JPS58492B2 - It's hard to find a solution to the problem. - Google Patents
It's hard to find a solution to the problem.Info
- Publication number
- JPS58492B2 JPS58492B2 JP11032475A JP11032475A JPS58492B2 JP S58492 B2 JPS58492 B2 JP S58492B2 JP 11032475 A JP11032475 A JP 11032475A JP 11032475 A JP11032475 A JP 11032475A JP S58492 B2 JPS58492 B2 JP S58492B2
- Authority
- JP
- Japan
- Prior art keywords
- steel material
- heating zone
- steel
- fuel
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
- Control Of Heat Treatment Processes (AREA)
Description
【発明の詳細な説明】
本発明は、連続式加熱炉の鋼材加熱投入熱量測定装置に
関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring the amount of heat input into a continuous heating furnace.
エネルギー危機以来燃料コストは非常に大きなものとな
り、特に多量の燃料を使用する鉄鋼業においては、その
負担が飛躍的に増加し、各種設備におけるその使用量の
低減について積極的な検討、実験が続けられている。Since the energy crisis, fuel costs have become extremely large, and the burden has increased dramatically, especially in the steel industry, which uses large amounts of fuel. It is being
そこで、例えば連続式加熱炉においては、鋼材の一人前
温度、在炉時間、焼き上げ温度、厚み、長さ、炉内設定
温度、バーナへの熱風温度及び空燃比、或いは炉内長手
方向の加熱ゾーン、各々の燃料投入配分及び燃焼バーナ
グループ構成(上・下・左右、遠近等)等の多くの変更
要素及び変動要素があるため、燃料原単位がどの要素が
起因してどのように変化したかを適切且つ正確に把握し
、最適な操業を計るとともにこれを継続維持可能範囲内
で燃料原単位を低減させるべく操業改善及び設備改善を
計ることが重要な課題としてクローズアップされている
。Therefore, for example, in a continuous heating furnace, the temperature of the steel material per serving, the time in the furnace, the firing temperature, the thickness, the length, the set temperature in the furnace, the temperature of hot air to the burner and the air-fuel ratio, or the heating zone in the longitudinal direction of the furnace. Since there are many changing and variable factors such as each fuel input distribution and combustion burner group configuration (top, bottom, left and right, near and far, etc.), it is difficult to understand which factors caused the fuel consumption rate to change and how. Appropriately and accurately understanding the situation, planning optimal operations, and improving operations and equipment in order to reduce the fuel consumption rate within a range that can be maintained continuously are being highlighted as important issues.
しかへ連続式加熱炉における現状の燃料原単位管理は適
切な鋼材加熱投入熱量測定装置がないため、鋼材の品質
毎、勤務番毎、日毎、月毎等の大きな時間枠でなされて
おり、従って燃料原単位がどの要素でどのように変化し
たかを把握することができない。However, current fuel consumption management in continuous heating furnaces is carried out over large time frames such as each quality of steel, each work shift, each day, each month, etc., as there is no appropriate device to measure the amount of heat input to heat the steel. It is not possible to understand which factors and how the fuel consumption rate changed.
即ち、現在最も小さな枠である鋼材の品種毎の燃料原単
位管理でも、一つの品種グループを加熱処理するにはそ
の前後に他の品種グループが存在するため管理上大きな
誤差を含む。That is, even in the fuel consumption unit management for each type of steel material, which is currently the smallest framework, there is a large error in management because there are other product groups before and after heat treating one product group.
例えば少品種多量生産ラインにおける連続式加熱炉では
、平均1800tもの同一品種鋼材を略連続的に供給し
、且つ炉内では常時平均1300tもの同一もしくは二
品種のmを加熱処理しているため、管理上盤々大きな誤
差をもつことになる。For example, in a continuous heating furnace used in a high-volume production line of a small number of products, an average of 1,800 tons of steel of the same type is almost continuously supplied, and an average of 1,300 tons of the same or two types of steel are constantly being heat-treated in the furnace. There will be large errors at the top.
