JPS5849885A - Continuous heating and dehydrating device for cloth, etc. through microwave heating - Google Patents

Continuous heating and dehydrating device for cloth, etc. through microwave heating

Info

Publication number
JPS5849885A
JPS5849885A JP14848881A JP14848881A JPS5849885A JP S5849885 A JPS5849885 A JP S5849885A JP 14848881 A JP14848881 A JP 14848881A JP 14848881 A JP14848881 A JP 14848881A JP S5849885 A JPS5849885 A JP S5849885A
Authority
JP
Japan
Prior art keywords
heating
fabric
temperature
fabrics
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14848881A
Other languages
Japanese (ja)
Inventor
朝田 義雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP14848881A priority Critical patent/JPS5849885A/en
Publication of JPS5849885A publication Critical patent/JPS5849885A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はマイクロ波加熱においては発熱体全体が同時に
発熱し、発熱体の温度分布は内層部はど高温となる特長
を利用し、含水布帛の両面にマイクロ波損失の少い板材
等を密着せ−゛Lめた状態でマイクロ波加熱によって昇
温せしめ、気化蒸発温度になると、その体積膨張で内部
圧力が高まり、上記板材密着の外部の大気圧部分に気化
蒸気の噴出が始る、この場合、噴出系路布帛内の未気化
含水分もこの噴出に伴って液体のま\押出される。
Detailed Description of the Invention The present invention takes advantage of the fact that in microwave heating, the entire heating element generates heat at the same time, and the temperature distribution of the heating element is such that the inner layer is at a high temperature. When the temperature is raised by microwave heating with a small number of plates, etc. closely attached to each other, and when the temperature reaches the vaporization temperature, the internal pressure increases due to the volume expansion, and vaporized steam is generated in the atmospheric pressure area outside of the closely attached plates. Spouting begins, and in this case, unvaporized water content in the spouting line fabric is also pushed out as a liquid with this jetting.

従来、綿、羊毛、化繊等の厚手織物9編物等の5位であ
り、これを引きつgき加熱乾燥せしめる工程は低速且つ
低効率となることが知られている。
Conventionally, this is the fifth place for thick woven fabrics such as cotton, wool, and synthetic fibers, and it is known that the process of pulling and heating and drying them is slow and low in efficiency.

本発明にが\るマイクロ波加熱脱水装置(は上記の絞り
工程出口の直后に配設し、予熱とともに脱水を行い含水
分率を約100%附近として加熱乾燥装置に供給するも
ので加工速度・加熱効率の向上を可能とするものである
The microwave heating dehydration device according to the present invention is installed immediately after the outlet of the above-mentioned drawing process, performs preheating and dehydration, and supplies the water content to approximately 100% to the heating drying device.・It is possible to improve heating efficiency.

全知されるように!イクp波加熱によって布帛等巾広の
面積をもつ加熱物の均一加熱はマイクロ波の波長が短く
、定圧波の発生等により困難であるが、本発明では布帛
両面に板材等を密着(以下この状態を圧接部と略゛す)
せしめて加熱せしめると加熱面積が不均一に昇温しても
、部分的に気化蒸発した部分は内圧の上昇によって蒸気
拡散が未気化蒸発部分の方に行なわれ、蒸気温度による
加熱も加わり未気化部分は減少し、急速に気化蒸発部分
が拡大する。即ち本発明では含水分布量を圧接部で加熱
し乍ら、少い部分の含水分の気化蒸発による内圧上昇に
より未気化蒸発部分の含水分を液体のま\で排出せしめ
るもので、従来のマイクル波加熱による蒸発乾燥に比べ
てはるかに均一で効率よく脱水出来る。
May you be omniscient! It is difficult to uniformly heat a heated object having a wide area such as a cloth by Iku P-wave heating due to the short wavelength of microwaves and the generation of constant pressure waves. (The condition is abbreviated as pressure welding part)
If the heated area is heated at least, even if the temperature of the heated area rises unevenly, the partially vaporized part will undergo vapor diffusion toward the unvaporized part due to the increase in internal pressure, and the heating due to the steam temperature will also cause the part to become unvaporized. The evaporation portion decreases and the evaporation portion rapidly expands. That is, in the present invention, while the water content distribution is heated at the pressure welding part, the water content in the unvaporized and evaporated part is discharged as a liquid by increasing the internal pressure due to vaporization of a small part of the water content. Compared to evaporative drying using wave heating, dehydration is much more uniform and efficient.

