JPS58492A - Device for improving propulsion efficiency of ship - Google Patents

Device for improving propulsion efficiency of ship

Info

Publication number
JPS58492A
JPS58492A JP9808581A JP9808581A JPS58492A JP S58492 A JPS58492 A JP S58492A JP 9808581 A JP9808581 A JP 9808581A JP 9808581 A JP9808581 A JP 9808581A JP S58492 A JPS58492 A JP S58492A
Authority
JP
Japan
Prior art keywords
propeller
fin
fins
ship
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9808581A
Other languages
Japanese (ja)
Inventor
Tsutomu Ikeda
勉 池田
Yoshimatsu Kawasue
川末 代四末
Katsuyoshi Takekuma
武隈 克義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9808581A priority Critical patent/JPS58492A/en
Publication of JPS58492A publication Critical patent/JPS58492A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/16Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in recesses; with stationary water-guiding elements; Means to prevent fouling of the propeller, e.g. guards, cages or screens

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To enhance the propulsion efficiency of a propeller and at the same time reduce the manufacturing cost of the device by a structure wherein the setting angle of fins located at the side, at which the blade of the propeller moves upward, are rendered to be constant, resulting in effectively generating rotating currents. CONSTITUTION:The fins 12a2 and 12b2 located at the side, at which the blade of the propeller moves upward, are fitted in such a manner that the trailing edge of the fin is lower than the leading edge and the setting angle of the fin is kept constant throughout the entire length of the fin. The fins with constant setting angle can generate the rotating currents with opposite rotating direction to that caused by the blades of the propeller as effective as the fins twisted toward their tips can do. Consequently, the enhancement of the propulsion efficiency of the propeller and the reduction of the manufacturing cost of said device are resulted.

Description

【発明の詳細な説明】 本発明は、船舶の推進性能を向上させるための装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for improving the propulsion performance of a ship.

第1図および第2図は9通常のl軸1舵船の船尾部分に
おいて、プロペラの前方に複数個のフィンを取付け、プ
ロペラに流入する流れにプロペラの回転と逆方向の回転
流を与えて、これによりプロペラ後方の回転流を打消し
、推進効率の向上をはかるようにした。従来の第1例の
船舶推進性能向上装置を示すものであって、上記フィン
は一般にリアクションフィンと呼ばれている。
Figures 1 and 2 show a structure in which a plurality of fins are attached to the front of the propeller in the stern of a normal l-axis, single-rudder vessel, and a rotational flow in the opposite direction to the rotation of the propeller is applied to the flow flowing into the propeller. This cancels the rotational flow behind the propeller and improves propulsion efficiency. This figure shows a first example of a conventional ship propulsion performance improvement device, and the fins mentioned above are generally called reaction fins.

第1図および第2図に図示する従来の第1例の船舶推進
性能向上装置において、1は船体、1ati船底、2は
プロペラ;3はプロペラボス、4は舵、5は上部舵支持
部材、6は舵柄、7はシューピース、8はプロペラキャ
ップ、9はプロペラ軸で、同軸9の後端はプロペラ2に
、また、同軸9の前端は図示されない原動機に連結され
て−る。10は船尾ボス(以下ボスと云う。)であり、
同ボスl。
In the first conventional ship propulsion performance improvement device shown in FIGS. 1 and 2, 1 is a hull, 1 is a bottom, 2 is a propeller; 3 is a propeller boss; 4 is a rudder; 5 is an upper rudder support member; 6 is a rudder handle, 7 is a shoe piece, 8 is a propeller cap, and 9 is a propeller shaft.The rear end of the coaxial shaft 9 is connected to the propeller 2, and the front end of the coaxial shaft 9 is connected to a prime mover (not shown). 10 is the stern boss (hereinafter referred to as the boss),
Same boss l.

フレーム11a、11bに固着されている。It is fixed to frames 11a and 11b.

