JPS58501951A - Heat recovery in aluminum melting plants - Google Patents
Heat recovery in aluminum melting plantsInfo
- Publication number
- JPS58501951A JPS58501951A JP57503310A JP50331082A JPS58501951A JP S58501951 A JPS58501951 A JP S58501951A JP 57503310 A JP57503310 A JP 57503310A JP 50331082 A JP50331082 A JP 50331082A JP S58501951 A JPS58501951 A JP S58501951A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- alumina
- furnace gas
- cathode
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/06—Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/06—Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
- C25C3/22—Collecting emitted gases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Engineering & Computer Science (AREA)
- Electrolytic Production Of Metals (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Processing Of Solid Wastes (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Cookers (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 アルミニウム溶融工場における熱回収 本発明はアルミナの溶融電解によってアルミニウムを製造する炉からの熱回収方 法に関するもので該炉ガスは、流動化しているアルミナの層ベッドを通過せしめ られる。[Detailed description of the invention] Heat recovery in aluminum melting plants The present invention is a method for recovering heat from a furnace that produces aluminum by melting and electrolyzing alumina. The furnace gas is passed through a bed of fluidized alumina. It will be done.
該溶融電解は、その目的のために特に開発され、且つ通常鋼からなりれんがライ ニングを有するトラフ(trough )として構成される炉で行なう。通常カ ソードが該炉の底に配置され、炭素から作られ、一方アノードは例えばグリベー クタイプあるいはs’6derbergタイプでよく、通常上から電解浴に供給 される。それは該工程中消耗し連続的に交換されねばならない。The molten electrolysis method has been specially developed for that purpose and is usually made of steel. The process is carried out in a furnace configured as a trough with linings. Normal power The sword is placed at the bottom of the furnace and is made of carbon, while the anode is made of e.g. It can be of the Ku type or S'6 Derberg type, and is usually supplied to the electrolytic bath from above. be done. It wears out during the process and must be replaced continuously.
アルミナと固体添付物はアノードを介して又は横方向に該電解液に供給され、且 つ得られたアルミニウムはサイフオン又は吸引によってパッチ式に引出される。Alumina and solid attachments are fed into the electrolyte via the anode or laterally, and The aluminum obtained is extracted in patches by siphon or suction.
該電解で得られたガス、炉ガス、は−酸化炭素。The gas obtained by the electrolysis, furnace gas, is carbon oxide.
二酸化炭素及び炭化水素及びフルオロ炭化水素等の混合物からなり、通常気流と 共に、炉が配置されている空間の直接大気へか、又は炉ガス中に入っている螢石 塩からなる固体粒子の回収のため例えば金屓ンートフードのようないくつかの集 塵装置に排気さ2 れる。しかしながら、該排気炉ガスは1年につき80.000)ンの原料アルミ ニウムの製造プラントにおいて20MWのオーダーであるエネルギーt K 相 当する。It consists of a mixture of carbon dioxide, hydrocarbons, fluorohydrocarbons, etc., and is usually combined with airflow. In both cases, fluorite is released directly into the atmosphere of the space in which the furnace is located, or in the furnace gas. For the recovery of solid particles consisting of salts, some collection methods, such as metal hoods, are used. Exhaust to dust device 2 It will be done. However, the exhaust furnace gas is 80,000 tons of raw aluminum per year. energy tK phase on the order of 20 MW in a manufacturing plant for I guess.
このエネルギー量の回収のために且つ炉ガ゛ス中に混入する螢石塩が同時に分離 2回収される間アルミニウム製造におけるエネルギー損失の減少のため、炉ガス と外気流との間の熱交換のだめの熱交換機を介してアルミナのベッドを炉ガスが 通過した時に炉ガ゛スを通すことが提案されている(米国特許明細書簡3,66 4,935号)。しかしながら、その場合炉ガスからのダストの沈積のために熱 交換器が急速に詰シ、しばしば熱交換器を洗浄する必要がある。In order to recover this amount of energy, the fluorite salt mixed in the furnace gas is separated at the same time. 2 To reduce energy losses in aluminum production during recovery, furnace gas The furnace gas passes through the alumina bed through a sump heat exchanger for heat exchange between the airflow and the outside airflow. It has been proposed to pass the furnace gas as it passes (U.S. Patent Specification Letter 3,66 No. 4,935). However, in that case the heat Exchangers clog rapidly, often requiring cleaning of the heat exchanger.