以下本発明を実施例によって詳細に説明する。The present invention will be explained in detail below using examples.

第1図ビ)(ロ)において、布帛人は含水分率200〜
300%でマイク日波加熱室4 (以下キャビティと略
す)の底面4−4の入口電波シールド部5aから入って
ロール6と四−ル7.7に掛合された無端ベルト8との
間で圧接される、ロール6と無端ベル)8Fi周回駆動
され布帛ムを圧接して上方に進み上部でこの状態を解放
し、布帛人Fi、中ヤビテ44の天井面4−1の出口電
波シールド部5bを経て上部に出る。キャビティ4の側
面4−5に電波放射口2を設け、導波管2′をもってア
イソレーター3を経てマイクロ波発振装置lK#会する
キャビティ4及び入口及び出ロ電波シールド@51sb
h公知構造のものとする。ロール6及びロール7.7′
は第2図0)←)(ハ)に示すように胴部6−1(7−
1,7’−1)  と軸部6−2  (7−2,7’ 
−2)は2体構成とし、軸部6−2  (7−2,7’
 −2)は夫々の配置位置くおいてキャビテ44の側板
4−2.4−3を後記する電波洩れ防止構造をもって貫
通し、本体骨格部9に取付けた軸受(囲路)で支持され
、駆動11(囲路)と連結して駆動される。ロール6の
胴11S6−10外周は!イクp蕪電力吸収が小く、耐
熱、耐薬品性と必要機械的強度を具え九白色ゴム、天然
ゴム、シリ;ンゴム等をマイタロ波電波の波長の1/4
以上1/2の厚さをもって捲付けた外層6−4を設けて
胴56−1の金属底面から布帛i1をはなし、金属面の
電波反射によって生じる加熱効果の低下、及び布帛巾方
向で生じる不均一加熱を防止し、マイクロ波加熱電場を
有効に布帛ムに照射・せしめる。又第2図+は四−ル6
0他の実施例で、胴部6−1の両端末に放射状に複数の
金属製アーム6−3を設けその先端部6−3にシリコン
FRP、ガラス基布主とし機械的強度によp決定する)
をポルト6−5で固定する。
In Figure 1 B) and (B), the fabric material has a moisture content of 200~
At 300%, it enters from the inlet radio wave shield part 5a of the bottom surface 4-4 of the microphone solar wave heating chamber 4 (hereinafter abbreviated as cavity) and is pressed between the roll 6 and the endless belt 8 hooked on the four-rule 7.7. The roll 6 and the endless bell) 8Fi are driven around, press the fabric, move upward, release this state at the upper part, and open the exit radio wave shield part 5b of the ceiling surface 4-1 of the fabric person Fi and Nakayabite 44. Then exit to the top. A radio wave emission port 2 is provided on the side surface 4-5 of the cavity 4, and a waveguide 2' is connected to the microwave oscillator lK# via the isolator 3 to the cavity 4, entrance and exit radio wave shield @51sb
hIt shall have a known structure. Roll 6 and Roll 7.7'
The body part 6-1 (7-
1,7'-1) and shaft part 6-2 (7-2,7'
-2) has a two-piece structure, and the shaft part 6-2 (7-2, 7'
-2) penetrates the side plates 4-2 and 4-3 of the cavity 44 at their respective placement positions with a radio wave leak prevention structure to be described later, is supported by a bearing (enclosure) attached to the main body frame part 9, and is driven. 11 (corral) and is driven. The outer circumference of the roll 6's body 11S6-10 is! 1/4 of the wavelength of mital radio waves, such as white rubber, natural rubber, silicone rubber, etc., which have low power absorption, heat resistance, chemical resistance, and necessary mechanical strength.
The outer layer 6-4 wound with half the thickness above is provided, and the fabric i1 is removed from the metal bottom surface of the body 56-1, thereby reducing the heating effect caused by radio wave reflection on the metal surface and the damage caused in the fabric width direction. Prevents uniform heating and effectively irradiates the fabric with microwave heating electric field. Also, Figure 2+ is 4-R6
0 In another embodiment, a plurality of metal arms 6-3 are provided radially at both ends of the body 6-1, and the tip portions 6-3 are mainly made of silicon FRP and glass base fabric, and p is determined based on mechanical strength. do)
Fixed with Porto 6-5.