11aは上部スターンフレーム、11bは下部スターン
フレーム+12a、12b。
11a is an upper stern frame, 11b is a lower stern frame +12a, 12b.

12c、12d、12e、12fはリアクションフィン
、13は満載喫水線である。
12c, 12d, 12e, and 12f are reaction fins, and 13 is a load waterline.

以下、プロペラ2が右回りの場合について。Below is a case where propeller 2 rotates clockwise.

第2図に、、につて、7(ン12a 、12b 。In Figure 2, 7 (n 12a, 12b).

12C,12dt12e、12fにつき説明する。なお
、プロペラ2が左回りの場合には右回りの場合と逆であ
る。
12C, 12dt12e, and 12f will be explained. Note that when the propeller 2 rotates counterclockwise, it is opposite to when it rotates clockwise.

第2図は第1図のn−m断面拡大図、第3図はその左舷
側からの側面図、第4図は第3図のW−M断面図、第5
図は第3図のV−V断面図、第6図は第2図の右舷側か
らの側面図、第7図は第6図の■−■断面図、第8図は
第6図の■−■断面図である。
Figure 2 is an enlarged cross-sectional view taken along the nm line in Figure 1, Figure 3 is a side view from the port side, Figure 4 is a cross-sectional view taken along the line W-M in Figure 3, and Figure 5 is a cross-sectional view taken along the line W-M in Figure 3.
The figure is a V-V cross-sectional view of Figure 3, Figure 6 is a side view from the starboard side of Figure 2, Figure 7 is a cross-sectional view taken along ■-■ of Figure 6, and Figure 8 is a ■-■ of Figure 6. −■ It is a sectional view.

なお9図中前および後の表示は、船体1の前側および後
側を表わし、αはプロペラ軸中心線14に対する取付角
を表わす。
Note that the front and rear designations in FIG. 9 represent the front and rear sides of the hull 1, and α represents the mounting angle with respect to the propeller shaft centerline 14.

取付角とはフィンの翼舷とプロペラ軸中心線とのなす角
である。
The mounting angle is the angle between the wing side of the fin and the center line of the propeller shaft.

また、14はプロペラ軸中心線を表示するものである。Further, 14 indicates the center line of the propeller shaft.

プロペラ軸9と同心のボス10から放射状に突出するフ
ィン12a、12b、12c。
Fins 12a, 12b, and 12c protrude radially from a boss 10 concentric with the propeller shaft 9.

12 d t 12 e s 12 ’におイテ、右舷
側フィン12d、12e、12fの取付角αは。
12 d t 12 e s 12 'The installation angle α of the starboard side fins 12d, 12e, and 12f is.

ボス10の取付根部から先端になるにつれて漸次大きく
なるように捩られている。一方。
The boss 10 is twisted so that it gradually becomes larger from the attachment root to the tip. on the other hand.

左舷側フィン12a、12k)、12Cの取付角αは、
ボス10の取付根部から先端になるにつれて、漸次小さ
くなるように捩られている。
The mounting angle α of the port side fins 12a, 12k) and 12C is:
The boss 10 is twisted so that it gradually becomes smaller from the attachment root to the tip.

一般に、リアクションフィン取付予定位置の流湯分布を
示讐と第9図のようになる。なお2図中15はプロペラ
先端の回転軌跡であり、数値はプロペラ軸方向の流速V
xと船速■との比を表わし、カーブはその比の等しいも
のを結んだ線である。また、矢印は船幅方向および船深
方向の流速成分と方向とを表わす境りトル表示である。
Generally, the flow distribution at the reaction fin mounting position is shown in FIG. 9. Note that 15 in Figure 2 is the rotation trajectory of the propeller tip, and the numerical value is the flow velocity V in the propeller axial direction.
It represents the ratio between x and ship speed ■, and a curve is a line connecting the lines with the same ratio. Further, the arrows are border torque indicators representing flow velocity components and directions in the ship width direction and the ship depth direction.

