JPS58500092A - Variable temperature coefficient level shifter - Google Patents

Variable temperature coefficient level shifter

Info

Publication number
JPS58500092A
JPS58500092A JP50077882A JP50077882A JPS58500092A JP S58500092 A JPS58500092 A JP S58500092A JP 50077882 A JP50077882 A JP 50077882A JP 50077882 A JP50077882 A JP 50077882A JP S58500092 A JPS58500092 A JP S58500092A
Authority
JP
Japan
Prior art keywords
temperature coefficient
current
voltage
supply voltage
voltage terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP50077882A
Other languages
Japanese (ja)
Other versions
JPH0664504B2 (en
Inventor
バイナム・バイロン・ジ−
グレイ・ランダ−ル・シ−
ジヤレツト・ロバ−ト・ビ−
Original Assignee
モトロ−ラ・インコ−ポレ−テッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by モトロ−ラ・インコ−ポレ−テッド filed Critical モトロ−ラ・インコ−ポレ−テッド
Publication of JPS58500092A publication Critical patent/JPS58500092A/en
Publication of JPH0664504B2 publication Critical patent/JPH0664504B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/30Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 可変温度係数レベルシフタ 発明の背景 発明の分野 本発明は、一般的には電圧レベルシフタに関するものであり、更に具体的に云う と個々に別々に制御可能な温度係数および振幅を有する電圧を発生させるための 回路に関する。[Detailed description of the invention] Variable temperature coefficient level shifter Background of the invention field of invention TECHNICAL FIELD This invention relates generally to voltage level shifters, and more particularly to voltage level shifters. and for generating voltages with individually controllable temperature coefficients and amplitudes. Regarding circuits.

先行技術の説明 零温度係数を有する出力電流又は電圧を提供する必要がしばしばあり、これを達 成するための回路は周知である。例えば“固体調整電圧源”と題する米国特許第 3,887,863号、“零温度係数電圧基準回路を含む電気調整器装置”と題 する米国特許13,617.ss9号および“補償電子電圧源”と題する米国特 許Z 3,893,018号を参照されたい。それらの回路は一般的に云って1 つのトランジスタのベース−エミッタ電圧(vBE)の負の温度係数を1対のト ランジスタ間のベース−エミッタ電圧差(ΔvBE)から誘導される正の温度係 数で補っている。この先行技術に伴う問題の1つは、出力に導入される負の温度 係数の量が単一のvBEによって著しく制限されることである。Description of prior art It is often necessary to provide an output current or voltage with a zero temperature coefficient, and it is difficult to achieve this. Circuits for achieving this are well known. For example, US Patent No. 1 entitled “Solid State Regulated Voltage Source” No. 3,887,863, entitled "Electrical Regulator Apparatus Including Zero Temperature Coefficient Voltage Reference Circuit." U.S. Patent No. 13,617. ss9 and the US patent entitled “Compensated Electronic Voltage Source”. See No. 3,893,018. Generally speaking, those circuits are 1 The negative temperature coefficient of the base-emitter voltage (vBE) of one transistor is Positive temperature coefficient induced from base-emitter voltage difference (ΔvBE) between transistors It is supplemented by numbers. One of the problems with this prior art is the negative temperature introduced to the output. The amount of coefficients is significantly limited by a single vBE.

発明の要約 本発明の目的は、制御可能な温度係数ををし、安定した。別個に制御可能なレベ ルシフティング電圧振幅を発生させる電圧レベルシフティング回路を提供するこ とである。Summary of the invention The object of the invention is to have a controllable and stable temperature coefficient. Separately controllable levels providing a voltage level shifting circuit that generates a voltage level shifting circuit; That is.

本発明のもう1つの目的は、制御可能な温度係数を有し、その出力に結合した。Another object of the invention is to have a controllable temperature coefficient coupled to its output.

又はその出力に関連した回路によって影響されない別個に制御可能なシフト振幅 を有する電圧レベルシフティング回路を提供することである。or a separately controllable shift amplitude unaffected by the circuitry associated with that output. An object of the present invention is to provide a voltage level shifting circuit having the following features.

本発明の更にもう1つの目的は、制御可能な温度係数を有し1乗算又は抵抗分圧 器の使用を必要としない別個に制御可能なシフト振幅を有する電圧レベルシフテ ィング回路を提供することである。Yet another object of the invention is to have a controllable temperature coefficient and a single multiplier or resistive voltage divider. Voltage level shifter with separately controllable shift amplitude that does not require the use of The purpose of this invention is to provide a switching circuit.