本発明はこれらの問題を有利に解決した優れた鋼材加熱
投入熱量測定装置を提供するものであり、その特徴とす
るところは、図に示す本発明の一実施例の如く、■鋼材
S別a1〜anに小なくとも加熱炉H内長手方向におけ
る移動位置を検出する鋼材位置検出装置1、■前記鋼材
位置検出装置1からの各鋼材位置検出信号a、aα〜a
εを導入し、その位置検出信号a、aα〜aεに応じて
該当鋼材Sの重量WXを記憶し、且つ加熱炉H長手方向
の各加熱ゾーンH1〜H4内鋼材Sの総重量W1〜W4
を遂次算出する加熱ゾーン内鋼材重量算出装置2、■前
記加熱炉長手方向の各加熱ゾーンH1〜H4における燃
料投入流量Q1〜Q12を測定する燃料流量測定装置3
.3−1〜3−12、■前記加熱ゾーン内鋼材重量算出
装置からの各加熱ゾーンH1〜H4内鋼材総重量W1〜
W4を所定時間毎に導入し、その都度次の導入時点4で
の間前記燃料流量測定装置3.3−1.3−12からの
各加熱ゾーンH1〜H4毎燃料投入流量(Ql、02)
、(Q3Q4)、(Q5.Q8)、(Q9.Q12)、
を導入し、各加熱ゾーンH1〜H4毎に或いは本例の如
く各加熱ゾーンH1〜H4内におけるバーナーグループ
毎C1〜C12に該導入鋼材総重量に基づいて鋼材単位
重量当りの投入燃料発熱量Kc−1〜Kc−12を算出
すする発熱量算出装置4、■前記鋼材位置検出装置1か
らの各鋼材Sの炉内長手方向における位置検出信号a、
aα〜aεを導入し、その各鋼材Sの炉内長手方向位置
信号a、(aα〜aε)に応じて前記発熱量算出装置4
から該当鋼材Sの位置する加熱マーク(H1〜H4)の
鋼材単位重量当りの投入燃料発熱量(Kc−1−Kc−
12)を導入し積算する鋼材側投入燃料発熱量積算装置
5、の夫々を設けた連続式加熱炉の鋼材加熱投入量測定
装置にある。The present invention provides an excellent steel material heating input calorific value measuring device that advantageously solves these problems, and its features are as shown in an embodiment of the present invention shown in the figure. ~an, at least a steel position detection device 1 for detecting the moving position in the longitudinal direction within the heating furnace H; (2) each steel position detection signal a, aα~a from the steel position detection device 1;
ε is introduced, and the weight WX of the steel material S is stored in accordance with the position detection signals a, aα to aε, and the total weight W1 to W4 of the steel material S in each heating zone H1 to H4 in the longitudinal direction of the heating furnace H is stored.
A heating zone steel weight calculation device 2 that sequentially calculates the weight of steel material in a heating zone; (2) a fuel flow rate measuring device 3 that measures fuel input flow rates Q1 to Q12 in each heating zone H1 to H4 in the longitudinal direction of the heating furnace;
.. 3-1 to 3-12, ■ Total weight of steel in each heating zone H1 to H4 from the heating zone steel weight calculation device W1 to
W4 is introduced at predetermined time intervals, and each time at the next introduction point 4, the fuel input flow rate (Ql, 02) for each heating zone H1 to H4 from the fuel flow rate measuring device 3.3-1.3-12 is determined.
, (Q3Q4), (Q5.Q8), (Q9.Q12),
is introduced into each heating zone H1 to H4 or, as in this example, to each burner group C1 to C12 in each heating zone H1 to H4, based on the total weight of the introduced steel, the calorific value of the input fuel per unit weight of steel Kc -1 to Kc-12; (2) a position detection signal a of each steel material S in the longitudinal direction in the furnace from the steel material position detection device 1;
aα to aε are introduced, and the calorific value calculation device 4
Calorific value of input fuel per unit weight of steel material (Kc-1-Kc-
12) is installed in a steel material heating input amount measuring device for a continuous heating furnace, which is provided with a steel material side input fuel calorific value integration device 5 that integrates and integrates.
即ち、本発明は連続式加熱炉に装入され加熱され、そし
て抽出される鋼材の個々に対して炉内における受熱経歴
を少なくとも単位重量当りで連続且つ正確に把握する鋼
材加熱投入量測定装置であり、これによって鋼材装入時
間、在炉時間、焼き上げ温度、厚み、長さ、炉内設定温
度バーナーへの熱風温度及び空熱比等に応じて燃料原単
位がどのように変動するかを精密に解析することができ
るとともに、正確かつ適切に該各種要素の制御を実施す
ることができ、更に加熱炉長手方向の各加熱ゾーン各々
の燃料投入配分によるスキッドマークの緩和及び燃料投
入量を加床した鋼材焼き上げ温度管理の精度向上と合理
化等を計ることもでき、加熱炉の操業及び設備の最適化
を有利に可能ならしめるものである。That is, the present invention provides a steel material heating input amount measuring device that continuously and accurately grasps the heat receiving history in the furnace at least per unit weight of each steel material charged into a continuous heating furnace, heated, and extracted. This allows us to precisely determine how the fuel consumption rate changes depending on the steel material charging time, furnace time, firing temperature, thickness, length, hot air temperature to the furnace set temperature burner, air heat ratio, etc. In addition to accurately and appropriately controlling the various elements, it is also possible to alleviate skid marks and increase the amount of fuel input by distributing the fuel input to each heating zone in the longitudinal direction of the heating furnace. It is also possible to improve the accuracy and rationalize the temperature control for baking steel materials, and to advantageously optimize the operation and equipment of the heating furnace.