シリコンFRP、 7a−グラス材は前記ロール6の外
層捲付ゴム等と同用途の材質で硬度及び機械的強度のみ
異る。
The silicone FRP and 7a-glass material are used for the same purpose as the outer layer wrapping rubber of the roll 6, and differ only in hardness and mechanical strength.

第3図0)←)tlはロール6.7(75の夫々の軸の
キャビティ側板貫通部の電波シール構造例を示すもので
、同図(ハ)の短絡板12鉱砲金製等の厚板て軸6−2
と静合する孔12mと取付用タップ孔12b重開設する
。キャビティ側面4−2.4−30夫夫の軸貫通部は同
図(ハ)に示す軸径と遊合する孔(又は軸位置調節用の
長孔)4−21,4−38と短絡板12取付用の孔(又
は軸位置l1lliI用の取付長孔)4−2b、4−3
bt−開設して同図(イ)のように−?キビテイ側板4
−2.4−3の内側にて短絡板12の軸孔′12aを軸
6−2.7−2.7’ −2と静合状態でキャビティ側
板に完全密着せしめてビス12Cで固定する。7ランジ
13は8U8材等で筒内径は′軸径より約5へlQmm
大とし、筒長さ゛はマイク四波波長の1/2とし、短絡
板12の内−に取付ける。従ってロール軸6−2.7−
2.7’−2の夫々の両端はキャビティ側板の貫通前に
短絡板12の軸孔12&と電気的に短絡されるとともに
7ランジ13によって仁の短絡部の電位発生を防止する
ので軸部からの電波洩れを防止することができる。
Figure 3 0)←)tl shows an example of the radio wave seal structure of the cavity side plate penetration part of each shaft of roll 6.7 (75). Axis 6-2
The hole 12m that fits with the mounting hole 12b overlaps with the mounting tap hole 12b. The shaft penetrating portion of the cavity side 4-2. 12 mounting holes (or long mounting holes for shaft position l1lliI) 4-2b, 4-3
bt- opened and like the same figure (a)-? Kibitei side plate 4
-2.4-3, the shaft hole '12a of the short-circuiting plate 12 is brought into close contact with the cavity side plate in static alignment with the shaft 6-2.7-2.7'-2, and fixed with screws 12C. 7. The flange 13 is made of 8U8 material, and the inner diameter of the cylinder is about 5 lQmm from the shaft diameter.
The tube length is set to 1/2 of the wavelength of the four waves of the microphone, and it is installed inside the shorting plate 12. Therefore, the roll axis 6-2.7-
2. Both ends of 7'-2 are electrically short-circuited to the shaft hole 12 & of the short circuit plate 12 before passing through the cavity side plate, and the 7 flange 13 prevents potential generation at the short-circuited part of the joint, so that the shaft part can prevent radio wave leakage.

無端ベルト8扛ロール60!11A付ゴム材等と同一種
類材□質とし廁4図に示すように両耳端に耳58−1t
設けた断面形状管し、耳端8−1昧布帛人の両耳端奢シ
ールド管行なわせる。
Endless belt 8 rolls 60! Made of the same material as the rubber material with 11A, etc. As shown in Figure 4, there are ears 58-1t on both ends.
The cross-sectional shape of the tube is provided, and the ear ends 8-1 are made of fabric and the ends of both ears are made to be shielded tubes.

本体骨格9扛金属製としキャビテ4!i板4−5の下部
の台板9−十にキャビティ側板4−2.4一 −3に平行した側板9−合、9−8−を職付けて1体と
し、キャビテ44O支持及びロール6.7゜7′の軸受
(図略)を職付けるもpとする。
The main body skeleton is made of 9 metals and has 4 cavities! Side plates 9-2 and 9-8- parallel to the cavity side plates 4-2, 4-3 are attached to the base plate 9-1 at the bottom of the i-plate 4-5 to form a single body, supporting the cavity 44O and supporting the roll 6. .7°7' bearing (not shown) is designated as p.

