記入射角内のす
べての光を無駄なく用いることが照明効率を高めること
となるという事実に着目した。マスク及びつ、z −・
・への投光上、従前多くは固足され念照射角のものが用
いられた。稀に照射角を変え得るものがあったとしても
、それは段階的に変化させるものであシ、被照射面の大
きさに対し必ずしも効果的電照射角とになら危い。小さ
鬼マスク及びウェー−に対しては照射角を小さくする仁
とが完全な平行光線以外の迷走光による回折現象を防ぐ
上で有益となるため、プライアイレンズ等の*眼レンズ
の直後に虹彩絞りを設け、その開口径を絞ってゆくとい
う手段も採用された。然し、この場合絞り込みによって
照射角を小さくすることはできても逆に光量が減少する
という欠陥があった。It is obvious that if the illumination light is dark or the light source light does not reach the heat-receiving surface sufficiently, the transfer work will take time and productivity will be affected, and if the illumination is not uniform, parts may The unevenness will deteriorate the transfer result of the line width of the fine pattern, causing irregularities in the area.To prevent image distortion and unclear projection transfer due to light diffraction phenomenon, masks and Improves the parallelism of the irradiation light that illuminates the wafer,
Minimize the incidence of light other than parallel beams as much as possible.
- jin is required. 7 Lie's eye lenses (fl7
eye 1ens (commonly known as the fly's eye lens)
A convergent compound eye/lens lens is placed, and a large number of secondary light sources are generated at the focal position thereof, and the focus of the second collimation lens is made to match the secondary light source, and the second collimation lens is The light emitted from the light source is converted into a large number of parallel light beams according to the number of secondary light sources using a mask and a wave...
It has already been done that the cost of 7 yuan per 1 yuan is installed on top of the market. Said 2. The new technical means and development for achieving the objectives of 3.0 and 3.0 were disclosed in the patent application (1) filed at the same time.In the present invention, the light from the light source is collimated by the first collimation lens. In order to form a beam of light, all of the elements within the incident angle of the first collimation lens are used effectively, and according to the size of the mask and wafer that are the objects to be irradiated. By changing the diameter of a bundle of parallel rays incident on a compound eye lens as an optical inching grater, as described in 1. The main purpose is to achieve the purpose of 2. above, and the incidental component money is used as a secondary purpose to achieve the purpose of 2. above. and 3.0 purposes. To be more specific, the first elliptical mirror
The light from the light source located at the focal point travels toward its second focal point through the elliptical reflective surface, but the maximum incident angle of the light passing through the second focal plane is determined by the size of the elliptical mirror and the shape of the elliptical reflective surface. It will be done. Also limited by.゛Therefore, it is important to note that for the light that is ultimately projected onto the mask and the wafer, it is important to use all the light within the incident angle that can be incident on the first collimation lens without wasting it, thereby increasing the illumination efficiency. I paid attention. Mask and one, z -・
・In terms of light projection, in the past, many of them were fixed and used ones with a telescopic illumination angle. Even if there is something that can change the irradiation angle, it is a stepwise change, and it is dangerous if the irradiation angle is not always effective for the size of the irradiated surface. For small demon masks and waves, it is useful to reduce the irradiation angle to prevent diffraction phenomena caused by stray light other than perfectly parallel rays. A method was also adopted in which a diaphragm was installed and the aperture diameter was narrowed down. However, in this case, although the irradiation angle can be made smaller by narrowing down the aperture, there is a drawback in that the amount of light is conversely reduced.