第9図に見られるごとく、ボス10からだんだん遠ざか
るにつれて、プロペラ軸方向の流速Vxは大きくなって
いる。
As seen in FIG. 9, the flow velocity Vx in the propeller axial direction increases as the distance from the boss 10 increases.

第10図は、第2図の左舷側フィンの比較的ボス10に
近い部分の流れのベクトル図であり、第11図は、フィ
ンの比較的先端に近い部分の流れのベクトル図である。
FIG. 10 is a vector diagram of the flow in a portion of the port side fin in FIG. 2 that is relatively close to the boss 10, and FIG. 11 is a vector diagram of the flow in a portion of the fin that is relatively close to the tip of the fin.

なお2図中16はフィンに直角の流速成分、17は流れ
の大きさ、18はプロペラ軸方向の流速成分Vx 、θ
はフィンρ流れに対する迎角を示す。第10図および第
11図に見られるごとく、フィンの流れに対する迎角0
は、フィン取付根本部よりもフィン先端部の方が小さく
なっている。
In Figure 2, 16 is the flow velocity component perpendicular to the fins, 17 is the flow size, and 18 is the flow velocity component in the propeller axial direction Vx, θ
indicates the angle of attack with respect to the fin ρ flow. As seen in Figures 10 and 11, the angle of attack for the fin flow is 0.
The tip of the fin is smaller than the base of the fin attachment.

上記のような流湯分布を示す流体中において、プロペラ
2が回転して船体1が航走すると、プロペラ前方に設け
られたリアクションフイン12a、12b、12c、1
2d。
When the propeller 2 rotates and the hull 1 travels in a fluid exhibiting the above-mentioned flowing hot water distribution, the reaction fins 12a, 12b, 12c, 1 provided in front of the propeller
2d.

12e、12fによって、プロペラ回転と逆方向に流れ
が変えられてプロペラ2に流入される。そのため、プロ
ペラ後方に残る回転流が減少して、その分だけ推進効率
が高まる。
The flow is changed by 12e and 12f in a direction opposite to the rotation of the propeller and flows into the propeller 2. Therefore, the rotational flow remaining behind the propeller is reduced, and the propulsion efficiency is increased accordingly.

その際、右舷側フィン12d、12e。At that time, the starboard side fins 12d and 12e.

12、fは、取付根部よりも先端部の方が取付角αは大
きくなるように捩られている。したがって流れ17のフ
ィン12d、12e。
12, f is twisted so that the mounting angle α is larger at the tip than at the mounting root. Thus the fins 12d, 12e of stream 17.

12fに対する迎角0は、取付根部から先端までほぼ同
等であるため、プロペラ回転方向と逆向きの回転流が有
効に発生、する。
Since the angle of attack 0 with respect to 12f is approximately the same from the attachment root to the tip, a rotational flow in the opposite direction to the propeller rotation direction is effectively generated.

一方、左舷側フィン12 a H12b +12Cは、
取付根部よりも先端部の方が取付角aは小さくなるよう
に捩られている。したがって、流れ17のフィン12a
、12b。
On the other hand, the port side fin 12a H12b +12C is
The mounting angle a is twisted such that the mounting angle a is smaller at the tip than at the mounting root. Therefore, the fins 12a of the stream 17
, 12b.

12Cに対する迎角0は、取付根部から先端まで漸次小
さくなっているので、プロペラ回転と逆方向の回転流が
有効に発生しない。
Since the angle of attack 0 with respect to 12C gradually decreases from the attachment root to the tip, a rotational flow in the direction opposite to the propeller rotation is not effectively generated.

したがって、従来の第1例の船舶推進性能向上装置によ
れば、リアクションフィン効果による推進効率が充分に
高くならないということが分った。発明者らは上記の欠
点を知見1、さらに推進効率を高めるために実験を行な
い第12図及至第15図に図示する船舶推進性能向−L
装置を開発して既に出願を行なった。
Therefore, it has been found that with the first example of the conventional ship propulsion performance improving device, the propulsion efficiency due to the reaction fin effect cannot be sufficiently increased. The inventors discovered the above-mentioned drawbacks 1 and conducted experiments to further improve the propulsion efficiency, and the ship propulsion performance-L shown in FIGS. 12 to 15 was
We have already developed a device and filed an application.