熱風吹付部10は出口電波シールド部5bの上部布出口
側に取付け、約100℃の熱風を布帛ムの両面に斜め上
向く吹付は布帛面の結露を防止する。水切板11はマイ
クロ波電力吸収の少いテフロン板等を入口電波シールド
部5aの上方のキャビティ4内に2枚の板の夫々を上部
で布帛面に薯〈接し、下方蝶入日電波シール部51の巾
よシも広げて取付ける。キャビティ底114−4には電
波洩れのない条件で多数の小孔4−51−開設し、布帛
面に沿って流下する脱水を布帛面より除却し、入口電波
シールド部をさけてキャビティ“外に排水せしめる。
The hot air blowing section 10 is attached to the upper fabric exit side of the exit radio wave shield section 5b, and blows hot air of about 100° C. diagonally upward onto both sides of the fabric to prevent dew condensation on the fabric surface. The drain plate 11 is made of a Teflon plate or the like that absorbs little microwave power, and is placed in the cavity 4 above the inlet radio wave shield part 5a. Widen it to the width of 51 and install it. A large number of small holes 4-51- are opened in the cavity bottom 114-4 under the condition that there is no leakage of radio waves, and the dewatered water flowing down along the fabric surface is removed from the fabric surface, and the water is allowed to flow outside the cavity while avoiding the entrance radio wave shield. Let it drain.

上記の構成において布帛ムはキャビテイ40鷹面から上
方に進み乍ら昇温しつ\■−ルール無端ベルト8の圧接
−に入り、昇温温度が気化温[K近づくと共に蒸気発生
が始tp内圧上昇による低温部分への蒸気拡散を生じ、
低温部の昇温を早めて気化蒸発及び内圧上昇部分は急速
に拡大し布・帛全巾に及ぶ、以后の圧接部はロール6と
無端ベルト8がはなれるまで気化蒸気が充満し内圧は高
い状態となる。従って布帛ムの質量、含水分及び進行速
j[K応じマイクロ波供給電力を調整して上記の布帛食
中で気化蒸発が行なわれ内圧の上昇する位置を上記した
圧接部の入口に近い位置に設定すると、気化蒸気の拡散
噴出方向は圧接部の入口側に集中し、この部分には未気
化温度以下の低温部分が多く、液体のま\下方に排出さ
れる。
In the above configuration, as the fabric advances upward from the surface of the cavity 40, its temperature rises and enters the pressure welding of the endless rule belt 8, and as the temperature rise approaches the vaporization temperature [K, steam generation begins. The rise causes vapor diffusion to the low temperature area,
By accelerating the temperature rise in the low-temperature part, the part where vaporization and internal pressure increase rapidly expands and covers the entire width of the cloth.The subsequent press-contact part is filled with vaporized steam and the internal pressure is high until the roll 6 and endless belt 8 separate. state. Therefore, the microwave supply power is adjusted according to the mass of the fabric, the water content, and the traveling speed j[K, and the position where the internal pressure increases due to vaporization during the fabric eating is set to a position close to the inlet of the pressure welding part. When set, the direction of diffusion and ejection of vaporized vapor is concentrated on the inlet side of the pressure welding part, and there are many low temperature parts below the unvaporized temperature in this part, and it is discharged downward as a liquid.

全知のようにマイクル波周波数帯の電波はその波長が短
く、且つ定圧波のため布帛の如き広巾の加熱面を均一昇
温せしめることは困難であるが、本発明では布帛両面に
マイクル液損失の少い板材等を密着して行なわせるため
の布帛面積の各部が不均一に昇温しても、このうちで早
く気化温度に昇温し九部分は内圧が高tp隣接する未気
化部分へ蒸気拡散によって未気化部分はマイク四波加熱
に更に蒸気加熱が加わ)急速に昇温する傾向を生じる。
As we all know, radio waves in the microwave frequency band have short wavelengths and are constant pressure waves, so it is difficult to uniformly raise the temperature of a wide heating surface such as a cloth. Even if the temperature rises unevenly in each part of the fabric area, which allows a small number of plates etc. to be closely attached, the temperature will rise quickly to the vaporization temperature in the nine parts, and the internal pressure will be high tp. Due to diffusion, the temperature of the unvaporized portion tends to rise rapidly (steam heating is added to the microphone four-wave heating).

