JPS584987A - Semiconductor light-emitting device and its manufacture - Google Patents

Semiconductor light-emitting device and its manufacture

Info

Publication number
JPS584987A
JPS584987A JP56102214A JP10221481A JPS584987A JP S584987 A JPS584987 A JP S584987A JP 56102214 A JP56102214 A JP 56102214A JP 10221481 A JP10221481 A JP 10221481A JP S584987 A JPS584987 A JP S584987A
Authority
JP
Japan
Prior art keywords
crystal
emitting device
semiconductor light
light emitting
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56102214A
Other languages
Japanese (ja)
Inventor
Ko Takahashi
高橋 香
Yasuo Kiyono
泰夫 清野
Susumu Kagaya
進 加賀谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP56102214A priority Critical patent/JPS584987A/en
Publication of JPS584987A publication Critical patent/JPS584987A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To obtain the LED, luminous color therefrom is completely green and luminous power conversion efficiency thereof is high, by using a GaAlP crystal as the mixed crystal of a Gap crystal and an AlP crystal as the P-N junction forming material of the LED. CONSTITUTION:An N type GaPAlP crystal growing layer 3' and the P type GaAlP crystal growing layer 2' are shaped onto an N type GaP crystal substrate 4. An electrode 5 as a cathode and an electrode 1 as an anode are attached. Since the forbidden band width of the AlP crystal is wider than that of the GaP crystal, the forbidden band width of the Ga1-xAlxP crystal as the mixed crystal is wider than that of the GaP crystal, and approaches to the forbidden band width of the AlP crystal when the ratio of components x is increased. Accordingly, the luminous wavelength of the LED can be brought to a deep green band by properly selecting the value of x.

Description

【発明の詳細な説明】 本発明は発光ダイオードによる表示装置に係り、特に緑
色の発光ダイオードによる表示装置に関するものである
、 周知のように発光ダイオードは半導体結晶内にpn*合
を形成し、それに順方向電圧を加えて発光させるもので
あり、発光波長は用いる半導体材料の禁制帯幅、不純物
の種類、再結合過程の違いなどKよって決まる。その中
で緑色の発光をする発光ダイオードとして従来一般的に
知られているものは、半導体材料としてGaPを用い添
加不純物と【7て窒素(へ)を用いたダイオードである
。この緑色発光ダイオードの構造について簡単に説明す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a display device using a light emitting diode, and in particular to a display device using a green light emitting diode.As is well known, a light emitting diode forms a pn* junction in a semiconductor crystal, and It emits light by applying a forward voltage, and the emission wavelength is determined by K, such as the forbidden band width of the semiconductor material used, the type of impurity, and the difference in the recombination process. Among these, a light emitting diode that is generally known as a light emitting diode that emits green light is a diode that uses GaP as a semiconductor material and nitrogen as an added impurity. The structure of this green light emitting diode will be briefly explained.

第1図は従来の緑色発光ダイオードの〜断面図例である
。すなわち、n型のGaP結晶基板4上に液相成長法な
どの結J成長によってn型のGaP成長層3及びp型の
GaP成長層2を成長させてpn接合が形成されたもの
であり、これにアノード極としての電極1とカソード極
としての電極5が付着されている。
FIG. 1 is an example of a cross-sectional view of a conventional green light emitting diode. That is, a pn junction is formed by growing an n-type GaP growth layer 3 and a p-type GaP growth layer 2 on an n-type GaP crystal substrate 4 by J-growth such as liquid phase growth. An electrode 1 as an anode and an electrode 5 as a cathode are attached to this.

とのGaP結晶を用いた従来の緑色発光ダイオードの発
光波長特性における問題点及び欠点について以下に述べ
る。
Problems and drawbacks in the emission wavelength characteristics of a conventional green light emitting diode using a GaP crystal will be described below.