以下本発明を図面に示十本発明の一実施例を共に詳細に
説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the drawings, and an embodiment of the present invention will be described in detail.
本例の連続式加熱炉Hの図示の如くウオーキングビーム
式であり、装入側から抽出側にかけて第1加熱ゾーンH
1、第277撚ゾーンH2、第3加熱ゾーンH3(以下
均熱ゾーンと称する)H4と4つの加熱ゾーンで構成し
である。As shown in the diagram, the continuous heating furnace H of this example is a walking beam type, and there is a first heating zone H from the charging side to the extraction side.
It is composed of four heating zones: 1, 277th twisting zone H2, and third heating zone H3 (hereinafter referred to as soaking zone) H4.
そして第1加熱ゾーンH1と第2加熱ゾーンH2は上部
バーナーグループ、下部バーナーグループを有し、第3
加熱ゾーンH3と均熱ゾーンH4は上部、下部夫々の左
側部、右側部の各バーナーグループ(共に図示せず)を
有する。The first heating zone H1 and the second heating zone H2 have an upper burner group, a lower burner group, and a third
The heating zone H3 and the soaking zone H4 have burner groups (both not shown) on the left and right sides of the upper and lower parts, respectively.
又炉内への鋼材S装入はプッシャーH5により行い、炉
内での鋼材S搬送は、ウオーキングビームH6の矩形運
動により固定ビームH7上とウオーキングビームH6上
に乗せ替えながら行う。Further, the steel material S is charged into the furnace by a pusher H5, and the steel material S is transported within the furnace by being transferred onto a fixed beam H7 and a walking beam H6 by rectangular movement of a walking beam H6.
鋼材位置検出装置1は、連続式加熱炉Hへの装入鋼材の
後端部を鋼材位置検出装置位置で検出する検出器(MD
と、プッシャーH5の鋼材押し出し動作(即ち往動作)
を検出し、その動作量信号を遂次発信するプッシャー往
動作量発信器1aと、ウオーキングビームH6の鋼材搬
送動作(即ち上方水平往動作及び上方水平復動作)を検
出し、その搬送移動量信号を遂次発信するウオーキング
ビーム鋼材搬送量発信器1bと、検出位置設定器1を具
備するとともに最多装入鋼材数分のカウンターa1〜a
nを内設したものであり、このカウンターa1〜anの
各々は検出器CMDからの検出信号ONを順番に受けて
ON動作し、ON動作するとプッシャー往動作量発信器
1aからの動作量信号を所定量11(即ち鋼材Sがプッ
シャーH5により位置検出開始位置からウオーキングビ
ーム式の搬送開始可能位置で且つ直前鋼材と所定間隔に
おいて接近する位置まで移動される量)カウントし、鋼
材装入位置信号aα(即ち第1加熱ゾーンH1入側端位
置信号を発信するとともにこの時点からウオーキングビ
ーム鋼材搬送量発信器1bからの搬送移動量信号をカウ
ントし、この継続カウント量が第1加熱ゾーンH1の全
搬送移動量12に一致すると第2加熱ゾーンH2人側端
位置信号aβを、第1加熱ゾーンH4と第2加熱ゾーン
H2の全搬送移動量12に一致すると第3加熱ゾーンH
3入側端位置信号aγを、第1加熱ゾーンH1と第2加
熱ゾーンH2と第3加熱ゾーンH3の全搬送移動量13
に一致すると均熱ゾーンH4入側端部位置信号aδを夫
々発信し、この後該当鋼材Sが均熱ゾーンH4が経て抽
出されると、抽出位置上に設けである検出器間からの検
出信号を受けて抽出信号aεを発信する。The steel position detection device 1 is a detector (MD
and the steel material extrusion operation of pusher H5 (i.e. forward movement)
The pusher forward movement amount transmitter 1a detects the movement amount signal and sequentially transmits the movement amount signal, and the pusher forward movement amount transmitter 1a detects the steel material conveyance movement (i.e., upward horizontal forward movement and upward horizontal return movement) of the walking beam H6 and transmits the movement amount signal. It is equipped with a walking beam steel material conveyance amount transmitter 1b that sequentially transmits the information, a detection position setting device 1, and counters a1 to a for the maximum number of steel materials to be charged.