本発明の第1の側面によると、第1供給電圧端子と、第2供給電圧端子と、前記 第1供給電圧端子に結合され、正の温度係数を有する第1電流を発生させる第1 電流源と、前記第1供給電圧端子に結合され、負の温度係数を有する第2電流を 発生させる第2電流源と。According to a first aspect of the invention, the first supply voltage terminal, the second supply voltage terminal, and the a first current coupled to the first supply voltage terminal and generating a first current having a positive temperature coefficient; a current source and a second current coupled to the first supply voltage terminal and having a negative temperature coefficient; and a second current source for generating.

前記第1.第2電流源と前記第2供給電圧端子との間に結合され。Said 1st. coupled between a second current source and the second supply voltage terminal.

前記第1および第2電流を結合して前記所望の温度係数に対応する正味温度係数 を有する第3電流を発生させ、前記正味温度係数と前記所望の振幅を有する電圧 を前記第3電流から発生させる第1抵抗手段とを含む、所望の振幅および温度係 数を有する出力電圧を生じさせるためのレベルシフト回路が提供されている。a net temperature coefficient of combining the first and second currents corresponding to the desired temperature coefficient; generating a third current having said net temperature coefficient and said voltage having said desired amplitude; a first resistance means for generating from said third current a desired amplitude and temperature coefficient. A level shifting circuit is provided for producing an output voltage having a number of output voltages.

本発明のもう1つの側面によると、正の温度係数を有する第1電流を発生させ、 負の温度係数を有する第2電流を発生させ、前記第1および第2電流の絶対値を 変化させて正味の負、零又は正温度係数を達成し、その抵抗が必要とされるレベ ルシフトを生じさせるように選択されている第1抵抗手段に前記第1および第2 電流の和を印加することを含む、電圧をレベルシフトするための方法が提供され ており、レベルシフトの振幅およびその温度係数は別々に制御することが可能で ある。According to another aspect of the invention, generating a first current having a positive temperature coefficient; generating a second current having a negative temperature coefficient, and determining the absolute value of the first and second currents; be varied to achieve a net negative, zero or positive temperature coefficient and its resistance to the required level. said first and second resistance means being selected to cause a shift. A method is provided for level shifting a voltage, including applying a sum of currents. The amplitude of the level shift and its temperature coefficient can be controlled separately. be.

図面の簡単な説明 本発明の上述した目的およびその他の目的、特徴および長所は。Brief description of the drawing The above objects and other objects, features and advantages of the present invention are as follows.

添付した図面ならびに下記の詳細な説明がら更に明確に理解される。It will be more clearly understood from the accompanying drawings as well as the detailed description below.

添付した図面の唯一の図は1本発明を部分的にはブロック図で、一部を概略図で 示したものである。The only figure in the attached drawings depicts the invention partly in block diagram form and partly in schematic form. This is what is shown.

好ましい実施例の説明 図に示しである本発明の配置は、大地およびノード4,6にそれこのノード2か ら回路出力が取出される。図示されているようにノVBEは1対のトランジスタ 間のベース−エミッタ電圧差であり正の温度係数を有する。これらの電圧を発生 させるための回路は周知であり、これ以上の説明はここでは必要ないと思われる 。しかし、関心のある当業者は上記に引用した米国特許第3.887,863号 を参照されたい。抵抗殊 、RPおよびRsは集積回路チップの内部にあっでも よく、又はその外部にあってもよい。Description of the preferred embodiment The arrangement of the invention shown in the figure is such that the ground and nodes 4 and 6 have their respective nodes 2 and The circuit output is taken out from the circuit. As shown, VBE is a pair of transistors. It has a positive temperature coefficient. generate these voltages The circuit to do this is well known and no further explanation seems necessary here. . However, those skilled in the art who are interested in the above-cited U.S. Pat. No. 3,887,863 Please refer to Resistors RP and Rs can be inside the integrated circuit chip. It may be well or external to it.

ノード4にvBEが現れると、RNを流れる電流は負の温度係数と値vBE/R Nを有する。同様な方法で、Δ”BEがノード6に現れると。When vBE appears at node 4, the current flowing through RN has a negative temperature coefficient and the value vBE/R. It has N. In a similar manner, when Δ”BE appears at node 6.