そこで、本発明では、光源からの党を平行光線としてオ
プティカルインチグレーターである複眼レンズに導くに
当たって、平行光線束を得るためのコリ・メーションレ
ンズを少なくとも2 群乃至2枚で構成して、平行−f
fi線束を得るためにその焦点位置を楕円鏡の第2焦点
位置に保ったま\、これらレンズ群またはレンズを相対
的に移動し、このてf、損失を除き、被照射面の大きさ
が小さい場合には射出する平行光線束の直径管小さくし
て光密度を高め、被照射面の単位面積当りの照度を高め
て1畳投光させるようにした。その結果、楕円鏡からの
入射光量は、第1のコリメーションレンズの合成焦点距
離の大小に係りなく一定となり、第1のコリメーション
レンズはその射出光線束の直径のみが変ることとなるの
で、被照射面を照明する光量は最大の前記一定光量を保
持させることができ、而も2群乃至2枚で構成される第
1のコリメーションレンズを前述のように相対的に動か
す連続操作によって希望め照射角を連続的に変化させ、
被照射対象の大きさに応じた最適が照明効果のである。Therefore, in the present invention, when guiding the particles from the light source as parallel rays to the compound lens, which is an optical inching grater, a collimation lens for obtaining a bundle of parallel rays is configured with at least two groups or two lenses, and parallel- f
In order to obtain the fi ray flux, the focal position is kept at the second focal position of the elliptical mirror, and these lens groups or lenses are moved relatively. In this case, the diameter of the emitted parallel light beam is reduced to increase the light density and the illuminance per unit area of the irradiated surface is increased to project light of 1 tatami. As a result, the amount of incident light from the elliptical mirror remains constant regardless of the magnitude of the composite focal length of the first collimation lens, and the first collimation lens changes only the diameter of its emitted ray bundle. The amount of light that illuminates the surface can be maintained at the maximum constant amount, and the desired illumination angle can be adjusted by continuously moving the first collimation lens, which is composed of two groups or two lenses, relative to each other as described above. Continuously change the
The lighting effect is optimal depending on the size of the object to be illuminated.
゛
以下本発明の詳細を図に示した実施例によって説明する
と、第1図において、1は楕円鏡2の焦点に位置する光
源であシ、3はこの楕円@1の開口部の近傍において光
軸と45°の角度を以って設けf(j−にドミラーであ
る。コールドミラー3は平面性のよいものを用いるが、
周知のようにコールドミラーは熱射を透過放出し有効光
線のみを反射する。4・は第1のコリメーションレンズ
群で、第1図示の実例では発散性をもつが、第5A図及
び第5B図に示すようIIcIc性のものであってもよ
い。第1図及び第4A図、第4B図に示したも′のでは
、その後り焦点(射出光1ill)は楕円鏡2の第2焦
点(光源1を第1焦点とする)と一致させて設けである
。その結果、楕円@12により反射されコールドミラー
3より反射して第1 (D コ!j J −シヨ線とな
って射出する。5はオプティカルインチグレーターとし
ての複眼レンズ群であって、図の場合夫々単一の複眼レ
ンズ2枚を以って前群レンズ及び後群レンズとしている
が、複数の複眼レンズを組合わせたレンズを以って夫々
前群レンズ及び後群レンズとしてもよいことは勿論であ
る。複眼レンズ群5の詳細は第2A図、第2B図、第3
図を以って示した。図示の場合各1!!眼レンズは第2
A図によって理解で話るように正面から見て正方形の連
接列線を以って構成された多数の単−小しン“ ズより
成り立つフライアイレンズを以って構成しであるが、個
々の小レンズは正六角形をなす連接配置から成る・・二
カム状(蜂の巣状)の小レンズの聚合体を以って形成し
て本より0フライアイレンズ及びハニカムレンズの双方
を総称してと\では?J眼レンズと呼び、それらの2群
をオプティカルインチグレーターと称している。そして
、第1のコリメーションレンズ群4に近い側の前群また
は第1の複眼レンズの各単一レンズ素子は第3図に示す
ように、その背後に置かれる後群または第2の複眼レン
ズの各単一レンズ素子と共通の光軸X−X上に位置させ
ねばならなり。また前群又は第1のIレンズの各単一レ
ンズ素子も後群又は第2の複眼レンズの各単一レンズ素
子もともに曲率半径の小さな凸面が入射光側即ち光源1
の方向に向いて位置される。前群又は第1の複眼レンズ
の各単一レンズ素子の焦点距離f1 と、後群又は第
2の複眼レンズの各単一レンズ素子の焦点距離f2とは
厳密に等しい値をもつ必要はなく、略等しい値であって
よい。これら6単−の対をなすレンズの主点間隔りの範
囲としそ、
なる関係を充足させることが望ましい。゛Hereinafter, the details of the present invention will be explained with reference to the embodiment shown in the drawings. In FIG. A cold mirror 3 is provided at an angle of 45° with the axis.