Each of the counters a1 to an turns ON in response to a detection signal ON from the detector CMD, and when turned ON, receives a movement amount signal from the pusher forward movement amount transmitter 1a. A predetermined amount 11 (i.e., the amount by which the steel material S is moved by the pusher H5 from the position detection start position to a position where walking beam type conveyance can be started and where it approaches the immediately preceding steel material at a predetermined interval) is counted, and a steel material charging position signal aα is generated. (In other words, the first heating zone H1 entrance end position signal is transmitted, and from this point on, the conveyance movement amount signal from the walking beam steel conveyance amount transmitter 1b is counted, and this continuous count amount is the total conveyance of the first heating zone H1. When the movement amount matches 12, the second heating zone H2 person side end position signal aβ is set, and when the total transport movement amount of the first heating zone H4 and second heating zone H2 matches 12, the third heating zone H
3. The input side end position signal aγ is calculated from the total conveyance movement amount 13 of the first heating zone H1, second heating zone H2, and third heating zone H3.
If they match, the input side end position signal aδ of the soaking zone H4 is transmitted, and when the corresponding steel material S is extracted after passing through the soaking zone H4, a detection signal is sent from between the detectors provided above the extraction position. In response to this, an extraction signal aε is transmitted.
各カウンターa1−anへの全搬送移動量11,12,
13,14の設定は、設定値調節可能にした検出位置設
定器1cによって行う。Total conveyance movement amount to each counter a1-an 11, 12,
Settings 13 and 14 are performed by a detection position setter 1c whose set value can be adjusted.
加熱ゾーン内鋼材重量算出装置2は、前記鋼材位置検出
装置1の各カウンターa1〜anと対応して重量記憶部
b1〜bnを設け、その個々を該当カウンターからの鋼
材装入位置信号aαによりON動作せしめて該当鋼材S
の重量値Wxを鋼材加熱命令部6から導入し記憶させる
とともに、この記憶した重量値Wxを第1加熱ゾーン山
内鋼材総重量の算出部H1に導入してその内容に加算せ
しめ、次いで第2加熱ゾーンH2入側端位置信号aβに
より算出部H′1の内容から減算するとともに第2加熱
ゾーンH2内鋼材総重量の算出部H6に導入してその内
容に加算せしめ、次いで第3加熱ゾーンH3入側端位置
信号aγにより算出部H4の内容から減算するとともに
第3加熱ゾーンH3内鋼材総重量の算出部H′3に導入
してその内容に。The heating zone steel material weight calculation device 2 is provided with weight storage units b1 to bn corresponding to each of the counters a1 to an of the steel material position detection device 1, and each of them is turned on by a steel material charging position signal aα from the corresponding counter. Operate the corresponding steel material S
The weight value Wx is introduced from the steel material heating instruction section 6 and stored, and the stored weight value Wx is introduced into the first heating zone Yamauchi steel total weight calculation section H1 and added to the contents, and then the second heating The input end position signal aβ of zone H2 is subtracted from the contents of calculation section H'1, and is introduced into calculation section H6 of the total weight of steel in the second heating zone H2 and added to the contents, and then the total weight of steel material in the third heating zone H3 is subtracted from the contents of calculation section H'1. It is subtracted from the content of the calculation unit H4 using the side end position signal aγ, and is introduced into the calculation unit H'3 for the total weight of the steel material in the third heating zone H3 to obtain the content.
加算せしめ、次いで均熱ゾーンH4入側端位置信号aβ
により算出部H3の内容から減算するとともに均熱ゾー
ンH4内鋼材総重量の算出部用に導入してその内容に加
算せしめ、次いで抽出位置信号aεにより算出部H4の
内容から減算すると。Then, the soaking zone H4 entrance end position signal aβ
This is subtracted from the content of the calculation unit H3 by using the extraction position signal aε, and is also introduced into the calculation unit for calculating the total weight of steel materials in the soaking zone H4, and then subtracted from the content of the calculation unit H4 using the extraction position signal aε.
ともに該当鋼材記憶部の記憶重量値Wxを消去せしめる
ものである。Both erase the stored weight value Wx in the corresponding steel material storage section.
上記各加熱ゾーン内鍋W重量の算出部H!1〜W4は該
当加熱ゾーンに入ってくる鋼材Sの重量Wxを順次加算
する一方、その加算結果の内容から該当加熱ゾーンから
出ていく鋼。Calculation part H of the weight of the pot W in each heating zone above! 1 to W4 are steels that sequentially add the weights Wx of the steel materials S entering the heating zone, and exit from the heating zone based on the contents of the addition results.
材Sの重量Wxを順次減算し、遂次該当加熱ゾーン内に
存在する鋼材Sの総重量W1〜W4を算出し発熱量算出
装置4の対応部に発信する。The weight Wx of the material S is sequentially subtracted, and the total weight W1 to W4 of the steel material S present in the corresponding heating zone is successively calculated and transmitted to the corresponding section of the calorific value calculation device 4.