ΔvBE/R9に等しい。この電流はそれに関連した正味温度係数を有し、この 係数は抵抗RNとRPを適当に選択することによって制御される。例えば、RN が開いていると(無限インピーダンス)。Equal to ΔvBE/R9. This current has a net temperature coefficient associated with it, and this The coefficient is controlled by appropriate selection of resistors RN and RP. For example, R.N. is open (infinite impedance).

■CNTの温度係数は完全にΔ”BE酸成分よることになり従って正となる。他 方、Rが開いていると” CNTの温度係数は一項によることになり従って負と なる。従ってRおよびRを適当にスケN P −ルすることによッテ、■oNTノ温度係数は約−2800ppmと+3000 ppmとの間で変えられる。■The temperature coefficient of CNT depends entirely on the Δ”BE acid component and is therefore positive.Others On the other hand, if R is open, the temperature coefficient of CNT depends on one term, so it is negative. Become. Therefore, scale R and R appropriately.NP -The temperature coefficient of oNT is approximately -2800ppm and +3000ppm. It can be changed between ppm and ppm.

さて温度係数が何らかの所望の値にセットされたとすると、ノード2に現れるレ ベルシフトの振幅値(magnitude )は抵抗R8を適当に選択すること によって何らかの所望の振幅値にセットすることができる。R5両端の電圧降下 は今や制御電流I。NT に与えられるのと同じ関連温度係数を有したことにな る。従って、制御可能な温度係数および別個に制御される振幅を有する電圧源が つくられたことになる。即ち、RおよびRPを選択することによって温度係数が 制御され、R8を選択することによってシフトの振幅値が制御される。Now, if the temperature coefficient is set to some desired value, the value appearing at node 2 is The amplitude value (magnitude) of the bell shift should be determined by appropriately selecting the resistor R8. can be set to any desired amplitude value by Voltage drop across R5 is now the control current I. It has the same associated temperature coefficient as given to NT. Ru. Therefore, a voltage source with a controllable temperature coefficient and a separately controlled amplitude is It means that it was created. That is, by selecting R and RP, the temperature coefficient The amplitude value of the shift is controlled by selecting R8.

図に示した配置のいくつかの利点に注目すべきである。第1に。Several advantages of the arrangement shown in the figure should be noted. Firstly.

レベルシフトの振幅をセントするのは抵抗の比のみであって、抵抗の絶対値では ない。この結果、普通の抵抗プロセッシングを用いて抵抗が作られている限りに おいては抵抗許容誤差要件を減少する。Only the ratio of the resistances determines the amplitude of the level shift; the absolute value of the resistances determines the amplitude of the level shift. do not have. As a result, as long as the resistor is made using ordinary resistor processing, reduces resistance tolerance requirements.

例えば、RNおよびRPO値が高ければ電流は低くなる。しかし。For example, the higher the RN and RPO values, the lower the current. but.

R8の値もまた高くなるので、その結果体じるレベルシフトは同じになる。第2 に、抵抗R8両端のレベルシフト電圧は、供給電圧■+の変動に関係なく一定で ある。Since the value of R8 is also higher, the resulting level shift experienced is the same. Second In addition, the level shift voltage across resistor R8 is constant regardless of fluctuations in the supply voltage be.

上述の説明は例としてあげたにすぎない。適業技術者は本発明の範囲を逸脱する ことなく形式および詳細の変更を行うことができる。The above description is given by way of example only. It is beyond the scope of this invention for a person skilled in the art to do so. Changes in format and details can be made without any changes.

補正書の翻訳文提出書(特許法第184条7の第1項)昭和57年1り月/工日 特許庁長官 若 杉 和 夫 殿 1、特許出願の表示 国際出願番号 PCT/LIS 8210 O1002、発明の名称 可変温度係数レベルシフタ 3、特許出願人 住所 アメリカ合衆国イリノイ州60196.シャンバーブ。Submission of translation of written amendment (Article 184, Paragraph 7, Paragraph 1 of the Patent Act) January 1980/Working day Mr. Kazuo Wakasugi, Commissioner of the Patent Office 1. Display of patent application International application number PCT/LIS 8210 O1002, title of invention Variable temperature coefficient level shifter 3. Patent applicant Address: 60196, Illinois, USA. Shambab.