As is well known, a cold mirror transmits and emits heat radiation and reflects only effective light. 4 is a first collimation lens group, which has a diverging property in the example shown in the first figure, but may also have a IIcIc property as shown in FIGS. 5A and 5B. In the case shown in FIG. 1, FIG. 4A, and FIG. 4B, the rear focus (1ill of emitted light) is set to coincide with the second focus of the elliptical mirror 2 (light source 1 is the first focus). It is. As a result, it is reflected by the ellipse @ 12, reflected by the cold mirror 3, and exits as the first (D co! Although two single compound lenses are used as the front group lens and the rear group lens, it is of course possible to use a combination of multiple compound lenses as the front group lens and the rear group lens, respectively. Details of the compound eye lens group 5 are shown in FIGS. 2A, 2B, and 3.
Illustrated with a diagram. In the case shown, 1 each! ! The eye lens is the second
As can be understood from Figure A, it is composed of a fly's eye lens consisting of a large number of single small lenses formed by connecting rows of squares when viewed from the front. The lenslets are composed of a regular hexagonal arrangement...They are formed by a combination of bicam-shaped (honeycomb) lenslets, and from the book, both fly-eye lenses and honeycomb lenses are collectively called. \So? It is called the J-eye lens, and these two groups are called the optical inch grater.Then, each single lens element of the front group or the first compound eye lens on the side closer to the first collimation lens group 4 is As shown in FIG. 3, it must be located on the common optical axis In each single lens element of the I lens and each single lens element of the rear group or second compound lens, the convex surface with a small radius of curvature is on the incident light side, that is, the light source 1.
It is located facing the direction of The focal length f1 of each single lens element of the front group or the first compound eye lens and the focal length f2 of each single lens element of the rear group or the second compound eye lens do not need to have strictly equal values; They may be approximately equal values. It is desirable that the distance between the principal points of these six pairs of lenses satisfy the following relationship.
f1=f2 tたは近似警にfl−f2 とする理由
は、6単−のレンズ素子が収斂性のレンズで形成され、
夫々曲率半径の小さな凸曲面を入射光側に向けるという
条件と相俟って、それらが平凸レンズ、両凸レンズ、マ
たはメニスカスレンズトシて形成されたにせよ、球面収
差を減少して光量分布の一様化を図ることができるから
であり、単一の複眼レンズを用いた場合より均一な照明
を与えるのに役立つからである。また、2つのこれらレ
ンズの主点間隔について上記数式で示す範四内に各レン
ズに位&つけることは、フィールドレンズとしての効果
を発揮させ、周辺光量を中心部に向けることによって光
量増加を図り、むらの少ない照明効果を与えるのに有益
となるからである。6はオプテイカルインテダレーーー
としての複眼レンズ群5によって形成される多数の二次
光源を光源とする光の方向を変えるための平面ミラーで
あり、7は収斂性の第2のコリメーションレンズである
。The reason for setting f1=f2 t or approximation fl-f2 is that the six lens elements are formed of convergent lenses,
Coupled with the condition that each convex curved surface with a small radius of curvature faces the incident light side, whether it is formed by a plano-convex lens, a biconvex lens, a cylindrical lens, or a meniscus lens, spherical aberration is reduced and the light intensity distribution is improved. This is because it is possible to achieve uniformity of the illumination, and it is useful for providing more uniform illumination than when using a single compound eye lens. In addition, by positioning each lens within the range 4 shown in the above formula regarding the distance between the principal points of the two lenses, the effect as a field lens is exhibited, and the amount of light is increased by directing the amount of light at the periphery toward the center. This is because it is useful for providing a lighting effect with less unevenness. 6 is a plane mirror for changing the direction of light from a large number of secondary light sources formed by the compound lens group 5 as an optical inteder, and 7 is a convergent second collimation lens. be.
この場合m2のフリメーションレンズ7t4遇する光を
平行な光線としてその下方に位置するマスク8及びウェ
ー/〜9にむらなく投光するために、複眼レンズ群5に
よる後@焦点と第2コIJメーシヨンレンズ7の前側焦
点とを合致させること力;望ましい。In this case, in order to uniformly project light from the m2 flimation lens 7t4 into parallel rays onto the mask 8 and way/~9 located below, the rear @ focal point and the second lens IJ are formed by the compound lens group 5. It is desirable to match the front focal point of the lens 7.