燃料流量測定装置3は、第1加熱ゾーンH1用として上
部バーナーグループの燃料供給本管(図示せず、以下他
の供給本管も同様)に検出素子(図示せず、以下他の素
子も同様)を介設した流量測定器3−1と、下部バーナ
ーグループの燃料供給本管に検出素子を介設した流量測
定器3−2を設け、第2加熱ゾーンH2用として上記第
1加熱ゾーンH2用と同様に上、下バーナーグループ各
々に対する流量測定器3−3.3−4を設け、第3加熱
ゾーンH3用として上、下部各々の左右のバーナーグル
ープの各燃料供給本管に検出素子を介設した流量測定器
3−5.3−6.3−7゜3−8を設け、均熱ゾーンH
4用として上記第3加熱ゾーンH3用と同様に上、下各
左右部バーナーグループ各々に対する流量測定器、3−
9.3−10.3−11.3−12を設けたものでちる
。The fuel flow rate measurement device 3 includes a detection element (not shown, the same goes for other supply mains) in the fuel supply main of the upper burner group (not shown, the same goes for other supply mains) for the first heating zone H1. ), and a flow rate measuring device 3-2 with a detection element interposed in the fuel supply main pipe of the lower burner group are provided. Similarly to the above, flow measuring devices 3-3 and 3-4 are provided for each of the upper and lower burner groups, and detection elements are installed in each fuel supply main pipe of the left and right burner groups of the upper and lower parts for the third heating zone H3. An interposed flow rate measuring device 3-5.3-6.3-7゜3-8 is installed, and the soaking zone H
4, a flow meter for each of the upper, lower left and right burner groups, similar to that for the third heating zone H3, 3-
9.3-10.3-11.3-12 installed.
発熱量算出装置4は、各加熱ゾーンH1〜H4内におけ
る各バーナーグループ毎の流量測定器H1〜H4内にお
ける各バーナーグループ毎の流量測定器3−1〜3−1
2と、前記加熱ゾーン内鋼材重量算出装置2の対応加熱
ゾーンの算出部H1〜H4に夫々接続せしめた演算部c
−1〜c12を設け、これらの個々において該当流量測
定器3−1〜3−12からの燃料流量測定値即ち対応バ
ーナーグループへの燃料投入流量Q1〜Q12を導入し
、これを所定時間を毎に同所定時間を積算し、この積算
流量値に該当燃料の単位流量当りの発熱量を乗じて投入
燃料発熱量を算出する一方、対応加熱ゾーンの算出部「
1〜H′4から遂次発信されているゾーン内鋼材総重量
W1〜W4を該所定時間を毎に読み取り、これと上記投
入艷発熱量とによって該当加熱ゾーンH1〜H4内鋼材
Sに対する対応バーナーグループからの単位重量当りの
投入燃料発熱量Kc−1〜Kc−12を演算算出するも
のである。The calorific value calculation device 4 includes flow rate measuring devices 3-1 to 3-1 for each burner group in each heating zone H1 to H4.
2, and a calculation unit c connected to the calculation units H1 to H4 of the corresponding heating zone of the heating zone steel weight calculation device 2, respectively.
-1 to c12 are provided, and the fuel flow rate measurement values from the corresponding flow rate measuring devices 3-1 to 3-12, that is, the fuel input flow rates Q1 to Q12 to the corresponding burner groups are introduced into each of these, and this is measured at predetermined time intervals. The calorific value of the input fuel is calculated by integrating the same predetermined time and multiplying this cumulative flow value by the calorific value per unit flow rate of the corresponding fuel.
The total weight W1 to W4 of the steel material in the zone, which is successively transmitted from 1 to H'4, is read at each predetermined time, and the corresponding burner for the steel material S in the corresponding heating zone H1 to H4 is determined based on this and the above-mentioned input heat value. This is to calculate the calorific value Kc-1 to Kc-12 of the input fuel per unit weight from the group.
鋼材別投入燃料発熱量積糞装置5は、前記鋼材位置検出
装置1の各カウンターa1〜anと対応して鋼材別積算
部d1〜dn内には該当鋼材Sが炉内通過過程で各加熱
ゾーンH1〜H4の各バーナーグループから受ける単位
重量当りの投入燃料発熱量を個々に積算するグループ積
算部5−1〜5−12を設けており、各積算部d1〜d
nは対応カウンターa1〜anからの鋼材装入位置信号
aαによりON動作すると共に第1加熱ゾーンH1の上
部と下部の各加バーナーグループ用グループ積算部5−
1.5−2を動作せしめて前記発熱量算出装置4の対応
演算部c1.c2からの第1加熱ゾーンH1内鋼材単位
重量当り投入燃料発熱量Kc−1,Kc−2を遂次導入
積算せしめ、次いでこれを対応カウンターa1〜anか
らの第2加熱ゾーンH2入側端位置信号aβにより停止
させこれまでの積算値を保持せしめる。The input fuel calorific value accumulating device 5 for each steel material has integrated units d1 to dn for each steel material corresponding to the respective counters a1 to an of the steel material position detection device 1, in which the steel material S is stored in each heating zone in the process of passing through the furnace. Group integration units 5-1 to 5-12 are provided that individually integrate the input fuel calorific value per unit weight received from each burner group H1 to H4, and each integration unit d1 to d
n is turned ON by the steel material charging position signal aα from the corresponding counters a1 to an, and the group integrating unit 5- for each additional burner group in the upper and lower portions of the first heating zone H1.