まず第1の問題点はGaP結晶の禁制帯幅の大きさであ
る。禁制帯幅の大きい材料の方が発光ダイオードの発光
波長を短くできる。GaP結晶の禁制帯幅は約2.26
eVであるから、これをpn接合形成材料として発光ダ
イオードを製作したとして屯、吸収端波長よりも短波長
側での発゛光、すなわち縁色帯の中では長波長側にある
約555 nmよりも短波長での発光は得られない。従
ってこの緑色である約555 rfmにおける発光は観
測できても発光効率は極めて低くなシ実用的な値をとり
得ない。
The first problem is the size of the forbidden band width of the GaP crystal. A material with a larger forbidden band width can shorten the emission wavelength of a light emitting diode. The forbidden band width of GaP crystal is approximately 2.26
eV, so if a light emitting diode was manufactured using this as a pn junction forming material, the light would be emitted at a shorter wavelength than the absorption edge wavelength, that is, from approximately 555 nm, which is on the longer wavelength side in the edge color band. However, it is not possible to obtain light emission at short wavelengths. Therefore, even if this green light emission at approximately 555 rfm can be observed, the luminous efficiency is extremely low and cannot reach a practical value.

第2の問題点は発光波長の波長成分と効率である。上述
したように緑色の発光効率は低すぎるので、効率を高め
るために不純物としての窒素□□□をnfi・p型成長
層に添加することが一般にとられている。この窒素(へ
)を添加すると、窒素(6)を発光中心とすることがで
きるので、比較的効率の良い発光が得られるのであるが
、発光波長は吸収端波長である約555 nmよりも長
波長側にずれ、約ではなく、かなり黄色の成分を含んだ
緑色となってしまう。このように緑色ダイオードとして
最も一般的如実用化されているGap結晶を用いた発光
ダイオードにおいても発光色が完全緑色で効率の良い発
光は得ら袢てぃなかった。
The second problem is the wavelength component of the emission wavelength and efficiency. As mentioned above, the luminous efficiency of green light is too low, so in order to increase the efficiency, nitrogen as an impurity is generally added to the NFI/p-type growth layer. When this nitrogen is added, nitrogen (6) can be used as the emission center, so relatively efficient light emission can be obtained, but the emission wavelength is longer than the absorption edge wavelength of about 555 nm. The color shifts toward the wavelength side, resulting in a green color that contains a considerable amount of yellow, rather than approximately. As described above, even in light emitting diodes using Gap crystals, which are most commonly put into practical use as green diodes, it has not been possible to emit light of a completely green color and with high efficiency.

本発明は発光色が完全に緑色(深緑色)で発光効率の高
い発光ダイオード或いはそれを用いた表示装置を捷供す
ることを目的とする。
An object of the present invention is to provide a light emitting diode that emits completely green (dark green) and has high luminous efficiency, or a display device using the same.

本発明は、GaP結晶とaap結晶よりも禁制帯幅が広
いAtP結晶(禁制帯幅3.1 eV)との混晶である
GaAtP結晶を発光ダイオードのpn接合形成材料と
して用いることに特徴を有するが、その詳細を以下の製
作方法を含めた実施例によって説明する。
The present invention is characterized in that a GaAtP crystal, which is a mixed crystal of a GaP crystal and an AtP crystal having a wider forbidden band width than an AAP crystal (3.1 eV forbidden band width), is used as a pn junction forming material for a light emitting diode. However, the details thereof will be explained by the following examples including the manufacturing method.

第2図は本発明による発光ダイオードの構造例である。FIG. 2 shows an example of the structure of a light emitting diode according to the present invention.

すなわち、n型GaP結晶基板4上に1液相成長法によ
ってn型GaAtP結晶成長層3′及びp型GaAAP
結晶成長層2′が形成されておル、pn接合形成材料は
GaAAP結晶である。そしてカソードとしての電極5
及びアノードとしての電極1が付着されている。
That is, an n-type GaAtP crystal growth layer 3' and a p-type GaAAP crystal are grown on an n-type GaP crystal substrate 4 by one liquid phase growth method.
The crystal growth layer 2' is formed and the pn junction forming material is GaAAP crystal. and electrode 5 as a cathode
and an electrode 1 as an anode is attached.