上記の構成によれば、第1フリメーシヨンレンズ群4に
よって射出される平行光線は複眼レンズ群5に入射し、
同レンズ群が形成する単一レンズ素子の個数に相当する
多数の二次光源に分けられ、複眼レンズ群5に入射する
光量が部分的に一様なものでない場合でも第2コリメー
シヨンレンズ7を経て被照射面に投光される光は、被照
射面に対し同一の全面に亘って重畳照射されることにな
り、上記分割された二次光源は多数の方向から第2コリ
メーシヨ/レンズ7によって平行光線束として被照射面
を照明し、回折による二次極大の影響が解像力の低下を
来すといったことを防ぐことになる。この際適当な照射
方向の角度(照射角)は、マスクとその下方のウェーへ
の間隔やマスクに形成されるパターンの微細程度によっ
て定まるめ鬼、光軸とのなす照射角は、複眼レンズ群5
の全体の有効半径t−φ5とし、第2コリメーシヨンレ
ンズ7の焦点距離をf7とするとき、
を以って与えられる。According to the above configuration, the parallel rays emitted by the first frimation lens group 4 enter the compound eye lens group 5,
The second collimation lens 7 is divided into a number of secondary light sources corresponding to the number of single lens elements formed by the same lens group, and even if the amount of light incident on the compound eye lens group 5 is partially uneven, the second collimation lens 7 The light that is projected onto the irradiated surface through the irradiation surface is superimposed and irradiated over the same entire surface of the irradiated surface, and the divided secondary light sources are transmitted from multiple directions to the second collimation/lens 7. This illuminates the irradiated surface as a bundle of parallel rays, and prevents the influence of secondary maxima due to diffraction from reducing resolution. At this time, the appropriate angle of the irradiation direction (irradiation angle) is determined by the distance between the mask and the wafer below and the fineness of the pattern formed on the mask.The irradiation angle with the optical axis is determined by the distance between the mask and the wafer below it. 5
When the entire effective radius is t-φ5 and the focal length of the second collimation lens 7 is f7, it is given by:
本発明による前記実施例の場合、第4A図及び第4B図
に示すように、第1のコリメーションレンズ群4は、2
枚の凹レンズを一対として構成され、これらを光軸上で
移動し且つ前群に属する凹レンズと後群に楓する凹レン
ズとの間隔を全体の移動に関連して相関的に変えること
によって、それらを一対とする合成焦点距離が変化する
。即ち、前群に属する凹レンズの焦点距離をf4とし、
後群に属する凹レンズの焦点距離をt2とし、これらの
主点間隔をdoとすると、これらの合成焦点距離f。In the case of the embodiment according to the invention, as shown in FIGS. 4A and 4B, the first collimation lens group 4 includes two
It consists of a pair of concave lenses, and by moving them on the optical axis and changing the distance between the concave lenses belonging to the front group and the concave lenses extending to the rear group relative to each other in relation to the overall movement, they can be moved. The combined focal length of the pair changes. That is, let the focal length of the concave lens belonging to the front group be f4,
If the focal length of the concave lens belonging to the rear group is t2, and the distance between these principal points is do, then the combined focal length of these lenses is f.
は、以下の式によって求められる。is determined by the following formula.
従って、主点間距離d0をdよりd′に向けて拡けたと
きにも常にその後側焦点F4(射出@)が楕円fa2の
第2焦点上にあるように夫々のレンズの相対的移動を行
なう限り、第1のコリメーションレンズ群4からオプ誉
イカルインテグレーターとしての複眼レンズ群5に向け
て射出する光線は平行光束として射出されることとなる
。この場合楕円鏡2の第2焦点とも一致する前記焦点I
F、に向がう集光々束のなす角、即ち第1のコリメーシ
ョンレンズ群4に対する入射角αは一定値であるので、
第1のコリメーションレンズ群4についテ行われる前記
相関的移動の結果は、射出光線の平行光束の直径におい
てφ1よシφ8の間で変化し、前群レンズと抜群レンズ
との相関的移動により、複眼レンズ群5への入射光の光
束幅が変化す条。@4B図に示すように、両レンズを楕
円鏡2の第2焦点に近づける移動と両レンズ相互間の主
点間隔を拡げる動きは入射角α中の全光量の光密度を高
め、強す元を複眼レンズ群5に与えることとなる。その
結果、複眼レンズ群5によって分割されて生ずる多数の
二次光源は、光軸上に近い崗囲に生じて第2のコリメー
ションレンズ7IIcよる射出平行f束をその光軸に近
い部分に向けて集中的に重畳させることになる。従って
、小面積の被照射体に対して全光量を光量損失なく集中
的にむらなく重量照明することができる。逆に、大面積
に亘ってむらのない均一な照明を行なうためには、第1
のコリメーションレンズ群4の焦点F4の位置を楕円鏡
2゜の第2焦点の位置に保ったま\、両レンズを光源1
111Vc向けて移動し、この移動に関連して相互のレ
ンズ主点間距離を狭めてゆけば、第1のコリメーション
レンズ群4から射出する平行光束の直径は大きくなって
ゆき、オプティカルインチグレーターとしての複眼レン
ズ群5によって分割形成される二次元源吃増加して、第
2コリメーシヨンレンズ7による平行光線の光束径は増
して広域に亘る均一な照明がなされる。第4A図、及び
第4B図においてfL及び’=は両レンズによる合成焦
点距離のより大きな値及びよシ小さな値としてfM解さ
れるべきである。Therefore, even when the distance d0 between principal points is widened from d toward d', the relative movement of each lens is performed so that the rear focal point F4 (exit @) is always on the second focal point of the ellipse fa2. As far as possible, the light rays emitted from the first collimation lens group 4 toward the compound eye lens group 5 as an optical integrator are emitted as parallel light beams. In this case, the focal point I which also coincides with the second focal point of the elliptical mirror 2