1.5-2 to operate the corresponding calculation unit c1. The input fuel calorific values Kc-1 and Kc-2 per unit weight of steel material are sequentially introduced into the first heating zone H1 from c2 and then integrated into the input side end position of the second heating zone H2 from the corresponding counters a1 to an. It is stopped by the signal aβ and the accumulated value up to now is held.
一方該信号aβにより第2加熱ゾーンH2の上壁部と下
壁部の各バーナーグループ用グループ積算部5−3゜5
−4を動作せしめて対応演算部c−3,c−4からの第
2加熱ゾーンH2内鋼材単位重量当り投入燃14熱量k
c−1,Kc−4を遂次導入し積算させる。On the other hand, according to the signal aβ, the group integrator 5-3°5 for each burner group on the upper wall and lower wall of the second heating zone H2
-4 is activated, and the input fuel 14 calorie k per unit weight of steel material in the second heating zone H2 from the corresponding calculation units c-3 and c-4
c-1 and Kc-4 are sequentially introduced and integrated.
次いでこれを対応カウンターa1〜anからの第3加熱
ゾーンH3入側端位置信号aγにより停止させ積算値を
保持させる。Next, this is stopped by the input side end position signal aγ of the third heating zone H3 from the corresponding counters a1 to an, and the integrated value is held.
そして又これと同時に該位置信号aγにより第3加熱ゾ
ーンH3の上左部、上右部、下左部、下右部の各バーナ
ーグループ用グループ積算部5−5.5−6.5−7゜
5−8を動作せしめて、対応演算部c−5、c−6cm
7.c−8からの第3加熱ゾーンH3内鋼材単位重量当
り投入燃料発熱量Kc−5,Kc−6゜Kc−7,Kc
−8を遂次導入し積算させる。At the same time, the position signal aγ is detected by the group integration unit 5-5.5-6.5-7 for each burner group at the upper left, upper right, lower left, and lower right of the third heating zone H3. By operating ゜5-8, the corresponding calculation parts c-5 and c-6cm
7. Calorific value of fuel input per unit weight of steel material in the third heating zone H3 from c-8 Kc-5, Kc-6゜Kc-7, Kc
-8 is introduced one after another and integrated.
次いでこの動作を対応カウンターal〜anからの均熱
ゾーンH4入側端位置信号aδにより停止させ積算値を
保持させる。Next, this operation is stopped by the input side end position signal aδ of the soaking zone H4 from the corresponding counters al to an, and the integrated value is held.
そして更にこれと同時に該位置信号aδにより均熱ゾー
ンH4の上左部、上右部、下左部、下右部の各バーナー
グループ用グループ積算部5−9.5−10.5−11
.5−12を動作せしめて対応演算部c−9、c−18
,c−11cm12からの均熱ゾーンH4内鋼材単位重
量当り投入燃料発熱量Kc−9,Kc−10,Kc−1
1,Kc−12を遂次導入し積算させ、次いでこれを対
応カウンターa1〜anからの抽出位置信号aεにより
停止せしめ保持せしめるものである。Further, at the same time, according to the position signal aδ, the group integration unit 5-9.5-10.5-11 for each burner group in the upper left, upper right, lower left, and lower right parts of the soaking zone H4
.. 5-12 is operated and the corresponding calculation units c-9 and c-18
, c-11cm12 Calorific value of fuel input per unit weight of steel material in soaking zone H4 Kc-9, Kc-10, Kc-1
1 and Kc-12 are successively introduced and integrated, and then stopped and held by the extraction position signal aε from the corresponding counters a1 to an.
各積算部di〜dnにおける上記一連の積算動作が終え
ると直ちにその統計部d’1〜d’nが動作し各グルー
プ積算部5−1〜5−12を保持せしめた積算値を取り
出して加算し、次いでこの加算値に、別途鋼材装入位置
信号aαにより導入保持せしめた該当鋼材Sの重量WX
を乗じて該当鋼材Sが在炉中に受けた加熱投入熱量Tk
c−xを算出し表示装置7に発信し、対応表示部7−1
〜7−nに表示保持させるとともに、自己及び各グルー
プ積算部5−1〜5−12をリセットして次の鋼材用に
備える。Immediately after the above-mentioned series of integration operations in each of the integration units di to dn are completed, the statistics units d'1 to d'n operate to extract and add the integrated values held by each group integration unit 5-1 to 5-12. Then, to this added value, add the weight WX of the steel material S that was introduced and held separately using the steel material charging position signal aα.