従ってこのような気化蒸発による内圧上昇と蒸気の拡散
脱出に伴って未気化含水分を液体のま\排出せしめるた
めに従来の加熱蒸発による乾燥法に比べて効率が高い特
長が、ある。
Therefore, as the internal pressure increases due to vaporization and the vapor diffuses and escapes, unvaporized moisture is discharged as a liquid, so it has the advantage of being more efficient than the conventional drying method using heating and evaporation.

なおロール6と無端ベル)8による布帛圧接の程度は従
来の絞りマングル装置の加圧と異り圧接面が布帛に密着
する程度とし、蒸気発生による内圧も数十へ約百粍水柱
圧程度で使用される。尚綿等疏水性の少ない布帛はウー
ル、化繊の場合より多少強く加圧し密着度を高めること
が希ましい。
Note that the degree of pressure welding of the fabric by the roll 6 and the endless bell (8) is different from the pressure applied by a conventional drawing mangle device, and the pressure welding surface is in close contact with the fabric, and the internal pressure due to steam generation is about tens to hundreds of millimeters of water column pressure. used. For fabrics with low hydrophobicity, such as cotton, it is preferable to apply pressure a little more strongly than wool or synthetic fibers to increase the degree of adhesion.

実験例 1 第5図社綿モットの厚生地を用い、キャビティ型マイク
ロ波加熱装置(周波数2450MHz。
Experimental Example 1 Fig. 5 A cavity-type microwave heating device (frequency 2450 MHz) using Kosei fabric made by Watamott Co., Ltd.

出力0へ2500W)4Cより本発明の加熱脱水方式と
従来の蒸発乾燥方式を比較したもので試料は目付1 ’
 Og / m2*厚み6.5mmで13.5X20c
mi(切断し、本発明方式の圧接部は白色シリコンPR
Pの板材によp試料と同寸法の当板(2mm厚)と押え
板IX2X15cmを2枚1組として3組で当板が試料
と密着するようにネジ締めとし成形した、尚試料は含水
分200%程度で当板を密着、押え板で成形后垂直とし
て水分滴下が止まるまで放置后初期含水分ヲ測定した。
2500W to output 0) 4C This is a comparison of the heating dehydration method of the present invention and the conventional evaporation drying method, and the sample has a basis weight of 1'
Og/m2*13.5X20c with thickness 6.5mm
mi (cut, the pressure contact part of the present invention method is white silicone PR)
A backing plate (2 mm thick) with the same dimensions as the P sample and a holding plate IX2 x 15 cm were formed into a set of 2 using P plate material, and three sets were screwed together so that the backing plate was in close contact with the sample.The sample contained moisture. After molding with a pressing plate, the plate was held in close contact with the molding plate at a pressure of about 200%, and after being held vertically until the moisture stopped dripping, the initial moisture content was measured.