Since the angle formed by the condensed beam toward F, that is, the angle of incidence α with respect to the first collimation lens group 4, is a constant value,
The result of the relative movement performed on the first collimation lens group 4 is that the diameter of the parallel beam of the exiting ray varies between φ1 and φ8, and due to the relative movement of the front group lens and the predominant lens, A line in which the width of the luminous flux of light incident on the compound eye lens group 5 changes. As shown in Figure @4B, moving both lenses closer to the second focal point of the elliptical mirror 2 and increasing the distance between the principal points between both lenses increases the light density of the total amount of light at the incident angle α, which is the source of the intensity. is given to the compound eye lens group 5. As a result, a large number of secondary light sources generated by being divided by the compound lens group 5 are generated near the optical axis, and the parallel f flux emitted by the second collimation lens 7IIc is directed toward a portion close to the optical axis. They will be intensively superimposed. Therefore, it is possible to uniformly and intensively illuminate a small-area irradiated object with the entire amount of light without loss of light amount. On the other hand, in order to provide even and uniform illumination over a large area, the first
While keeping the position of the focal point F4 of the collimation lens group 4 at the position of the second focal point of the elliptical mirror 2°, both lenses are connected to the light source 1.
111Vc, and as the distance between the mutual lens principal points decreases in connection with this movement, the diameter of the parallel light beam emerging from the first collimation lens group 4 increases, and the diameter of the parallel light flux as an optical inch grater increases. As the two-dimensional light source divided and formed by the compound lens group 5 increases, the diameter of the parallel light beam by the second collimation lens 7 increases, and uniform illumination over a wide area is achieved. In FIGS. 4A and 4B, fL and '= should be interpreted as fM as a larger value and a smaller value of the combined focal length of both lenses.
第4A図及び第4B図に示す実例は、第1のコリメーシ
ョンレンズ群4赤発散性のレンズ倉以って構成された例
を示し、従ってこれによってその後側焦点を常に楕円鏡
2の@22焦に一致させこれを維持するようにレンズ群
の動きを与えるようにしたが、゛収斂性のコリメーショ
ンレンズt−用いる場合は、コリメーションレンズ群の
前備焦点を楕円鏡2の第2焦点と一致させこれを維持し
たま\レンズ群を動かすことになる。第5A図及び第5
B図はその場゛・合の実例を示すものであるが、図から
も明らかなように、第4A図、第4B図の実例では、反
射集光々束を第1のコリメーションレンズ群4に入射さ
せるが、第5A図及び第5B図の実例では楕円鏡2の第
2焦点F′に一旦集光した元の発散光を、収斂性の第1
のコリメーションレンズ群4′を射出する光線を平行光
束として複眼レンズ群5に導くようにしである。この場
合の平行光束のφよりφの変化とレンズ群を構成する6
凸しL 8
ンズの動きは、上記第4A図及び第4B図によるi明か
ら自明であると考えるので、その詳aは省略する。The example shown in FIGS. 4A and 4B shows an example in which the first collimation lens group 4 is configured with a red-divergent lens chamber, thereby always keeping the rear focus at the @22 focus of the elliptical mirror 2. However, when using a convergent collimation lens, the front focus of the collimation lens group should be made to match the second focus of the elliptical mirror 2. While maintaining this, the lens group will be moved. Figures 5A and 5
Figure B shows an example of the situation, but as is clear from the figure, in the examples of Figures 4A and 4B, the reflected condensed beam is directed to the first collimation lens group 4. However, in the examples shown in FIGS. 5A and 5B, the original diverging light that was once focused on the second focal point F' of the elliptical mirror 2 is
The light beam exiting the collimation lens group 4' is guided to the compound eye lens group 5 as a parallel light beam. In this case, the change in φ and the lens group 6
The movement of the convex L 8 lens is considered to be self-evident from the explanations shown in FIGS. 4A and 4B, so its details will be omitted.