この欠点を解消するために、本発明によれば1又はそれ以上の管状コイルの周り で該炉ガスと、該管状コイル又は複数の管状コイルを通過する外気流との間の熱 交換のために該アルミナの層を流動することが提供される。To overcome this drawback, according to the invention, around one or more tubular coils heat between the furnace gas and the outside air flow passing through the tubular coil or tubular coils at It is provided to flow the layer of alumina for exchange.
この方法では該管状コイル又は複数の管状コイルがそれぞれ、流動層内の粒子に よって連続的に吹かれるのみならず該コイルがそれぞれ小さな表面を有してよく 従って所望の熱エネルギーの移動のために小さくて安いものでよい。というのは 熱移動要因は流動のために数倍になるからである。In this method, the tubular coil or a plurality of tubular coils each move the particles in the fluidized bed. Therefore, not only can the coils be blown continuously, but each of the coils may have a small surface. Therefore, it can be small and cheap for the desired thermal energy transfer. I mean This is because the heat transfer factor increases several times due to the flow.
特表昭58−5(11951(2) もしもいくつかの管状コイルを具備するなら連続的に接続され得る。Special edition Showa 58-5 (11951 (2) If several tubular coils are provided, they can be connected in series.
炉ガスが流動層及び該コイルそれぞれに供給される前に該炉ガスを該廐融電解用 に配置されたカソードを通過させることが特に好ましい。該カソードが自由対流 によって冷却されるのが普通である。その場合冬、空気が冷たい時、電解用の電 気エネルギー供給増大によるかなりの熱損失のために補正することが必要である 。炉ガスによってカソードの冷却が得られることにより、カソードからコントロ ールされた熱移動が生じ、従って電解用のエネルギー消耗が減少する。Before the furnace gas is supplied to the fluidized bed and each of the coils, the furnace gas is used for the melting electrolysis. It is particularly preferred to pass through a cathode located at. The cathode is free convection It is usually cooled by In that case, in winter, when the air is cold, the electrolytic It is necessary to compensate for significant heat losses due to increased energy supply. . Control from the cathode is provided by the furnace gas providing cathode cooling. A reduced heat transfer occurs and therefore energy consumption for electrolysis is reduced.
本発明をより明確に説明するために、該方法を実施する設備を模式的な垂直断面 図で示す添付図面を参照してより賀しζ以下T晃明Vろ。In order to explain the invention more clearly, a schematic vertical cross-section of the equipment for carrying out the method is shown. The following description is given below with reference to the accompanying drawings, which are illustrated in the drawings.
核図においてアノード11とカソード12を含むアルミナの溶融電解用の炉1o が示されている。アルミナの炉への供給人口13が先端に配置される。Furnace 1o for melting and electrolyzing alumina including an anode 11 and a cathode 12 in the nuclear diagram It is shown. A furnace feed port 13 of alumina is placed at the tip.
炉空間は密閉され、導管14を介してカソード12の周りに配置された冷却ノヤ ケッ)15と接続される。該カソードは導管16を介してポンプ17にも接続さ れる。該導管16と14間にノヤヶノト15から吸引された炉ガスをジャケット に戻すボンデ19を有する導管18がある。炉1oとジャケット15は周囲から 断熱されている。ポンプ17によっテ炉ガスは導管14を介して炉から吸引され その結果として冷却されるカソード12を有する熱交換用ノヤケノト15を介し て通過せしめられる。次に更に加熱された炉ガスはポンプ17によって導管を介 して供給されポンプ19によって導管18を介してソヤケノト15に戻されもす る。この装置によって冷却効果そしてカソード12の温度をコントロールするこ とが可能である。アノード11の過剰温度ではカソードの減少冷却によって自動 的に補正が得られる。The furnace space is sealed and a cooling nozzle arranged around the cathode 12 is connected via conduit 14. (c) Connected to 15. The cathode is also connected to a pump 17 via conduit 16. It will be done. The furnace gas sucked from Noyaganoto 15 is jacketed between the conduits 16 and 14. There is a conduit 18 having a bond 19 returning to. Furnace 1o and jacket 15 are exposed from the surroundings. It is insulated. Furnace gas is drawn from the furnace via conduit 14 by pump 17. Via the heat exchanger tube 15 with the cathode 12 cooled as a result. be allowed to pass. Next, the further heated furnace gas is passed through the conduit by the pump 17. It is also supplied to the soil 15 via the conduit 18 by the pump 19. Ru. This device allows controlling the cooling effect and the temperature of the cathode 12. is possible. In case of excessive temperature of the anode 11, automatic reduction of cooling of the cathode correction can be obtained.