The heating input heat amount Tk received by the steel material S while in the furnace is multiplied by
c-x is calculated and sent to the display device 7, and the corresponding display section 7-1
to 7-n to maintain the display, and reset the self and each group integration section 5-1 to 5-12 to prepare for the next steel material.
表示装置7の対応表示部7−1〜7−n各々は鋼材位置
検出装置1の対応カウンターa1〜anからの鋼材装入
位置検出信号aαにより鋼材加熱命令部6から該当鋼材
SのNoを導入し、これも表示保持せしめるが、他に前
記鋼材別投入燃料発熱量積算装置5の各積算部d1〜d
nにおけるグループ積算部5−1〜5−12の保持積算
値をその保持の都度導入し、表示保持せしめるようにも
構成されている。Each of the corresponding display sections 7-1 to 7-n of the display device 7 inputs the No. of the corresponding steel material S from the steel material heating command section 6 based on the steel material charging position detection signal aα from the corresponding counter a1 to an of the steel material position detection device 1. The display is also maintained, but in addition, each of the integrating sections d1 to d of the input fuel calorific value integrating device 5 for each steel material
It is also configured so that the accumulated values held by the group accumulating units 5-1 to 5-12 in n are introduced each time they are held, and are displayed and held.
本実施例の構成及び作用については以上説明した通りで
あるが、鋼材別投入燃料発熱量積算装置5における各積
演算結果は、単なる表示にとどめることなく、例えば各
バーナーグループの燃料投入流量制御装置に制御要素と
して用いて鋼材焼き上り温度管理の精度向上及び合理化
を計り、燃料原単位の低減を可能とすることができると
ともに、燃料投入配分を制御せしめスキッドマーク緩和
の最適操業化をも有利に計ることができる。Although the configuration and operation of this embodiment are as described above, the results of each product calculation in the input fuel calorific value integration device 5 for each steel material are not limited to mere display, but can be used, for example, in the fuel input flow rate control device of each burner group. It can be used as a control element to improve accuracy and rationalize steel baking temperature control, reduce fuel consumption, and control fuel input distribution, making it advantageous to optimize operations to reduce skid marks. It can be measured.
又この他、バーナーの熱風温度コントロール、空燃化コ
ントロール、炉内における鋼材Sの搬送速度コントロー
ル即ち在炉時間の調節制御等の各種匍脚にも使用してそ
の精度向上及び合理化を有利に計ることができるもので
ある。In addition, it can also be used for various types of pedestals, such as burner hot air temperature control, air combustion control, conveyance speed control of steel material S in the furnace, that is, adjustment control of the furnace time, etc., to advantageously improve precision and rationalization. It is something that can be done.
図は本発明の一実施例を示す説明図である。
H・・・連続式加熱炉、1・・・鋼材位置検出装置、2
・・・加熱ゾーン内鋼材重量算出装置、3・・・燃料流
量測定装置、4・・・発熱量算出装置、5・・・鋼材別
投入燃料発熱量積算装置、7・・・表示装置。The figure is an explanatory diagram showing one embodiment of the present invention. H... Continuous heating furnace, 1... Steel position detection device, 2
. . . Steel material weight calculation device in heating zone, 3. Fuel flow rate measurement device, 4. Calorific value calculation device, 5. Input fuel calorific value integration device for each steel material, 7. Display device.