既述したようにGaP結晶よりもムtp結晶の方が禁制
帯幅が広いので、混晶としてのGa 1−X A−11
P結晶はG1P結晶よりも禁制帯幅が広くなり、成分比
Xを増加させればktP結晶の禁制帯幅に近くなってい
く。従ってXの値を適当に選ぶことによって発光ダイオ
ードの発光波長を目的の深い縁色帯にすることができる
と考えられる。
As mentioned above, the forbidden band width of the Mutp crystal is wider than that of the GaP crystal, so Ga 1-X A-11 as a mixed crystal
The forbidden band width of the P crystal is wider than that of the G1P crystal, and as the component ratio X is increased, the forbidden band width becomes closer to that of the KtP crystal. Therefore, it is considered that by appropriately selecting the value of X, the emission wavelength of the light emitting diode can be made into the desired deep fringe color band.

その製作′法の詳細を次に述べる。The details of its manufacturing method are described below.

n型GaP単結晶基板上にまずn型のGa 、−xIU
、、P結晶を液相成長法によって得るのであるが、成長
層の成・公比Xや伝導型決定不純物或いは発光中心とし
ての窒素(財)不純物の添加量を変化させない為には、
温度降下法なる液相成長法は不適当で、温度差法を用い
友液相成長法が良い。この温度差法による液相成長にお
いて用いられるメルト(液相成長における溶媒・溶質)
はGa、 At、 GaP、伝導型を決める不純物等で
あるが、発光効率を高めるための窒素(へ)の添加は、
水素ガス中K NH,ガスを混入し九混合ガスを流しな
がらその中で液相成長させることで添加する。
First, n-type Ga, -xIU is deposited on an n-type GaP single crystal substrate.
,,P crystal is obtained by liquid phase growth method, but in order not to change the composition/common ratio
A liquid phase growth method called a temperature drop method is inappropriate, and a liquid phase growth method using a temperature difference method is better. Melt (solvent/solute in liquid phase growth) used in liquid phase growth using this temperature difference method
are Ga, At, GaP, impurities that determine the conductivity type, etc., but the addition of nitrogen to increase the luminous efficiency is
KNH is added in hydrogen gas by mixing the gas and growing the mixture in a liquid phase while flowing the mixed gas.

II3図ijn型及びp型Ga1−XALxP成長層の
成分比Iを変えた時の発光ピーク波長λ(nm)の変化
を示す実験結果である。この中で実線は液相成長中の雰
囲気ガスをH,ガスとした場合(窒素添加なし)であ)
、点線は液相成長中の雰囲気ガスをH8とNH,の混合
ガス(この場合の混合比NH,/H,=0.004)と
した場合(窒素添加有り)の結果である。
Figure II3 is an experimental result showing the change in the emission peak wavelength λ (nm) when the component ratio I of the ijn-type and p-type Ga1-XALxP growth layers is changed. In this figure, the solid line is when the atmospheric gas during liquid phase growth is H gas (no nitrogen addition).
The dotted line shows the results when the atmospheric gas during liquid phase growth was a mixed gas of H8 and NH (mixture ratio NH,/H, = 0.004 in this case) (with nitrogen addition).

この結果が示すよう[、pn 接合構成材料をGa 、
−、Aj、P結晶とするととKより、発光ピーク波長を
約555 nmから短波長側に移動でき、発光波長を完
全に緑色波長帯域とすることができた。また窒素(財)
不純物の添加も従来のGaP結晶による発光ダイオード
における効果と同様な効果をもち、窒素(へ)を添加し
た本発明の発光ダイオードの発光ピーク波長は窒素軸を
添加しないものに比し約2〜4 nm 長波長側に移動
している。この移動の程度は窒素(へ)の添加量で決定
されている。
As this result shows, [, pn junction constituent material is Ga,
-, Aj, and P crystals, the emission peak wavelength could be shifted from about 555 nm to the shorter wavelength side, and the emission wavelength could be completely set in the green wavelength band. Also nitrogen (goods)
The addition of impurities has the same effect as that in conventional GaP crystal light-emitting diodes, and the light emission peak wavelength of the light-emitting diode of the present invention doped with nitrogen is about 2 to 4 times higher than that of the light-emitting diode without nitrogen addition. nm It is moving to the long wavelength side. The degree of this movement is determined by the amount of nitrogen added.