キャビティ内の試料面は蒸発乾燥方式は水平、本発明方
式は垂直として、試料重ね枚数2.4.6.8枚の夫々
の試料についてマイクロ波電力s o o w、加熱時
間1分について実施し、加熱効率は加熱前後の減量分全
量が蒸発したものとして試料吸収電力を算出した。算出
式は次の通り Q = ((W□・Δt−c)+Δt (Wl−W□)
+539 (Wl−W2))Xiσ3P = 稀、24
X /60.TxQ ダー /PtX1囲% 式中の記号は次の通り Q:試料吸収カロリー          kcalW
o;絶乾試料重量            gWl:加
熱直前の含水試料重量       gW2:加熱直属
の含水試料重量       gΔt:昇温温f 10
0°C−室温    0CC客試料比熱       
    0.3Pi試料の吸収電力        キ
ロワットT:加熱時間             分η
:加熱効率             %Pl:供給マ
イクロ波電力         キロワット同図は従軸
に加熱効率、横軸′を試料、重ね枚数として実験結果を
示す。曲線■の本発明方式は重ね枚数4枚からはY10
0%となり、曲線Iの蒸発乾燥方式は重ね枚数6枚では
′i70%となる。
The sample surface in the cavity was set horizontally in the evaporative drying method and vertically in the method of the present invention. As for the heating efficiency, the sample absorbed power was calculated assuming that the entire amount of weight loss before and after heating was evaporated. The calculation formula is as follows: Q = ((W□・Δt-c)+Δt (Wl-W□)
+539 (Wl-W2))Xiσ3P = Rare, 24
X/60. TxQ dar /PtX1% The symbols in the formula are as follows: Q: Sample absorbed calorie kcalW
o: Weight of bone-dry sample gWl: Weight of water-containing sample immediately before heating gW2: Weight of water-containing sample immediately before heating gΔt: Temperature rise f 10
0°C - room temperature 0CC customer sample specific heat
Absorbed power of 0.3Pi sample kW T: Heating time min η
:Heating efficiency %Pl:Supplied microwave power kW The figure shows the experimental results with heating efficiency on the subordinate axis and sample and stacking number on the horizontal axis'. The present invention method of curve ■ is Y10 from the number of stacked sheets of 4 sheets.
0%, and in the evaporative drying method of curve I, when the number of stacked sheets is 6, 'i' is 70%.

曲線曹は曲線■の本発明方式の実験で用いた試料圧接材
料の昇温熱量を質量500g、比熱0.3゜昇温温度は
試料温度の70%として算出し、試料吸収カロリーに加
えた場合を示す。同図の曲線■は本発明方式で試料重ね
枚数を6枚一定とし供給電力変え曲線鳳と同様に算出せ
る加熱効率の関係を示す。上記実験における初期含水分
率は170へ180%であった。
Curve C is calculated by assuming that the heating heat amount of the sample pressure welding material used in the experiment of the present invention method of curve ① is based on a mass of 500 g, a specific heat of 0.3°, and the heating temperature is 70% of the sample temperature, and is added to the absorbed calories of the sample. shows. Curve 2 in the figure shows the heating efficiency relationship that can be calculated in the same way as the curve 0 when the number of stacked samples is constant at 6 using the method of the present invention and the supplied power is varied. The initial moisture content in the above experiments was 170 to 180%.

本実験により本発明方式の加熱効率が厚生地に高く、又
従来方法の1.5へ2倍も高いことが判る。
This experiment shows that the heating efficiency of the method of the present invention is much higher than that of the conventional method, and is twice as high as the conventional method to 1.5.

実験例 2 第6図U)(ロ)は疏水性の異る綿、ウール厚生地を分
率及び排出された水重量の関係を調べた。
Experimental Example 2 In Figure 6 U) and (B), the relationship between the fraction of cotton and wool fabrics with different hydrophobic properties and the weight of water discharged was investigated.

同図0)は第5崗の試料と同一試料を用い、重ね枚a6
&、ilす3”/In’−供J&t 力1000 W、
 及び点ね枚a14枚、厚さ7m/r1m、供給電力2
000Wで行い、従軸を含水分率及び排水重量、横軸を
加熱時間として示す。曲線Iは6枚重ね、曲線lはは1
4枚重ねの含水分率、曲纏曹は6枚重ね、曲線■は14
枚重ねの排水重量と加熱時間経過の関係を示す。
Figure 0) uses the same sample as the sample of No. 5, and stacks a6
&, ills 3"/In'-supply J&t power 1000 W,
and 14 dots A, thickness 7m/r1m, power supply 2
000W, and the minor axis shows the water content and the weight of drained water, and the horizontal axis shows the heating time. Curve I is 6 layers, curve L is 1 layer
Moisture content of 4 layers, 6 layers for curved soda, 14 for curve ■
The relationship between the drained weight of stacked sheets and the elapsed heating time is shown.