第12図は、第1図のn−n断面に相当する従来の第2
例の船舶推進性能向上装置の断面図、第13図はその左
舷側からの側面図。
FIG. 12 shows a conventional second cross section corresponding to the nn cross section in FIG.
FIG. 13 is a sectional view of the example ship propulsion performance improvement device, and FIG. 13 is a side view from the port side.

第14図は第13図のXIV−XIV断面図、第15図
は第13図のxv −xv断面図である。
14 is a sectional view taken along line XIV-XIV in FIG. 13, and FIG. 15 is a sectional view taken along line xv-xv in FIG. 13.

第12図及至第15図において+ 12al’ 112
b+  + 12Ci + 12cl、 t 12e+
’ t 12f+はボス10に放射状に取付られたフィ
ンであり。
In Figures 12 to 15, + 12al' 112
b+ + 12Ci + 12cl, t 12e+
't12f+ are fins attached radially to the boss 10.

同フイ:/ 12al’+ I2b、 t t2c、、
 12dl + 12e+ )12f、のすべては、フ
ィン取付根部から先端の方へ漸次大きくなっている。
Same phi: / 12al'+ I2b, t t2c,,
12dl + 12e+ ) 12f, all of which gradually become larger from the fin attachment root toward the tip.

二のように構成された従来の第2例の船舶推進性能向上
装置において、プロペラ2が右回りに回転すると、リア
クションフィンに流れ込む水の流れは、右舷側フィン1
2d、 、 12e、。
In the conventional marine propulsion performance improvement device of the second example configured as shown in FIG. 2, when the propeller 2 rotates clockwise, the water flowing into the reaction fin is
2d, , 12e,.

12f、ノ場合と同様、左舷側フィン12a1,12b
1゜12C6の場合も、フィン取付根部から先端へむか
って漸次取付角αが大きくなっているので。
As in the case of 12f, port side fins 12a1, 12b
Even in the case of 1°12C6, the mounting angle α gradually increases from the fin mounting root to the tip.

水の流れに対する迎角θはフィン取付根部から先端まで
ほぼ同等となる。そのため、左舷側フィン12al H
12bl + !L2eiJKふ−tpて1奄記右・′
舷側フィン”2d+ + 12e、 t 12f、と同
様、プロペラ回転と逆方向の回転流が有効に発生してプ
ロペラに流入するので9本船舶推進性能向上装置による
推進効率は、従来の船舶推進性19a 、 19b 、
 19C、19d 、 19e 、 19fを。
The angle of attack θ with respect to the water flow is approximately the same from the fin attachment root to the tip. Therefore, the port side fin 12al H
12bl+! L2eiJKfu-tp te 1 Enki right・'
Similar to the side fins ``2d+ + 12e, t 12f, a rotational flow in the direction opposite to the propeller rotation is effectively generated and flows into the propeller, so the propulsion efficiency of the 9 ship propulsion performance improvement device is equal to that of the conventional ship propulsion 19a. , 19b,
19C, 19d, 19e, 19f.

リアクションフィンの振動防止をかねて補強を行なった
従来の第3例の船舶推進性能向上装置である。また、補
強材は図示するようにフィンの中央部以外に、フィン先
端部にも取付けて良い。
This is a third example of a conventional ship propulsion performance improvement device in which the reaction fins are reinforced to prevent vibration. Further, the reinforcing material may be attached not only to the center of the fin but also to the tip of the fin as shown in the figure.