このようK Ga、xALxP結晶においてもGaP結
晶の場合と同様な再結合過程で発光し、窒素(へ)が発
光センターとして寄与しているものと考えられ、発光効
率が向上した。
In this way, the K 2 Ga, xALxP crystal also emits light through the same recombination process as in the case of the GaP crystal, and it is thought that nitrogen (he) contributes as a luminescent center, resulting in improved luminous efficiency.

第4図はその結果例である。す表わち成分比XをX=0
.06  と一定にして成長させたウエノ・−から切り
出して発光ダイオードとし゛た時、外部量子効率の値の
分布をとったものである。実線#i窒素翰添加なしの場
合であり、点線は窒素(へ)を添加した場合であ・る。
Figure 4 shows an example of the results. In other words, the component ratio X is X=0
.. This figure shows the distribution of external quantum efficiency values when a light emitting diode is cut out from Ueno-- grown at a constant value of 0.06. The solid line #i is the case without the addition of nitrogen, and the dotted line is the case with the addition of nitrogen.

分布のピークを見れば判るように窒素を添加することに
よって外部量−子効率は約2倍向上している。
As can be seen from the peak of the distribution, the external quantum efficiency is improved by approximately twice by adding nitrogen.

上の第3図、第4図に示した結果を得た時の条件は次の
通9である。
The conditions for obtaining the results shown in FIGS. 3 and 4 above are as follows.

成長源9度は910℃、ソース部と成長部の温度差は5
℃、成分比x t x = 0.2とする時のメルト材
の構成比率はGa: AA: GaP= 90 : 0
.09 : 2でib、n型Ga1−xAtxP成長層
の厚みは約100〜120μm%p m Ga1−XA
ち、P成長層の厚みは約70〜90μmである。ま九n
型の不純物は8、p聾の不純物#iZnを用いた。
Growth source 9 degrees is 910 degrees Celsius, temperature difference between source part and growth part is 5
℃, component ratio x t x = 0.2, the composition ratio of the melt material is Ga: AA: GaP = 90: 0
.. 09:2 with ib, the thickness of the n-type Ga1-xAtxP growth layer is approximately 100-120 μm%pm Ga1-XA
The thickness of the P growth layer is approximately 70 to 90 μm. Makun
The type impurity was 8, and the p-deaf impurity #iZn was used.

窒素靭を添加する場合の雰囲気ガスとして供給されるH
7とNH,ガスの混合比は皿、/H,=0.003〜0
004である。
H supplied as atmospheric gas when adding nitrogen toughness
The mixing ratio of 7 and NH gas is dish, /H, = 0.003 to 0.
It is 004.

次に、本発明による完全に緑色波長領域で効率良く発光
するダイオードを更に高性能で得るためには、下記のよ
うな考慮をすべきである。
Next, in order to obtain a diode of the present invention that efficiently emits light completely in the green wavelength region with even higher performance, the following considerations should be made.