以上何れの実例によっても、本発明によればオプティカ
ルインチグレーターとしての複眼レンズ群5には、直径
を連続的に変化させ得る平行光束を与えることになシ、
直径の大きな光線束の場合は複眼レンズ群5の多くの凸
レンズ素子に光が入射して有効光線束の直径を拡け、む
らなく均一に広域の照明を対象に与えることができ、逆
に直径の小さな光線束にする場合には複眼レンズ群5の
元軸に近い周辺の少数の素子に強い光を入射させて、狭
い領域に対するむらのない均−且つ強力な照明を与える
ことが可能であって、特に虹彩絞のような光量制限機構
によらないので照明上の光量損失を生じない点が優れた
特長として実用上益するところが多大である。また、前
記した通り元の回折による影響を除去するための照射角
は複眼レンズ群50半径を第2コリメーシヨンレンズ7
の練
焦点距離で際した値に関係するので、適当な照射角をW
Ilコリメーションレンズ群4またn 4 ’O合照明
を選択的に得ることができて極めて有効である。In any of the above examples, according to the present invention, the compound lens group 5 as an optical inch grater is provided with a parallel light beam whose diameter can be continuously changed.
In the case of a beam of light with a large diameter, the light enters many convex lens elements of the compound lens group 5, expanding the diameter of the effective beam of light, and uniformly illuminating a wide area to the target. In order to obtain a small beam of light, it is possible to make strong light incident on a small number of peripheral elements near the original axis of the compound lens group 5 to provide uniform and strong illumination to a narrow area. In particular, since it does not rely on a light amount limiting mechanism such as an iris diaphragm, there is no loss of light amount in illumination, which is an excellent feature and has many practical benefits. In addition, as described above, the irradiation angle for removing the influence of the original diffraction is the radius of the compound lens group 50, which is the radius of the second collimation lens 7.
Since it is related to the value of the focal length, set the appropriate irradiation angle to W.
Il collimation lens group 4 and n 4 'O combined illumination can be selectively obtained, which is extremely effective.
第1図は本発明の照明光学系の概要を示す側面図、第2
A図は本発明の照明光学系に用いられるフライアイレン
ズの正面図、第2B図は本発明照明光学系において組合
わされて用いられるプライアイレンズ群を示す側面図、
第3図は夫々のフラ輛
イアイレンズを透過する光路とレンズ間隔との関係を示
す側面図である、*4A図及び第4B図は、前後2群構
成から成る発散性の第1コリメーシダンレンズの位置移
動及び相互間隔を変化させて光、線束の径を変化させた
態様を示す説明図であって、第5A図及び第5B図は、
夫々前後2群から成る駄
集斂性のfglコリメーションレンズの位hsm及び相
互間隔を変化させて平行光線束の径を変化させた態様を
示す説明図である。
l・・・光源、2・・・楕円−13・・・コールドミラ
ー4.4’・・・第101J /−ジョンレンズ群5・
・・プライアイレンズ群、
7・・・第2コリア1−ジョンレンズ、8・拳−マスク
、 9・・・ウェーハfx + f2・・・フライア
イレンズの焦点距離D・・・レンズ間隔、fI、、fs
・・・合成焦点距離、f、 # fν・・;第1コリメ
ーションレンズ群の容態(1,、d’・・・レンズ間隔
、φ1.φ8・・・光線束の経、y′・−・楕円鏡の焦
点
特許出願人 ミカサ株式会社Figure 1 is a side view showing the outline of the illumination optical system of the present invention, Figure 2 is a side view showing an outline of the illumination optical system of the present invention;
Figure A is a front view of a fly's eye lens used in the illumination optical system of the present invention, and Figure 2B is a side view showing a fly's eye lens group used in combination in the illumination optical system of the present invention.