イースト・アルゴンフィン・ロード、13031名称 モトローラ・インコーホ レーテッド代表者 ラウナー、ビンセント ジ四セフ国籍 アメリカ合衆国 4、代理人 住所 東京都豊島区南長崎2丁目5番2号4、前記第2電流は、トランジスタの ベース−エミッタ電圧に対応、前記第1電流は、1対のトランジスタのベース− エミッタ電圧差対応する請求の範囲第3項による回路。East Algonfin Road, 13031 Name Motorola Inc. Rated Representative: Rauner, Vincent, Jiyoseph Nationality: United States 4. Agent Address: 2-5-2-4 Minami-Nagasaki, Toshima-ku, Tokyo The second current is a transistor The first current corresponds to a base-emitter voltage of a pair of transistors. A circuit according to claim 3 corresponding to an emitter voltage difference.

5、(補正) 第1供給電圧端子と、第2供給電圧端子と、前記第1給電圧端子 と前記第1電圧源との間に結合され、正の温度係数を有る第1電流を発生させる 第1抵抗手段と、前記第1供給電圧端子と記第2電圧源との間に結合され、負の 温度係数を有する第2電流をルさせる第2抵抗手段と、前記第2供給電圧端子と 前記第1.第2踪との間に結合され、前記第1および第2電流を結合して正味温 度数を有する第3電流を発生させ、そこから所望する振幅と温度係数有する電圧 を発生させる第3抵抗手段と、を具える所望する温度係と振幅を有する電圧を発 生させるため、正の温度係数を有する第1圧の第1電源および負の温度係数を有 する第2電圧の第2電源に結するレベルシフティング回路。5. (Correction) The first supply voltage terminal, the second supply voltage terminal, and the first supply voltage terminal and the first voltage source to generate a first current having a positive temperature coefficient. a first resistive means coupled between the first supply voltage terminal and the second voltage source; a second resistance means for causing a second current having a temperature coefficient to flow; and the second supply voltage terminal. Said 1st. a second electric current, which combines the first and second currents to generate a net temperature. generate a third current having a degree and a voltage therefrom having a desired amplitude and temperature coefficient; third resistance means for generating a voltage having a desired temperature coefficient and amplitude; a first voltage source having a positive temperature coefficient and a first voltage having a negative temperature coefficient; a level shifting circuit connected to a second power source of a second voltage;

6、正の温度係数を有する第1電圧を発生させ、・・・・・・・・別個に制御で きる温度係数を有する制御可能電圧レベルシフI”c供するための方法。6. Generate a first voltage with a positive temperature coefficient, and ...... can be controlled separately. A method for providing a controllable voltage level shift I''c with a temperature coefficient that can be controlled.

Claims (1)