NH,/H,の比率がN)Iv/馬≦0.002の時に
は成長層に窒素が充分添加されず従って発光効率の向上
は殆ど晃られなかった。また逆にNu(、/H1≧0.
005の時には温度差液相成長法に用いるカーボン製の
治具と洲、ガスとが反応してしまうので、成長基板を移
動してn型Ga1−xjuxP成長層の上にp型Ga1
−xAAxP成長層を得るといった連続成長させる方法
をとることが困難と々る。従ってNH,/混晶Ga、−
xALxP結晶の成分比Xを変えるためにはメルト内の
組成比を変えることで達成されるが、第5図に実験結果
例を示すように、成分比Xを増加させると外部量子効率
が低下していくことが見出された。これは成長時に用い
るn型GaP基板の格子定数と成長層Ga 1−x A
txP結晶の格子定数が異なることによる歪や、成長後
の冷却時における熱膨張係数の違いによる歪が、pn接
合部に残存したり欠陥を発生させたりするととKよって
発光効率が低下しているものと考えられるので、GaP
結晶を基板とする時には成分比Xは03以下が良い。
When the ratio of NH,/H was N)Iv/H≦0.002, sufficient nitrogen was not added to the growth layer, and therefore the luminous efficiency was hardly improved. Conversely, Nu(,/H1≧0.
At the time of 005, the carbon jig used in the temperature difference liquid phase growth method reacts with the glass and the gas, so the growth substrate is moved and the p-type Ga1 is deposited on the n-type Ga1-xjuxP growth layer.
It is difficult to adopt a continuous growth method such as obtaining a -xAAxP growth layer. Therefore, NH,/mixed crystal Ga, -
Changing the component ratio X of the xALxP crystal can be achieved by changing the composition ratio in the melt, but as shown in Figure 5, an example of the experimental results, as the component ratio X increases, the external quantum efficiency decreases. It was discovered that this could be done. This is based on the lattice constant of the n-type GaP substrate used during growth and the growth layer Ga 1-x A
If the strain caused by the different lattice constants of the txP crystal or the difference in thermal expansion coefficient during cooling after growth remains in the pn junction or causes defects, the luminous efficiency will decrease due to K. GaP
When a crystal is used as a substrate, the component ratio X is preferably 03 or less.

また、同様々考えからGaP結晶基板上に成長させる第
1層目のn型Ga、xAAxP結晶層の厚みが薄すぎる
と格子定数の不整合や熱膨張係数の違いKよる歪や欠陥
がpn接合の部分にまで影響してくるので厚い方が望ま
しい。第1成長層の成分比XをX=Q、05 とした時
、このn型Ga、、、@ kt6.@ @ P結晶の成
長層厚みを増加しながら外部量子効率を測定した結果の
例を第6図に示す。同図から判るように、Ga、−xA
txPの成長厚みは約50−m以上あれば充分である。
In addition, based on the same idea, if the thickness of the first n-type Ga, The thicker the better, as it will affect the parts of the body. When the component ratio X of the first growth layer is X=Q, 05, this n-type Ga...@kt6. @ @ Figure 6 shows an example of the results of measuring the external quantum efficiency while increasing the thickness of the growth layer of the P crystal. As can be seen from the figure, Ga, -xA
It is sufficient that the txP growth thickness is about 50-m or more.

本発明の趣旨をn型GaP結晶を基板としてその上にn
型GaAtP 、ひきつづいてp型GaAtP tlj
、長層を得る製作法を基本として実施例によって述べて
きたが、逆Kp型GaP結晶を基板としてp型GaAt
P 、ひきつづいてn型GaAAP成長層を得る製作法
をとっても何ら差し支えないことは理解されるであろう
The gist of the present invention is that an n-type GaP crystal is used as a substrate and an n
type GaAtP, followed by p-type GaAtP tlj
, the manufacturing method for obtaining a long layer has been described by way of example.
It will be understood that there is no problem in using a manufacturing method that subsequently obtains an n-type GaAAP growth layer.