Figure 3 is a side view showing the relationship between the optical path passing through each flare eye lens and the lens spacing. *Figure 4A and Figure 4B are the first collimation dampers with divergence, which are composed of two groups in the front and rear. FIG. 5A and FIG. 5B are explanatory diagrams showing a mode in which the diameter of the light beam is changed by changing the positional movement and mutual spacing of the lenses, and FIGS. 5A and 5B are
FIG. 6 is an explanatory diagram showing a mode in which the diameter of a parallel light beam is changed by changing the position hsm and mutual spacing of convergent FGL collimation lenses each consisting of two groups, front and rear. l...Light source, 2...Ellipse-13...Cold mirror 4.4'...101J/-John lens group 5.
... Fly eye lens group, 7... Second Collier 1-John lens, 8. Fist mask, 9... Wafer fx + f2... Focal length of fly eye lens D... Lens spacing, fI ,,fs
...Synthetic focal length, f, # fν...; Condition of the first collimation lens group (1,, d'... Lens interval, φ1.φ8... Longitude of the ray bundle, y' - ellipse Mirror focus patent applicant Mikasa Co., Ltd.
Claims (1)
楕円鏡の第2焦点に焦点を一致させるように配置した少
くとも2群よりなる可動の第1のコ1)メーションレン
ズと、この第1のコリメーションレンズによりその光軸
に平行な平行光騙として射出する光源からの光束中に占
位させたオプティカルインチグレーターと、該オプティ
カルインチグレーターにより形成される多数の二次光源
のft、t−マスク及びウェー−・に重畳して投光させ
る集敵性の第2のコリメーションレンズとから成り、前
記オプティカルインチグレーターが多数の凸レンズ素子
t[合させたプライアイレンズの如き複眼しなく前後2
群より成る各レンズを相組的に移動させてこれより射出
する平行光線束の直径を変化さ明光学系。 (2)前項に記載の2群よりなる可動の第1のコリメー
ションレンズが発散性をもち、その後側焦点を楕円鏡の
sg2焦点と一致させた特許請求の範囲第+11 JJ
Iに記載のICパターン転写装置における照明光学系。 (31前項に記載の2群よりなる可動の第1のコリメー
ションレンズが収斂性をもち、その前側焦点を楕円鏡の
第2焦点と一致させた特許請求の範囲第(1)項に記載
のICパターン転写装置における照明光学系。 (4)第1のコリメーションレンズより射出する平行光
線束中におかれるオプティカルインチグレーターが、多
数の凸レンズ素子を聚合させたプライアイレンズの如き
複眼レンズの複数を以って構成記載のICパターン転写
装置における照明光学系。 (5)前記オプティカルインチグレーターが多数の凸レ
ンズ素子を聚合させたフライアイレンズノ如き複眼レン
ズの複数を以って構成され、該複数の複眼レンズを前群
と後群の2群を以って主点間距離りを隔て\配電させる
とともに、前記多数の凸レンズ素子は曲率半径の小さな
凸面が入射ft411K −向って位置し、前群の各凸
レンズ素子と後群の各凸レンズ素子とを一対とする光学
系は共通の光軸上に置かれ、夫々の凸レンズ素子の焦点
距mをfl及びf2とするとき、 f1= f2 または f□中f2であって、2
・ 1.8 なる関係を充足するようになされた特許請求の範囲第0
)項また#′i第121 JA若しくは第(3)項に記
載のXaパターン転輸装置における照明光学系。[Scope of Claims] (1) An elliptical mirror, a light source located at its first focus, and a movable first light source consisting of at least two groups arranged so that the focus coincides with the second focus of the elliptical mirror. 1) A first collimation lens, an optical inch grater that occupies the light beam from the light source that is emitted as parallel light parallel to the optical axis by the first collimation lens, and a large number of optical inch graters formed by the optical inch grater. The optical inch grater is composed of a plurality of convex lens elements t [combined primary eye lens Front and back 2 without compound eyes like
A bright optical system in which the diameter of the parallel ray bundle emitted from the lenses is changed by moving each lens in a group in a mutually reciprocal manner. (2) The movable first collimation lens consisting of the two groups described in the preceding paragraph has a diverging property, and its rear focal point coincides with the sg2 focal point of the elliptical mirror.