同図(ロ)慢第5図と同一の実験を目付470り気2厚
み0.8 //fr1のウールジローゼット織物を用い
重ね枚a6枚、厚み4.9 mm供給電力IQOOW、
及び重ね枚a12枚ミ厚みg、6mm供給電力2000
WKついて実験、し良。曲線Iは6枚重ね、曲纏置扛1
2枚重ねの含水分率と加熱時間、曲纏厘は6同図0)及
び(ロ)よシ綿、ウールの含水分率は夫々の曲線1.1
の示すように加熱直属より30秒経過附近から急激に増
加し60へ90秒ではソ含水分率100%となる。又排
水重量も夫々の曲線璽。
The same experiment as in Figure 5 was carried out using a wool rosette fabric with a fabric weight of 470 mm, 2 thicknesses, 0.8 //fr1, 6 sheets stacked, 4.9 mm thickness, and power supply IQOOW.
And stacked sheets A12 sheets thickness g, 6mm supply power 2000
Experiment with WK, good. Curve I is 6 sheets stacked, music arrangement 1
The moisture content and heating time of the two-ply layer, the length of the curve is 6 (0) in the same figure, and (b) the moisture content of cotton and wool is 1.1, respectively.
As shown, the moisture content increases rapidly from around 30 seconds after heating, and reaches 100% in 90 seconds from 60 to 60. Also, the drainage weight is also different for each curve.

■の示すように加熱直属30秒・附近より急激に増加し
、綿では含水分率100%附近ではy一定となり、疏水
性の大きいウールでは含水分率70%附近でも加熱時間
に比例して増加することを示す。
As shown in (2), y increases rapidly from 30 seconds directly after heating, becomes constant when the moisture content is around 100% for cotton, and increases in proportion to the heating time even when the moisture content is around 70% for highly hydrophobic wool. Show that.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)は本発明実施例の正面外形図で、図中四−
ル6,7.7’とその軸受と駆動部は省略している。図
中x−X’線部喬線部面直断面図(ロ)に示す。 第2図(イ)(ロ)(ハ)に)は第1図−)のり−ル6
,7.7の構造の説明従断面図で同図(ハ)はロール6
の異る構造例の従断面図と正面図、同図に)は同図f→
の鎖線内部の拡大図を示す。 第3図(イ)−)(ハ)は第1図(ロ)のロール6.7
.7の軸とキイビテイ側板の貫通部電波シールド防止構
造説明図、第4図は無端ベルト8の断面図、第6図は本
発明脱水方式と従来法の比較実験、第6図(()←)は
本発明方式をもって綿、ウールの実験結果を示す。 4:マイクロ波加熱jii  5a:入口電波シールド
 5b:出口電波シールド 6:ロール8:無端ベルト
 A;布帛 特許出願人  朝 1)義 雄
FIG. 1(a) is a front external view of an embodiment of the present invention, with four
The wheels 6, 7, 7', their bearings, and drive parts are omitted. It is shown in a vertical cross-sectional view (b) of the cross-section along the line x-X' in the figure. Figure 2 (A), (B), and (C) are Figure 1-) Glue 6
, 7.7 is a cross-sectional view showing the structure of roll 6.
A subordinate sectional view and a front view of different structural examples (in the same figure) are shown in the same figure f →
An enlarged view of the inside of the chain line is shown. Figure 3 (a) -) (c) is the roll 6.7 of Figure 1 (b)
.. Fig. 4 is a cross-sectional view of the endless belt 8, Fig. 6 is a comparison experiment between the dewatering method of the present invention and the conventional method, Fig. 6 (()←) shows experimental results on cotton and wool using the method of the present invention. 4: Microwave heating jii 5a: Inlet radio wave shield 5b: Outlet radio wave shield 6: Roll 8: Endless belt A; Fabric patent applicant Morning 1) Yoshio

Claims (2)