また、実施例では、P11接合構成領域のn型Ga、−
、、MXP成長層どp型Ga、−、ALP成長層の成分
比Xを同じとした場合、すなわちホモ接合について述べ
てきたが、シングルへテロ接合であっても良いし、更に
少数キャリヤの注入効率を上げるためにGa 1−y 
Aty P成長層とGa1−、kl、 P成長層との組
み合せといったダブルへテロ接合でも良いことはいうま
でもない。また、窒素の添加状両方の成長層に入れた方
が効率が良いが、場合によシいずれか一方の成長層に添
加することも許される。
In addition, in the example, n-type Ga in the P11 junction constituent region, -
, MXP growth layer p-type Ga, -, ALP growth layer with the same component ratio Ga 1-y to increase efficiency
Needless to say, a double heterojunction such as a combination of an AtyP growth layer and a Ga1-, kl, or P growth layer may also be used. Further, although it is more efficient to add nitrogen to both growth layers, it may be added to either one of the growth layers in some cases.

雰囲気ガスとしてd H,ガス(或いはこれにNH。Atmosphere gas is dH, gas (or NH).

ガスを混合)を用いているが、不活性ガスであれば良い
のでArガス、N、ガスても良い。
Although a mixture of gases) is used, any inert gas may be used, such as Ar gas, N gas, or other gases.

本発明を温度差法液相成長法によってGa At P結
晶を得る方法で説明してきたが、GaJhtP結晶の化
学量論的組成からのずれを少くすれば発光効率が′上昇
するので、P(燐)圧を制御した所謂蒸気圧制御による
温度差法液相成長法が遥かに効果的である。
The present invention has been explained as a method for obtaining Ga At P crystals by temperature difference liquid phase growth method. ) A temperature difference liquid phase growth method using so-called vapor pressure control is far more effective.