An illumination optical system in the IC pattern transfer device according to I. (31) The IC according to claim (1), wherein the movable first collimation lens consisting of the two groups described in the preceding paragraph has a convergent property, and its front focus coincides with the second focus of the elliptical mirror. Illumination optical system in a pattern transfer device. (4) An optical inching grater placed in a parallel beam of light emitted from a first collimation lens illuminates a plurality of compound lenses such as a ply eye lens in which a number of convex lens elements are combined. An illumination optical system in an IC pattern transfer device according to the configuration. The lens has two groups, the front group and the rear group, which are separated by a distance between the principal points, and power is distributed, and the convex surfaces of the multiple convex lens elements with a small radius of curvature are positioned facing the incident ft411K −, and each of the front groups An optical system consisting of a convex lens element and each convex lens element of the rear group is placed on a common optical axis, and when the focal length m of each convex lens element is fl and f2, f1=f2 or f2 in f□ And, 2
・Claim No. 0 that satisfies the following relationship: 1.8
) or #'i No. 121 JA or the illumination optical system in the Xa pattern transfer device described in item (3).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56149849A JPS5850511A (en) | 1981-09-21 | 1981-09-21 | Illumination optical system of integrated circuit pattern transfer device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56149849A JPS5850511A (en) | 1981-09-21 | 1981-09-21 | Illumination optical system of integrated circuit pattern transfer device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5850511A true JPS5850511A (en) | 1983-03-25 |
Family
ID=15483989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56149849A Pending JPS5850511A (en) | 1981-09-21 | 1981-09-21 | Illumination optical system of integrated circuit pattern transfer device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5850511A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61188152U (en) * | 1985-05-15 | 1986-11-22 | ||
JPH09102456A (en) * | 1996-05-24 | 1997-04-15 | Canon Inc | Illuminating optical device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5681813A (en) * | 1979-12-08 | 1981-07-04 | Nippon Telegr & Teleph Corp <Ntt> | Mask lighting optical system |
-
1981
- 1981-09-21 JP JP56149849A patent/JPS5850511A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5681813A (en) * | 1979-12-08 | 1981-07-04 | Nippon Telegr & Teleph Corp <Ntt> | Mask lighting optical system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61188152U (en) * | 1985-05-15 | 1986-11-22 | ||
JPH09102456A (en) * | 1996-05-24 | 1997-04-15 | Canon Inc | Illuminating optical device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4497015A (en) | Light illumination device | |
US6285443B1 (en) | Illuminating arrangement for a projection microlithographic apparatus | |
CN1774675B (en) | Optical element for a lighting system | |
US4497013A (en) | Illuminating apparatus | |
US3296923A (en) | Lenticulated collimating condensing system | |
US6102552A (en) | Laser-array based digital illuminator | |
JP3338028B2 (en) | Illumination design for scanning microlithography systems | |
KR900017399A (en) | Image Projection System with Irradiation System and Irradiation System | |
USRE34634E (en) | Light illumination device | |
US4683524A (en) | Illumination apparatus | |
JPS60232552A (en) | Lighting optical system | |
TW200900733A (en) | Optical integrator system, illumination optical apparatus, exposure apparatus, and device manufacturing method | |
CN104460242B (en) | A kind of extreme ultraviolet photolithographic illuminator based on free form surface formula diaphragm compound eye | |
JPS633288B2 (en) | ||
JP2021047444A (en) | Illumination apparatus and method, exposure apparatus and method, and device manufacturing method | |
TW201115279A (en) | Laser exposure apparatus | |
JP2002116379A (en) | Illumination system for microlithography | |
JPS58160914A (en) | Mirror converging type optical illumination system | |
JPS62115719A (en) | Light optical system | |
US5386266A (en) | Projection exposure system | |
JPS5850511A (en) | Illumination optical system of integrated circuit pattern transfer device | |
US4457600A (en) | Light projection systems | |
KR920010622B1 (en) | Optical lighting system | |
JPS5850510A (en) | Illumination optical system of integrated circuit pattern transfer device | |
JP3521506B2 (en) | Illumination device and exposure device |