【特許請求の範囲】[Claims] (1)含水布帛等の両面及び両耳端部を連続的にマイク
ロ波損失の少いベルト等で圧接せしめ密着部を構成しな
がら、!イク四波加熱によって昇温せしめ、含水部の一
部の気化蒸気により上記密着部の内部の圧力を上昇せし
め乍ら、残部未気化書水分を液体0fik上記書着部の
外に排出せしめることを特徴とする布帛の連続加熱脱水
装置。
(1) Continuously press both sides and both ends of a water-containing fabric etc. with a belt etc. with low microwave loss to form a close contact part! The temperature is raised by four-wave heating, and the internal pressure of the adhering part is increased by the vaporized vapor of a part of the water-containing part, while the remaining unvaporized moisture is discharged as a liquid to the outside of the adhering part. Features: Continuous heating and dehydration equipment for fabrics.
(2)密着部はマイクロ波損失の少いゴム材料等の外層
捲ロールの外周にマイクロ波損失の少いゴム等の無端ベ
ルトを圧接せしめ乍ら共に駆動せしめる構成とし、連続
的に、布帛の両面及び両耳端を密閉し乍ら搬送する特許
請求の範囲第1項の布帛等の連続加熱脱水装置。
(2) The close contact part has a structure in which an endless belt made of rubber or the like with low microwave loss is brought into pressure contact with the outer periphery of the outer layer winding roll made of rubber material with low microwave loss, and is driven together with the belt. A continuous heating and dehydrating apparatus for fabrics, etc. according to claim 1, which transports fabrics while sealing both sides and both edge ends.
JP14848881A 1981-09-19 1981-09-19 Continuous heating and dehydrating device for cloth, etc. through microwave heating Pending JPS5849885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14848881A JPS5849885A (en) 1981-09-19 1981-09-19 Continuous heating and dehydrating device for cloth, etc. through microwave heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14848881A JPS5849885A (en) 1981-09-19 1981-09-19 Continuous heating and dehydrating device for cloth, etc. through microwave heating

Publications (1)

Publication Number Publication Date
JPS5849885A true JPS5849885A (en) 1983-03-24

Family

ID=15453873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14848881A Pending JPS5849885A (en) 1981-09-19 1981-09-19 Continuous heating and dehydrating device for cloth, etc. through microwave heating

Country Status (1)

Country Link
JP (1) JPS5849885A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5359846A (en) * 1976-11-10 1978-05-30 Nec Corp Constant voltage circuit
JPS6265486A (en) * 1985-09-18 1987-03-24 Seiko Epson Corp Ic for driving light emitting diode array with current control function

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5359846A (en) * 1976-11-10 1978-05-30 Nec Corp Constant voltage circuit
JPS6242282B2 (en) * 1976-11-10 1987-09-08 Nippon Electric Co
JPS6265486A (en) * 1985-09-18 1987-03-24 Seiko Epson Corp Ic for driving light emitting diode array with current control function

Similar Documents

Publication Publication Date Title
FI70541C (en) ANORDNING FOER FOERENING AV FLERE ARBETSMATERIALSKIKT
JPS5849885A (en) Continuous heating and dehydrating device for cloth, etc. through microwave heating
JPH03506068A (en) Method and apparatus for drying plywood and similar products
CN104931420B (en) A kind of ultrasonic atomizatio sampling device
JPH1086106A (en) Method for stabilizing dimension of woody material
JPS6231835Y2 (en)
US2737569A (en) Electrode structure for high frequency drier
JPS6037237B2 (en) Nozzles and equipment for wetting, permeating or modifying sheets
US2896336A (en) Apparatus for drying web material
JP2831593B2 (en) Induction dryer
US2396996A (en) Apparatus for making curved cellulosic sheets
CN215856945U (en) Porous medium solar heat exchanger and dryer
CA1038458A (en) Microwave paint dryer
CN213096020U (en) Sweet potato chip drying machine
CN219368262U (en) Moisture absorption and sweat release fiber drying device
JPS5855266B2 (en) Fabric wet heat vacuum setting processing method and device
CN216146480U (en) Heating circuit equipment of integrated circuit
CN111501264B (en) Microwave heating device for ribbon color fixing machine
KR102064515B1 (en) Manufacturing apparatus for nonflammable material and its manufacturing method
FI81626B (en) Process for the drying of a fibre web
JPS58117986A (en) Method and device for drying wood
US4289394A (en) Process and apparatus for converging developing vapors in diazocopy machines
JPH0146788B2 (en)
CN115384063A (en) 3D prints and uses product quick drying equipment
CN113802406A (en) Porous medium solar heat exchanger and dryer