以上のようkして本発明に係るGa、−xAj、P結晶
−の成分比Xを変えることによシ、また窒素を添加する
ことKより、効率の高い、深緑色の、具体的にいえば発
光ピーク波長が約555 nmから540 nm迄の値
(窒素を添−加しないものまで含めれば538amの値
)まで任意に選べる、発光ダイオードを得ることができ
る。
As described above, by changing the component ratio X of the Ga, -xAj, and P crystals according to the present invention, and by adding nitrogen, it is possible to obtain a deep green color with high efficiency. For example, it is possible to obtain a light emitting diode whose emission peak wavelength can be arbitrarily selected from about 555 nm to 540 nm (a value of 538 am including those without nitrogen added).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の緑色ダイオードの断面図。 第2図は、本発明による緑色ダイオードの断面図。 第3図は、本発明によるG111−X ALxP結晶を
用いた緑色発光ダイオードにおける成分比Xと発光ピー
ク波長との関係を示すグラフ。 第4図は、本発明による緑色ダイオードのウェハー内の
外部量子効率の分布を表わすグラフ。 第5図は、本発明によるGa 1 +x鳩P結晶を用い
   ″良縁色発光ダイオードにおける成分比Xと外部
量子効率との関係を示すグラフ。 第6図は、本発明による”ell A’@、@I P 
 結晶を用いた緑色発光ダイオードにおいて第1成長層
の厚みと外部量子効率との関係を示すグラフである。 1.5・・・電極;  21 、31・・・結晶成長層
:4・・・結晶基板。 特許出願・人: スタンレー電気株式会社代理人:弁理
士海津保三 同   : 弁理士  平 山 −幸 第2図 第3m ^9ルχ 第6図 ’FLシHLI1w (、um 1 手続補正書(自発) 昭和S7年4月16日 特許庁長官 畠田春樹殿 1、事件の表示 昭和86年特 許 願第10雪814号2  m110
48  亭導体−党装置およびその製造方鉄3 補正を
する者゛ 事件との関係 善許出願人 住 所  東京・−蟲区中一墨霊丁−9番IS氏 名係
船(S80)スタyレー電気徐式金社4、代理人 8 補正の内容(1)11111中、館4−を別紙O遥
拳訂疋す為・9、−Wall()l鍮ムラ−習(第4−
)     1鍮14 図 特許出願人:スタンレー電気株式会社
FIG. 1 is a cross-sectional view of a conventional green diode. FIG. 2 is a cross-sectional view of a green diode according to the invention. FIG. 3 is a graph showing the relationship between the component ratio X and the emission peak wavelength in a green light emitting diode using the G111-X ALxP crystal according to the present invention. FIG. 4 is a graph representing the distribution of external quantum efficiency within a wafer of a green diode according to the present invention. FIG. 5 is a graph showing the relationship between the component ratio @IP
It is a graph showing the relationship between the thickness of the first growth layer and the external quantum efficiency in a green light emitting diode using a crystal. 1.5... Electrode; 21, 31... Crystal growth layer: 4... Crystal substrate. Patent application/Person: Stanley Electric Co., Ltd. Agent: Yasushi Kaizu, Patent Attorney: Patent Attorney Hirayama ) April 16, 1931, Haruki Hatada, Commissioner of the Japan Patent Office, 1, Indication of the incident, 1986 Patent Application No. 10 Yuki No. 814, 2 m110
48 Tei conductor - Party equipment and its manufacturing method Iron 3 Person making the amendment Relationship to the case Address of applicant Address Tokyo - Mushi-ku Nakaichiboku Reicho - No. 9 IS Name Mooring (S80) Stary Denki Xushikikinsha 4, Agent 8 Contents of amendment (1) In 11111, to revise Annex O Haruken of Hall 4-9, -Wall ()l Brass Mura-Xi (No. 4-
) 1 Brass 14 Figure Patent applicant: Stanley Electric Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] (1)  GaP結晶結晶板基板、その上に成長したG
a I −x Atxp結晶内Kpn!I合が形成され
て成る仁とを特徴とする半導体発光装置。
(1) GaP crystal plate substrate, G grown on it
a I −x Atxp intracrystalline Kpn! 1. A semiconductor light-emitting device characterized by a semiconductor light-emitting device having an I-contact formed therein.
(2)成長し友前記Ga□−エムtxp結晶のnll領
域かnll領域の少くとも1つの領域に窒素が添加され
ていることを特徴とする特許請求の範囲第1項に記載の
半導体発光装置。
(2) The semiconductor light emitting device according to claim 1, wherein nitrogen is added to the NLL region or at least one region of the NLL region of the Ga□-M txp crystal. .
(3)  成長した前記Ga 1−1kLzP結晶の成
分比Xがnfli領域とp型領域とで異なることを特徴
とする特許請求の範囲第1]jilK記載の半導体発光
装置。
(3) The semiconductor light emitting device according to claim 1, wherein the component ratio X of the grown Ga 1-1kLzP crystal is different between the nfli region and the p-type region.
(4)  成長し九前記Ga 1 +XAtxP結晶の
pm!不純物が亜鉛でn型不純物が硫黄であることを特
徴とする特許請求の範囲第1項に記載の半導体発光装置
(4) pm of the grown nine Ga 1 +XAtxP crystals! 2. The semiconductor light emitting device according to claim 1, wherein the impurity is zinc and the n-type impurity is sulfur.
(5)  GaP結晶を基板とし、その上に温度差法液
相成長により Ga5−xA4P結晶を成長させ、以て
pn接合を形成することを特徴とする半導体発光装置の
製造方法。
(5) A method for manufacturing a semiconductor light emitting device, which comprises using a GaP crystal as a substrate and growing a Ga5-xA4P crystal thereon by temperature difference liquid phase growth to form a pn junction.
(6)前記温度差法液相成長は燐蒸気圧制御の下で行わ
れることを特徴とする特許請求の範囲第5項に記載の半
導体発光装置の製造方法゛。
(6) The method for manufacturing a semiconductor light emitting device according to claim 5, wherein the temperature difference method liquid phase growth is performed under phosphorus vapor pressure control.
(7)  成長させた前記Ga、、AA、P結晶の成分
比Xがnll領域とp型領域とで異なることを特徴とす
る特許請求の範囲第5項に記載の半導体発光装置の製造
方法。
(7) The method for manufacturing a semiconductor light emitting device according to claim 5, wherein the component ratio X of the grown Ga, AA, and P crystals is different between the nll region and the p-type region.
(8)成長させた前記Ga、−xjktxP結晶のnl
l領域かp型領域の少くとも1つの領域に窒素を添加す
ることを特徴とする特許請求の範囲第S’lXK記載の
半導体発光装置の製造方法。
(8) nl of the grown Ga, -xjktxP crystal
A method of manufacturing a semiconductor light emitting device according to claim S'lXK, characterized in that nitrogen is added to at least one of the l region and the p type region.
(9)  前記窒素の添加は隔ガスによってなされ、且
つキャリヤガスに対する洲、ガスの含有率がO−Sに以
下であることを特徴とする特許請求の範囲第8項に記載
の半導体発光装置の製造方法。
(9) The semiconductor light emitting device according to claim 8, wherein the addition of nitrogen is performed by a separating gas, and the content of the gas to the carrier gas is less than or equal to O-S. Production method.
JP56102214A 1981-07-02 1981-07-02 Semiconductor light-emitting device and its manufacture Pending JPS584987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56102214A JPS584987A (en) 1981-07-02 1981-07-02 Semiconductor light-emitting device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56102214A JPS584987A (en) 1981-07-02 1981-07-02 Semiconductor light-emitting device and its manufacture