Claims (1)
動位置を検出する鋼材位置検出装置、前記鋼材位置検出
装置からの各鋼材位置検出信号をその位置検出信号に応
じて該当鋼材の重量を導入記憶し、且つ加熱炉長手方向
の各加熱ゾーン内鋼材の総重量を遂次算出する加熱ゾー
ン内鋼材重量算出装置、前記力撚炉長手方向の各加熱ゾ
ーンにおける燃料投入流量を測定する燃料流量測定装置
、前記加熱ゾーン内鋼材重量算出装置からの各加熱ゾー
ン内鋼材総重量を所定時間毎に導入し、その都度、次の
導入時点までの間、前記燃料流量測定装置からの各加熱
ゾーン毎燃料投入流量を該所定時間内導入し、各加熱ゾ
ーン毎に該導入鋼材総重量に基づいて鋼材単位重量当り
の投入燃料発熱量を算出する発熱量算出装置、前記鋼材
位置検出装置からの各鋼材の炉内長手方向における位置
検出信号を導入し、その各鋼材の炉内長手方向位置信号
に応じて前記発熱量算出装置から該当鋼材の位置する加
熱ゾーンの鋼材単位重量当りの投入燃料発熱量を導入し
積算する鋼材側投入燃料発熱量積算装置、の夫々を設け
たことを特徴とする連続式加熱炉の鋼材加熱投入熱量測
定装置。1. On the steel material side, a steel material position detection device that detects the movement position at least in the longitudinal direction within the Okishima reactor, and each steel material position detection signal from the steel material position detection device is introduced and stored, and the weight of the corresponding steel material is introduced and stored in accordance with the position detection signal. and a heating zone steel weight calculation device that sequentially calculates the total weight of steel materials in each heating zone in the longitudinal direction of the heating furnace, and a fuel flow rate measurement device that measures the fuel input flow rate in each heating zone in the longitudinal direction of the force-twisting furnace. , the total weight of steel in each heating zone is introduced from the heating zone steel weight calculation device at predetermined time intervals, and each time, until the next introduction point, fuel is introduced into each heating zone from the fuel flow rate measurement device. A calorific value calculation device that calculates the calorific value of the input fuel per unit weight of steel material based on the total weight of the introduced steel material for each heating zone by introducing the flow rate within the predetermined time, and a furnace for each steel material from the steel material position detection device. A position detection signal in the inner longitudinal direction is introduced, and in accordance with the inner longitudinal direction position signal of each steel material, the calorific value of the input fuel per unit weight of steel material in the heating zone where the steel material is located is introduced from the calorific value calculation device. 1. A steel material heating input heat amount measuring device for a continuous heating furnace, characterized in that a steel material side input fuel calorific value integrating device is provided for integration.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11032475A JPS58492B2 (en) | 1975-09-11 | 1975-09-11 | It's hard to find a solution to the problem. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11032475A JPS58492B2 (en) | 1975-09-11 | 1975-09-11 | It's hard to find a solution to the problem. |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5233813A JPS5233813A (en) | 1977-03-15 |
JPS58492B2 true JPS58492B2 (en) | 1983-01-06 |
Family
ID=14532827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11032475A Expired JPS58492B2 (en) | 1975-09-11 | 1975-09-11 | It's hard to find a solution to the problem. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58492B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI73312C (en) * | 1985-11-28 | 1987-09-10 | Outokumpu Oy | ANORDINATION FOR ELECTRICAL EQUIPMENT IN ELECTRICITY AND ELECTRICITY. |
JP6252785B2 (en) * | 2014-09-25 | 2017-12-27 | トヨタ自動車株式会社 | Work cooling method and work cooling device |
-
1975
- 1975-09-11 JP JP11032475A patent/JPS58492B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5233813A (en) | 1977-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4243441A (en) | Method for metal strip temperature control | |
CN102652961A (en) | Control device and control method | |
JPS6111289B2 (en) | ||
CN209097793U (en) | Intelligent loading apparatus and intelligent entrucking tower | |
JPS61145606A (en) | Interference correspondence type pattern switching temperature controller | |
CN107442757A (en) | A kind of continuous casting billets of fixed weight sizing and cut method | |
CN109292483A (en) | Intelligent loading method and device | |
CN108717499A (en) | A kind of heater for rolling steel burnup analysis method and system | |
US4394121A (en) | Method of controlling continuous reheating furnace | |
JPS58492B2 (en) | It's hard to find a solution to the problem. | |
CN105107849A (en) | Hot continuous rolling intermediate billet thickness calculating method | |
CN110404979A (en) | Bearing steel controlled rolling and controlled cooling calibrates temperature measurer with annular | |
US3627857A (en) | Heating controlling system in a multizone type continuously heating furnace | |
JPH0480973B2 (en) | ||
JPH0275409A (en) | Method for controlling winding temperature of hot rolled steel sheet | |
RU1786079C (en) | Method for controlling hot blast flow through tuyere | |
CN115828772B (en) | Rapid calculation method for billet temperature by combining forward mechanism and machine learning | |
CN210141938U (en) | Steel ball falling temperature monitoring mechanism | |
SU995949A1 (en) | Apparatus for measuring technical parameters of hot rolled strip cooling process | |
JPS5826414B2 (en) | Method for controlling heating temperature of strip in heating furnace | |
JP2747143B2 (en) | Zone length measuring device | |
JPS63149319A (en) | Control method for furnace temperature in continuous heating furnace | |
SU857074A1 (en) | Method of automatic control of ceramic article annealing process in slot furnace | |
JPS57104631A (en) | Method for controlling plate width in continuous heating furnace for steel strip | |
CN116043005A (en) | Control method for automatically adjusting full-length temperature of slab based on full-field-of-view thermometer |