【特許請求の範囲】[Claims] 1.第1供給電圧端子と、第2供給電圧端子と、前記第1供給電圧端子に1会さ れ、正の温度係数を有する第1電流を発生させる第1電流源と、前記第2供給電 圧端子に朝会され、負の温度係数を有する第2電流を発生させる第2電流源と、 前記第1および第2電流源と前記第2供給電圧端子との間に鯖令焙れ、前記第1 および第2電流を結合して前記所望する温度係数に対応する正味温度係数を有す る第3電流を発生させ、前記正味温度係数と前記所望する振幅を有する電圧を前 記第3電流から発生させる第1抵抗手段とを含む。 所望する振幅と温度係数を有する出力電圧を発生させるレベルシフティング回路 。 2、前記第1電流源は、正の温度係数を有する第1電圧を発生させる第1手段と 、前記第1手段と前記第1供給電圧端子との間に結合された第2抵抗手段とを具 える請求の範囲第1項による回路。 3、前記第2電流源は、負の温度係数を有する電圧を発生させる第2手段と、前 記第2手段と前記第1供給電圧端子との間に結合された第2抵抗手段とを具える 請求の範囲第2項による回路。 4、前記第2電流は、トランジスタのベース−エミッタ電圧に対応し、前記第1 電流は、一対のトランジスタのベース−エミッタ電圧差に対応する請求の範囲第 3項による回路。 5、第1供給電圧端子と、第2供給電圧端子と、前記第1供給電圧端子と前記第 1電圧源との間に斧モ令されるのに適合し、正の温度係数を有する第1電流を発 生させる第1抵抗手段と、前記第1供給電圧端子と前記第2電圧源との間にvr %今されるのに適合し、負の温度係数を有する第2電流を発生させる第2抵抗手 段と、前記第2供給電圧端子と前記第1.第2電源との間にた台Gされるのに適 合し1前記第1および第2電流を結合して正味温度係数を有する第3電流を発生 させ、そこから所望する振幅と温度係数を有する電圧を発生させる第3抵抗手段 と、を具える所望する温度係数と振幅を有する電圧を発生させるため、正の温度 係数を有する第1電圧の第1電源および負の温度係数を存する第2電圧の第2電 源に結合するレベルシフティング回路。 6、正の温度係数を有する第1電圧を発生させ、負の温度係数を有する第2電圧 を発生させ、その値が所望の正味温度係数を有する電流を結果として発生させる ように選ばれている前記第1および第2電圧を第1および第2抵抗手段両端に印 加し、その抵抗が前記電圧レベルシフトを決定する第3抵抗手段に上記総電流を 印加することを含む、別個に制御できる温度係数を有する制御可能電圧レベルシ フトを提供するための方法。 7、前記第1および第2抵抗手段を変化させて前記正味温度係数を変化させ、前 記第3抵抗手段を変化させて前記レベルシフトを変えることを更に含む請求の範 囲第6項による方法。 8、前記正味温度係数が約−2800ppmから約÷3000ppmに変化する 請求の範囲第7項による方法。 9o 正の温度係数を有する第1電流を発生させ、負の温度係数を有する第2電 流を発生させ、正味負、零又は正の温度係数を達成するため前記第1および第2 電流の振幅値を変化させ、その抵抗が必要とされるレベルシフトを生じさせるよ うに選ばれている第1抵抗手段に前記第1および第2電流の和を印加することを 含む、レベルシフトの振幅およびその温度係数が別個に制御できる電圧をレベル シフトするための方法。1. a first supply voltage terminal, a second supply voltage terminal, and a second supply voltage terminal connected to the first supply voltage terminal; a first current source that generates a first current having a positive temperature coefficient; a second current source connected to the piezoelectric terminal and generating a second current having a negative temperature coefficient; a connection between the first and second current sources and the second supply voltage terminal; and a second current having a net temperature coefficient corresponding to the desired temperature coefficient. generating a third current having the net temperature coefficient and the desired amplitude; and a first resistance means for generating from the third current. Level shifting circuit to generate output voltage with desired amplitude and temperature coefficient . 2. The first current source is a first means for generating a first voltage having a positive temperature coefficient. , a second resistive means coupled between the first means and the first supply voltage terminal. 1. A circuit according to claim 1. 3. The second current source includes a second means for generating a voltage having a negative temperature coefficient; a second resistive means coupled between the second means and the first supply voltage terminal. A circuit according to claim 2. 4. The second current corresponds to the base-emitter voltage of the transistor, and the second current corresponds to the base-emitter voltage of the transistor. The current corresponds to the base-emitter voltage difference of the pair of transistors. Circuit according to term 3. 5. a first supply voltage terminal, a second supply voltage terminal, and a connection between the first supply voltage terminal and the first supply voltage terminal; emitting a first current having a positive temperature coefficient and having a positive temperature coefficient; vr between the first resistor means for generating voltage and the first supply voltage terminal and the second voltage source. a second resistor hand that generates a second current that is adapted to be applied and has a negative temperature coefficient; a second supply voltage terminal and a second supply voltage terminal; Suitable for being connected to a second power supply combining 1 the first and second currents to generate a third current having a net temperature coefficient; third resistor means for generating a voltage having a desired amplitude and temperature coefficient therefrom; and a positive temperature to generate a voltage with the desired temperature coefficient and amplitude. a first voltage source having a temperature coefficient and a second voltage source having a negative temperature coefficient; level shifting circuit coupled to the source. 6. Generate a first voltage with a positive temperature coefficient, and generate a second voltage with a negative temperature coefficient. resulting in a current whose value has the desired net temperature coefficient said first and second voltages selected to be applied across said first and second resistive means; and transmitting said total current to a third resistor means whose resistance determines said voltage level shift. controllable voltage level series with separately controllable temperature coefficients, including applying A way to provide the benefits. 7. Varying the first and second resistance means to vary the net temperature coefficient; Claims further comprising changing the level shift by changing the third resistance means. Method according to section 6. 8. The net temperature coefficient changes from about -2800ppm to about ÷3000ppm. A method according to claim 7. 9o Generate a first current with a positive temperature coefficient, and generate a second current with a negative temperature coefficient. said first and second to generate a flow and achieve a net negative, zero or positive temperature coefficient. Change the amplitude of the current so that its resistance produces the required level shift. applying the sum of the first and second currents to the first resistor means selected to Including the level voltage, the amplitude of the level shift and its temperature coefficient can be controlled separately. A way to shift.
JP57500778A 1981-02-20 1982-01-25 Level shift circuit Expired - Lifetime JPH0664504B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US23609181A 1981-02-20 1981-02-20
US000000236091 1981-02-20
PCT/US1982/000100 WO1982002964A1 (en) 1981-02-20 1982-01-25 Variable temperature coefficient level shifter
US236091 1988-08-24