Publications (1)

Publication Number Publication Date
JPS584987A true JPS584987A (en) 1983-01-12

Family

ID=14321405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56102214A Pending JPS584987A (en) 1981-07-02 1981-07-02 Semiconductor light-emitting device and its manufacture

Country Status (1)

Country Link
JP (1) JPS584987A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283760A (en) * 1993-03-25 1994-10-07 Shin Etsu Handotai Co Ltd Semiconductor light emittering device and its manufacture

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495286A (en) * 1972-04-28 1974-01-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495286A (en) * 1972-04-28 1974-01-17

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283760A (en) * 1993-03-25 1994-10-07 Shin Etsu Handotai Co Ltd Semiconductor light emittering device and its manufacture

Similar Documents

Publication Publication Date Title
US6791103B2 (en) Light-emitting gallium nitride-based compound semiconductor device
CA2220031C (en) Double heterojunction light emitting diode with gallium nitride active layer
USRE29845E (en) GaAs1-x Px electroluminescent device doped with isoelectronic impurities
US20090108276A1 (en) High Efficiency Dilute Nitride Light Emitting Diodes
JPH02106982A (en) Inverted transparent substrate optoelectronic device and its manufacture
JPH0268968A (en) Compound semiconductor light-emitting device
US11538962B2 (en) Light-emitting element and method for manufacturing light-emitting element
Matsunami et al. SiC blue LED's by liquid-phase epitaxy
JP3567926B2 (en) pn junction type boron phosphide-based semiconductor light emitting device, method for manufacturing the same, and light source for display device
Chen et al. ZnSe-based mixed-color LEDs
JPH0864870A (en) Semiconductor light emitting element
JPS584987A (en) Semiconductor light-emitting device and its manufacture
Mao et al. Uncooled 4.2 μm light emitting diodes based on InAs0. 91Sb0. 09/GaSb grown by LPE
US5032539A (en) Method of manufacturing green light emitting diode
US4284467A (en) Method for making semiconductor material
JPS5918877B2 (en) optical semiconductor device
JPH0883956A (en) Semiconductor light-emitting device
JP3353703B2 (en) Epitaxial wafer and light emitting diode
JPS586184A (en) Semiconductor light emitting device
US5382813A (en) Light emission diode comprising a pn junction of p-type and n-type A1-containing ZnS compound semiconductor layers
JP2000183397A (en) Semiconductor light-emitting element material and structure
JPH01169985A (en) Semiconductor laser
JPS6351552B2 (en)
JPS5846875B2 (en) optical semiconductor device
Chen et al. Growth and characterization of InGaP yellow-green light-emitting diodes by liquid-phase epitaxy