しかし°、第第1固 従来の第2例および第3例の船舶推進性能向上装置では
2両舷のフィンはいずれもフィン取付根部から先端にむ
かって漸次プロペラ軸9に対する取付角αが大きくなる
ように捩られている形状であるので,その製作費が非常
に大きいものとなっていた。
However, in the ship propulsion performance improvement devices of the second and third examples of the first fixed conventional ship propulsion performance improvement device, the mounting angle α of the fins on both sides of the fins with respect to the propeller shaft 9 gradually increases from the fin mounting root to the tip. Because of its twisted shape, the production cost was extremely high.

したがって2発明者らは製作費低減の見地からさらに実
験を行ない,船舶を前進させる方向に回転するプロペラ
の翼が上方へ移動する側にあってはフィンのプロペラ軸
中心線に対する取付角を後縁下りにボスの取付部からフ
ィンの先端までを同一としたリアクションフィンにおい
ても,推進効率が第16図および第17図に図示する船
舶推進性能向上装置の推進効率に比べて殆んど低下しな
いことが゛判明した。
Therefore, the two inventors conducted further experiments from the viewpoint of reducing production costs, and found that on the side where the blades of the propeller rotating in the direction of forward movement of the ship move upward, the mounting angle of the fins relative to the center line of the propeller axis was adjusted to the trailing edge. Even with reaction fins in which the length from the boss attachment point to the tip of the fin is the same on the downhill side, the propulsion efficiency will hardly decrease compared to the propulsion efficiency of the ship propulsion performance improvement device shown in Figures 16 and 17. It became clear.

本発明は,上記の実験の結果に基づいて発明されたもの
である。
The present invention was invented based on the results of the above experiments.

すなわち9本発明は,船尾のスクリュープロペラの前方
に,プロペラ軸を囲むボスから放射状に突出し,上記プ
ロペラへ流入する流れの向きを,上記プロペラの回転方
向と逆向きに変換するように形成した複数のフィンを備
えたリアクションフィンにおいて,船舶を前進させる方
向に回転する上記プロペラの翼が下方へ移動する側にあ
たっては上記フィンの上記プロペラ軸中心線に対する取
付角を後縁上りに上記ボスの取付部から上記フィンの先
端にむかって大きくなるように捩り,上記翼が上方へ移
動する側にあっては上記フィンの上記プロペラ軸中心線
に対する取付角を後縁下りに上記ボスの取付部から上記
フィンの先端まで同一としたことを特徴とし,その目的
とするところは,従来のものの船舶推進性能向上装置の
推進効率を維持しながら,コスト低減を図ることの出来
る船舶推進性能向上装置を提供するものである。
In other words, the present invention provides a plurality of screw propellers in front of the stern screw propeller that protrude radially from a boss surrounding the propeller shaft and are formed so as to convert the direction of the flow flowing into the propeller into a direction opposite to the rotating direction of the propeller. In a reaction fin equipped with fins, on the side where the blades of the propeller rotating in the direction of forward movement of the ship move downward, the mounting angle of the fin with respect to the center line of the propeller shaft is set so that the mounting angle of the boss is upward from the trailing edge. From there, twist the fin so that it becomes larger toward the tip of the fin, and on the side where the blade moves upward, adjust the mounting angle of the fin with respect to the center line of the propeller shaft from the mounting part of the boss to the fin in a downward direction from the trailing edge. The purpose is to provide a ship propulsion performance improvement device that can reduce costs while maintaining the propulsion efficiency of conventional ship propulsion performance improvement devices. It is.

以下9本発明の好ましい一実施例を第18図および第1
9図に図示する実施例にて説明する。なお、第18図お
よび第19図におして、第1図及至第16図中のものと
均等なものについては、同一の符号を付している。
The following nine preferred embodiments of the present invention are shown in FIGS. 18 and 1.
This will be explained using an example shown in FIG. Note that in FIGS. 18 and 19, parts equivalent to those in FIGS. 1 to 16 are designated by the same reference numerals.

また2本実施例もプロペラが右回りの場合を示すもので
ある。したがって、プロペラが左回りの場合は逆となる
The two embodiments also show cases in which the propeller rotates clockwise. Therefore, if the propeller is rotating counterclockwise, the opposite is true.