というのは冷却流体として作用する炉ガスが高温を有するからである。それによ って溶融電解の電気エネルギーの消耗が所望の製造レベルでかなり一定レベルに 維持される。This is because the furnace gas, which acts as a cooling fluid, has a high temperature. That's it This means that the consumption of electrical energy during melting electrolysis remains at a fairly constant level at the desired production level. maintained.
導管20は容器21に連結され、該容器21内で孔あき底22が該容器の下端か らある距離で配置されアルミナの層23を支持する。これは入口開口部24を介 して容器内に充填せしめられる。外気流の循環用の加熱コイル25が枝孔あき底 22上方で容器内側に配置され、且つ先端で該容器は出口導管26と連結される 。サイクロンタイプでもよく且つその底に分離された固体粒子用の出口28を有 するダスト分離器に該出口導管26は延びる。クリーナー29は孔あき底22下 に配置され電気駆動モータ30と接続される。The conduit 20 is connected to a container 21 in which a perforated bottom 22 is connected to the lower end of the container. and supporting a layer 23 of alumina. This is done via the inlet opening 24. and then filled into a container. The heating coil 25 for circulation of outside air has a perforated bottom. 22 above and inside the container, and at the tip the container is connected with an outlet conduit 26 . It may be of the cyclone type and has an outlet 28 for separated solid particles at its bottom. The outlet conduit 26 extends to a dust separator which is used for cleaning. Cleaner 29 is below the perforated bottom 22 and is connected to the electric drive motor 30.
導管20を介して容器10に入り且つ螢石塩からなるいくつかのゲスl−を含む 炉ガスは孔あき底22を介して、加熱コイル250周りで流動するアルミナの層 23内に入る。次に、熱ば200ないし220℃の温度を有する熱間炉ガスから 、加熱コイル25内で循環する外気流に交換される。該ダストは同時にアルミナ にも付着する。炉ガスが導管26を出る時、アルミナと付着螢石塩の1部が炉ガ スを伴ない、熱含量の主要部から出て且つ連行ダストから除去された炉力゛スが 大気に放出される前にグストセ・やレータ27で分離される。該ダストセフ9レ ータ内で分離され、螢石塩に富んだアルミナからなる材料は入口13から炉に供 給せしめられ、また入口開口部24から容器20に戻される。It enters the vessel 10 via conduit 20 and contains some ges l- consisting of fluorite salt. Furnace gas flows through the perforated bottom 22 into a layer of alumina flowing around the heating coil 250. Enter within 23. Next, from hot furnace gas having a temperature of 200 to 220°C, , which is exchanged with an outside air flow circulating within the heating coil 25. The dust is also alumina It also adheres to. As the furnace gas exits conduit 26, some of the alumina and deposited fluorite salts enter the furnace gas. The reactor power gas leaving the main part of the heat content and removed from the entrained dust is accompanied by It is separated in a gas tanker 27 before being released into the atmosphere. The dust safety 9res The material separated in the furnace and consisting of alumina rich in fluorite salt is supplied to the furnace through the inlet 13. and is returned to the container 20 through the inlet opening 24.
加熱コイル25から循環する々1気流によって炉ガスから除去された熱は異なっ た方法で例えば、熱が熱交換器又は熱ポンプを介して工業的に使用される新鮮な 水の製造のだめの海水又は基音含有する他の水を脱塩するために夏換される遠隔 加熱のため、例えば従来の水蒸気サイ、タルによってか又は2つの溶質サイクル 例えばフレオンを用いることによって電気エネルギーの製造のためあるいは吸引 IJ口熱?ンプにおける熱及び/′又は低温の製造のためにネノトワ−りで利用 される。これら2つ又はそれ以上の利用方法の組合せがまたなされる。炉ガ゛ス と加熱ニイル25内を循環する外気流との間の熱交換はアルミナの流動床内で生 じ、熱交換器の詰まりが避けられ且つ数回良好な熱移動がなされる。このことか ら炉ガスを処理するのに短かな装置でよくなり、従って熱の回収と螢石塩の回収 がコン・やクトな構造の1つの同じ装置で行なうことが出来る。炉ガスは該方法 に合うカソード12からある熱量をとることが可能であることにより、炉ガス温 度は上昇し、次に炉ガスは濃縮状態で全ての損失を除去する。本発明の方法はカ ソードからの熱回収を実質的に容易にする。というのはガス集約/ステム及び炉 ガスとカソード冷却用の共通の熱交換器が用いられるからである。The heat removed from the furnace gas by each airflow circulating from the heating coil 25 is For example, heat can be used in industrially fresh Remotely summerized to desalinate seawater or other base-containing waters in water production basins For heating, e.g. by conventional steam, barrel or two solute cycles For the production of electrical energy or suction by using e.g. freon IJ mouth fever? used in neotowers for the production of heat and/or low temperatures in be done. Combinations of these two or more uses may also be made. furnace gas The heat exchange between the air flow and the outside air flow circulating in the heating coil 25 takes place in a fluidized bed of alumina. Similarly, clogging of the heat exchanger is avoided and good heat transfer is achieved several times. Is this about it? Requires shorter equipment to process the furnace gas, thus allowing for heat recovery and fluorite salt recovery. can be carried out in one and the same device with a compact construction. Furnace gas is the method By being able to take a certain amount of heat from the cathode 12 that matches the furnace gas temperature The temperature increases and then the furnace gas is concentrated to remove all losses. The method of the invention Substantially facilitates heat recovery from the sword. Because gas aggregation/stem and furnace This is because a common heat exchanger for gas and cathode cooling is used.