Publications (2)

Publication Number Publication Date
JPS58500092A true JPS58500092A (en) 1983-01-13
JPH0664504B2 JPH0664504B2 (en) 1994-08-22

Family

ID=22888107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57500778A Expired - Lifetime JPH0664504B2 (en) 1981-02-20 1982-01-25 Level shift circuit

Country Status (4)

Country Link
EP (1) EP0072842A4 (en)
JP (1) JPH0664504B2 (en)
IT (1) IT1147597B (en)
WO (1) WO1982002964A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003512797A (en) * 1999-10-20 2003-04-02 テレフオンアクチーボラゲツト エル エム エリクソン Electronic circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902959A (en) * 1989-06-08 1990-02-20 Analog Devices, Incorporated Band-gap voltage reference with independently trimmable TC and output

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564817A (en) * 1979-06-25 1981-01-19 Hitachi Ltd Constant voltage generating circuit

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US30586A (en) * 1860-11-06 Dooe-lock
US3781648A (en) * 1973-01-10 1973-12-25 Fairchild Camera Instr Co Temperature compensated voltage regulator having beta compensating means
FR2339719A1 (en) * 1976-01-28 1977-08-26 Strathclyde Precast Concrete L Heat insulating block coating system - uses multiple mould with coatings applied by brushing and spraying
US4079308A (en) * 1977-01-31 1978-03-14 Advanced Micro Devices, Inc. Resistor ratio circuit construction
JPS5574615A (en) * 1978-11-30 1980-06-05 Toshiba Corp Constant voltage circuit
US4263519A (en) * 1979-06-28 1981-04-21 Rca Corporation Bandgap reference
US4317054A (en) * 1980-02-07 1982-02-23 Mostek Corporation Bandgap voltage reference employing sub-surface current using a standard CMOS process
DE3006598C2 (en) * 1980-02-22 1985-03-28 Robert Bosch Gmbh, 7000 Stuttgart Voltage source

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564817A (en) * 1979-06-25 1981-01-19 Hitachi Ltd Constant voltage generating circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003512797A (en) * 1999-10-20 2003-04-02 テレフオンアクチーボラゲツト エル エム エリクソン Electronic circuit

Also Published As

Publication number Publication date
WO1982002964A1 (en) 1982-09-02
JPH0664504B2 (en) 1994-08-22
EP0072842A1 (en) 1983-03-02
IT1147597B (en) 1986-11-19
IT8247745A0 (en) 1982-02-08
EP0072842A4 (en) 1984-04-06

Similar Documents

Publication Publication Date Title
EP0481967A2 (en) Temperature compensation circuit and time delay generatof including the same
WO1997020262A1 (en) Dual source for constant and ptat current
EP0260095A1 (en) Digitally selectable, multiple current source proportional to a reference current
US4990864A (en) Current amplifier circuit
US4460865A (en) Variable temperature coefficient level shifting circuit and method
EP0544360A2 (en) Reference current loop
GB2148062A (en) Signal rectifier
US4683416A (en) Voltage regulator
WO1997024650A1 (en) Temperature stabilized constant fraction voltage controlled current source
US5721505A (en) Delay circuit manufacturable by semiconductor elements
JPS58500092A (en) Variable temperature coefficient level shifter
US4329598A (en) Bias generator
US3651350A (en) Temperature-compensated voltage shifter
WO2001048915A2 (en) Electronic circuit
TW420904B (en) Electronic circuit
JPH0680990B2 (en) Voltage conversion circuit
JP2809927B2 (en) Constant current source circuit
EP1388775A1 (en) Voltage reference generator
JP2609749B2 (en) Current supply circuit
JPS5952321A (en) Current source circuit
JP2000250644A (en) Constant voltage output device and its method
JPH08237036A (en) Temperature compensation circuit
JP3748460B2 (en) Integrated circuit
JPS63258109A (en) Reference current source
JPS58134519A (en) Differential couple circuit