第18図は第19図の鬼−罵断面図で。Figure 18 is a cross-sectional view of Figure 19.

第1図の11断面に相当する本実施例の断面図、第19
図はその右舷側から見た側面図である。
A cross-sectional view of this embodiment corresponding to cross section 11 in FIG. 1, No. 19
The figure is a side view seen from the starboard side.

第18図および第19図において、 12a、。In FIGS. 18 and 19, 12a.

12b、は左舷側フィンであり、同左舷側フィン12a
、 l 1zb、 ハボス1oの取付根部がらフィンの
先端までプロペラ軸中心線14に対する取付角αが同一
となっており、単にプロペラ軸中心線14に対して傾斜
しているだけで捩られてはいない。なお、右舷側フィン
12d、。
12b is a port side fin, and the same port side fin 12a is
, l 1zb, The mounting angle α with respect to the propeller shaft center line 14 is the same from the mounting root of Habos 1o to the tip of the fin, and it is merely inclined with respect to the propeller shaft center line 14 and is not twisted. . Note that the starboard side fin 12d.

12f、は第16図などで示すフィンと同一のものであ
る。
12f is the same fin as shown in FIG. 16 and the like.

このように構成された本実施例において。In this embodiment configured in this way.

船内の図示されなり原動機により、プロペラ軸9を回わ
し、同プロペラ軸9の回転によってプロペラ2が右側へ
回ると船体1が航行する。その際、船尾部の水の流れは
、フィン12az r 12b2t 12’t + 1
2’+にょって左回転方向に変えられてプロペラ2へ流
入する。この場合、左舷側のフィン12att 12b
tは捩られてい3いが、捩られた従来のフィン12a、
A propeller shaft 9 is rotated by a motor (not shown) inside the ship, and when the propeller 2 rotates to the right due to the rotation of the propeller shaft 9, the ship 1 sails. At that time, the flow of water at the stern is as follows: fin 12az r 12b2t 12't + 1
2'+, the rotation direction is changed to the left and flows into the propeller 2. In this case, the port side fins 12att 12b
t is twisted 3, but the twisted conventional fin 12a,
.

12b、と作用効果は大差がない。一方、上記の回転流
によりプロペラ2の後方に発生する右回りの回転流が減
少して、推進効率が高くなる。
12b, there is no big difference in action and effect. On the other hand, the rotational flow described above reduces the clockwise rotational flow generated behind the propeller 2, increasing the propulsion efficiency.

第20図は従来の船舶推進性能向上装置と本発明の上記
実施例との軸馬力減少の割合を比較したものである。
FIG. 20 compares the reduction in shaft horsepower between the conventional ship propulsion performance improving device and the above-described embodiment of the present invention.

第20図中の点線は本発明の実施例である第18図ふ・
よび第19図に図示する船舶推進性能向上装置について
、実線ハ実16図および第17図に図示する船舶推進性
能向上装置について、鎖線は、第16図の左舷側フィン
を第2図に図示するように取付角を先端に向って減少す
るように捩った船舶推進性能向上装置について、船速ベ
ースに軸馬力を計測した各々の結果を示す。第20図の
横軸は船速。
The dotted line in FIG. 20 indicates the embodiment of the present invention.
Regarding the ship propulsion performance improving device shown in FIGS. 16 and 17, the solid line indicates the port side fin in FIG. The results of measuring shaft horsepower based on ship speed for a ship propulsion performance improvement device twisted so that the mounting angle decreases toward the tip are shown below. The horizontal axis in Figure 20 is ship speed.