溶融電解用のいくつかの炉は全ての炉に共通な1つの同じ装置21に連結せしめ られる。Several furnaces for melting electrolysis are connected to one and the same device 21 common to all furnaces. It will be done.
手続補正書(方式) %式% 1 事件の表示 PCT/5E82100367 2 発明の名称 アルミニウム溶融工場における熱回収 3 補正をする者 事件との関係 特許出願人 住所 〒105東京都港区虎ノ門−丁目8番1o号5 補正命令の日付 昭和58年8月30日(発送日) 6 補正の対象 (1)図面の翻訳文 (2)委任状およびその翻訳文 7 補正の内容 (11図面の翻訳文の浄書(内容に変更なし)(2)別紙の通り 8 添付書類の目録 (1)図面の翻訳文 IA (2)委任状およびその翻訳文 各1通(2) 国際調査報告Procedural amendment (formality) %formula% 1 Display of incident PCT/5E82100367 2 Name of the invention Heat recovery in aluminum melting plants 3 Person making the amendment Relationship to the incident: Patent applicant Address: 5-8-1o Toranomon-chome, Minato-ku, Tokyo 105 Date of amendment order August 30, 1981 (Shipping date) 6 Target of correction (1) Translation of drawings (2) Power of attorney and its translation 7 Contents of amendment (Engraving of the translation of 11 drawings (no changes in content) (2) As shown in the attached sheet 8 List of attached documents (1) Translation of drawing IA (2) Power of attorney and its translation, one copy each (2) international search report
Claims (1)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE8106508 | 1981-11-04 | ||
SE81065088GB | 1981-11-04 | ||
PCT/SE1982/000367 WO1983001631A1 (en) | 1981-11-04 | 1982-11-04 | Heat recovery in aluminium-melting works |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58501951A true JPS58501951A (en) | 1983-11-17 |
Family
ID=20344953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57503310A Pending JPS58501951A (en) | 1981-11-04 | 1982-11-04 | Heat recovery in aluminum melting plants |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0107662A1 (en) |
JP (1) | JPS58501951A (en) |
AU (1) | AU9058282A (en) |
BR (1) | BR8208071A (en) |
NO (1) | NO832433L (en) |
WO (1) | WO1983001631A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107557815A (en) * | 2010-09-17 | 2018-01-09 | 通用电器技术有限公司 | Pot heat exchanger |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1196487B (en) * | 1986-07-15 | 1988-11-16 | Techmo Car Spa | PROCEDURE FOR DEPURING GASES EMITTED BY ELECTROLYSIS OVENS FOR THE PRODUCTION OF ALUMINUM AND RELATED EQUIPMENT |
FR2946666B1 (en) * | 2009-06-10 | 2015-08-07 | Solios Environnement | SYSTEM AND METHOD FOR ENERGY RECOVERY |
EP2694703A2 (en) | 2011-04-08 | 2014-02-12 | BHP Billiton Aluminium Technologies Limited | Heat exchange elements for use in pyrometallurgical process vessels |
CN113390267A (en) * | 2021-04-29 | 2021-09-14 | 广元市林丰铝电有限公司 | Aluminum electrolysis cell flue gas waste heat recovery method and system |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH366976A (en) * | 1957-12-19 | 1963-01-31 | Elektrokemisk As | Process for charging furnaces for the electrolytic production of aluminum |
US3664935A (en) * | 1971-01-21 | 1972-05-23 | Arthur F Johnson | Effluent filtering process and apparatus for aluminum reduction cell |
GB1395900A (en) * | 1971-10-14 | 1975-05-29 | Technical Dev Capital Ltd | Fluidized bed heat exchangers |
SE362901B (en) * | 1971-10-27 | 1973-12-27 | Svenska Flaektfabriken Ab | |
US3823079A (en) * | 1972-12-14 | 1974-07-09 | Reynolds Int Inc | Aluminum reduction cell operating system |
DE2346580A1 (en) * | 1973-09-15 | 1975-04-24 | Metallgesellschaft Ag | PROCESS FOR SEPARATION OF HYDROGEN |