縦軸はリアクションフィン有とリアクションフィン無と
での軸馬力の差をリアクションフィン無の軸馬力で除し
た値を示す。なお、Aで示す点線、実線、鎖線(以下、
三本線と云う。)は回転流減少による軸馬力の減少割合
を示すものであり、Bで示す三本線はリアクションフィ
ンを設けたことによる抵抗増加に起因する軸馬力抵抗増
加割合を示すものである。したがって、推進効率を高め
るためのAの三本線のプラス要素とBの三本線のマイナ
スス要素とを相殺したものがCの抵抗増加を控除した軸
馬力の減少割合の三本線となる。
The vertical axis shows the value obtained by dividing the difference in shaft horsepower between with and without reaction fins by the shaft horsepower without reaction fins. In addition, the dotted line, solid line, and chain line indicated by A (hereinafter,
It's called three lines. ) indicates the rate of decrease in shaft horsepower due to a decrease in rotational flow, and the three lines indicated by B indicate the rate of increase in shaft horsepower resistance due to increased resistance due to the provision of reaction fins. Therefore, the positive elements of the three lines A for increasing propulsion efficiency and the negative elements of the three lines B cancel each other out, resulting in the three lines of the reduction ratio of the shaft horsepower after deducting the increase in resistance of C.

第20図のC領域の三本線を比較すると。Comparing the three lines in area C in Figure 20.

本発明の実施例の場合を示す点線は、左舷側フィンの取
付角が先端に向って増加するりアクションフィンの場合
を示す実線よりも抵抗増加を控除した軸馬力の減少割合
は若干少いものの、左舷側フィンの取付角が先端に向っ
て減少する船舶推進性能向上装置の場合を示す鎖線より
も抵抗増加を控除した軸馬力の減少割合は著しく大きく
なる。すなわち。
Although the dotted line showing the case of the embodiment of the present invention shows that the mounting angle of the port side fin increases toward the tip or the solid line showing the case of action fin, the percentage decrease in shaft horsepower after deducting the increase in resistance is slightly smaller. , the reduction rate of the shaft horsepower after deducting the increase in resistance is significantly larger than the chain line showing the case of a marine propulsion performance improvement device in which the mounting angle of the port side fin decreases toward the tip. Namely.

本実施例の推進効率は第16図および第17図で示す従
来の第3例の船舶推進性能向上装置の場合の推進効率と
ほぼ同等になる。
The propulsion efficiency of this embodiment is approximately equal to the propulsion efficiency of the third conventional ship propulsion performance improvement device shown in FIGS. 16 and 17.