DE2403282A1 (en) * | 1974-01-24 | 1975-11-06 | Metallgesellschaft Ag | PROCESS FOR THE SEPARATION OF HYDROGEN FROM ALUMINUM ELECTROLYSIS EXHAUST GASES BY DRY ADSORPTION OF ALUMINUM OXIDE WITH COMPLETE SEPARATION OF THE DAMAGING ELEMENTS |
DE2505535A1 (en) * | 1975-02-10 | 1976-08-19 | Inst Gas Technology | High temp. heat exchange and sulphur cpds. removal from gas - by sprayed heavy metals or inorganic salts |
SE421145B (en) * | 1978-02-23 | 1981-11-30 | Stal Laval Apparat Ab | DEVICE FOR SUPPLY AND DISTRIBUTION OF DUST-GAS |
NO143955C (en) * | 1979-04-09 | 1982-10-26 | Norsk Viftefabrikk As | GAS HEAT EXCHANGERS. |
GB2077615B (en) * | 1980-06-07 | 1984-10-31 | Worsley G P & Co Ltd | Fluidised bed heat exchangers |
-
1982
- 1982-11-04 AU AU90582/82A patent/AU9058282A/en not_active Abandoned
- 1982-11-04 EP EP82903356A patent/EP0107662A1/en not_active Ceased
- 1982-11-04 JP JP57503310A patent/JPS58501951A/en active Pending
- 1982-11-04 WO PCT/SE1982/000367 patent/WO1983001631A1/en not_active Application Discontinuation
- 1982-11-04 BR BR8208071A patent/BR8208071A/en unknown
-
1983
- 1983-07-04 NO NO832433A patent/NO832433L/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107557815A (en) * | 2010-09-17 | 2018-01-09 | 通用电器技术有限公司 | Pot heat exchanger |
Also Published As
Publication number | Publication date |
---|---|
WO1983001631A1 (en) | 1983-05-11 |
EP0107662A1 (en) | 1984-05-09 |
NO832433L (en) | 1983-07-04 |
AU9058282A (en) | 1983-05-18 |
BR8208071A (en) | 1984-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4222841A (en) | Hall cell | |
US4099959A (en) | Process for the production of aluminium | |
GB2151150A (en) | Process for recovering heat of a tar-containing high temperature gas | |
JPS58501951A (en) | Heat recovery in aluminum melting plants | |
US2914398A (en) | Recovery of aluminum in subhalide distillation | |
US4451337A (en) | Heat recovery in aluminium-melting works | |
US2756029A (en) | Heating systems for water containing dissolved scale-forming solids | |
CN106917108A (en) | A kind of production technology of magnesium metal | |
CN100534896C (en) | Method of utilizing waste heat after boiling furnace in sulfuric acid production | |
US3728234A (en) | Method of and apparatus for circulating liquid metals in fused salt electrolysis | |
CN105408686B (en) | Shell-and-tube apparatus for heat recovery from hot process stream | |
US3642603A (en) | Method of and apparatus for circulating liquid metals in fused salt electrolysis | |
JP2914665B2 (en) | Fuel cell water treatment equipment | |
GB1247099A (en) | A method for cooling a gas, and a heat exchanger therefor | |
CA1171455A (en) | Fuel cell power plant self-controlling coolant cleaning process | |
CN209242784U (en) | Utilize the device of soda manufacture chemical industry waste heat enrichment concentrated seawater | |
CA2242421C (en) | Method and apparatus for electrolysing light metals | |
US5660710A (en) | Method and apparatus for electrolyzing light metals | |
CN107998689A (en) | Become CO in gas acidity lime set in removing2And O2Be thermally integrated rectifying new process | |
US4391228A (en) | Falling shot heating method and apparatus | |
US3436210A (en) | Subhalide refining of aluminum | |
CN209575819U (en) | A kind of MVR evaporation and crystallization system of copper chloride solution | |
US4223000A (en) | Decomposition of aluminum nitrate | |
CN86103400A (en) | Preparation method of acrylamide crystal | |
US531235A (en) | Peooebs of and apparatus foe the production of caustic alkali |