以上、上記の実施例において詳述したように2本発明は
船尾のスクリュープロペラの前方ニ、プロペラ軸を囲む
−ボスから放射状に突出し、上記プロペラへ流入する流
れの向きを、上記プロペラの回転方向と逆向きに変換す
るように形成した複数のフィンを備えたリアクションフ
ィンにおいて、船舶を前進させる方向に回転する上記プ
ロペラの翼が下方へ移動する側にあっては上記フィンの
上記プロペラ軸中心線に対する取付角を後縁上りに上記
ボスの取付部から上記フィンの先端にむかつて大きくな
るように捩り、上記翼が上方へ移動する側にあっては上
記フィンの上記プロペラ軸中心線に対する取付角を後縁
下りに上記ボスの取付部から上記フィンの先端まで同一
としたことを特徴とする船舶推進性能向上装置であるの
で、船舶を前進させる方向に回転する上記プロペラの翼
が上方へ移動する側の上記フィンが先端根太きく捩れて
iるリアクションフィン(第16図)と同程度に推進効
率を高めるとともに、上記翼が上方へ移動する側の上記
フィンは捩る必要がないので工作が容易でありしたがっ
てコストの低減を図ることが出来るという利点がある。
As described above in detail in the above-described embodiments, two parts of the present invention protrude radially from a boss that surrounds the propeller shaft at the front of the stern screw propeller, and direct the direction of the flow flowing into the propeller in the direction of rotation of the propeller. In a reaction fin equipped with a plurality of fins formed to convert in the opposite direction, the center line of the propeller axis of the fin is on the side where the blades of the propeller rotating in the direction of forward movement of the ship move downward. Twist the mounting angle with respect to the center line of the propeller shaft on the side where the blade moves upward by twisting the mounting angle of the fin with respect to the center line of the propeller shaft. is the same from the attachment part of the boss to the tip of the fin in the downward direction of the trailing edge, so that the blade of the propeller rotating in the direction of moving the ship forward moves upward. The propulsive efficiency is increased to the same extent as the reaction fin (Fig. 16), in which the fin on the side has a thickly twisted tip (Fig. 16), and the fin on the side where the wing moves upward does not need to be twisted, so it is easy to work. Therefore, there is an advantage that costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の第1例を示す船舶推進性能向上装置の側
面図、第2図は第1図のi−n断面拡大図、第3図はそ
の左舷側からの側面図、第4図は第3図の■−tv断面
図、第5図は第3図のV−V断面図、第6図は第2図の
右舷側からの側面図、第7図は第6図の■−■断面図、
第8図は第6図の■−■断面図。 第9図はリアクションフィン取付位置の流湯分布図、第
10図はフィンの比較的フィンボスに近い部分の流れの
ベクトル図、第11図はフィンの比較的先端に近い部分
の流れのベクトル図、第12図は従来の第2例を示す船
舶推進性能向上装置の要部拡大断面図、第13図はその
左舷側からの側面図、第14図は、第13図のW−XI
V断面図、第15図は第13図のxv−xv断面図、第
16図は従来の第3例を示す船舶推進性能向上装置の要
部拡大断面図、第17図はその右舷側から見た側面図、
第18図は本発明に係、る一実施例の要部拡大断面図、
第19図はその右舷側から見た側面図、第20図は従来
のリアクションフィンと本発明の実施例との軸馬力の減
少の割合を比較して表わしたグラフである。 1…船体+2°″・プロペラ 4@@@舵り9″″″プ
ロヘラ軸 I Qassボス+11a″′I・上部スタ
ーンフレー゛ム、11b・・・下部スターンフレ第 2
 図 第 6 図 第9図 第10図 第12図 第16面 第17図
Fig. 1 is a side view of a conventional marine propulsion performance improvement device showing the first example, Fig. 2 is an enlarged cross-sectional view taken along the i-n line in Fig. 1, Fig. 3 is a side view from the port side, and Fig. 4 is a cross-sectional view taken along the line ■-tv in Figure 3, Figure 5 is a cross-sectional view taken along the line V-V in Figure 3, Figure 6 is a side view from the starboard side in Figure 2, and Figure 7 is a cross-sectional view taken along the line ■- in Figure 6. ■Cross-sectional view,
FIG. 8 is a sectional view taken along the line ■-■ in FIG. 6. Figure 9 is a hot water distribution diagram at the reaction fin installation position, Figure 10 is a vector diagram of the flow in a portion of the fin relatively close to the fin boss, Figure 11 is a vector diagram of flow in a portion relatively close to the tip of the fin, Fig. 12 is an enlarged cross-sectional view of the main parts of a conventional ship propulsion performance improvement device showing a second example, Fig. 13 is a side view from the port side, and Fig. 14 is a W-XI of Fig. 13.
FIG. 15 is a sectional view taken along the line xv-xv in FIG. 13, FIG. 16 is an enlarged sectional view of the main parts of a conventional third example of a ship propulsion performance improvement device, and FIG. 17 is a view from the starboard side. side view,
FIG. 18 is an enlarged sectional view of a main part of an embodiment according to the present invention;
FIG. 19 is a side view of the fin as seen from the starboard side, and FIG. 20 is a graph comparing the reduction ratio of shaft horsepower between the conventional reaction fin and the embodiment of the present invention. 1...Hull +2°''・Propeller 4@@@Rudder 9''''Propeller shaft I Qass boss +11a''I・Upper stern frame, 11b...Lower stern frame 2nd
Figure 6 Figure 9 Figure 10 Figure 12 Figure 16 Figure 17

Claims (1)

【特許請求の範囲】[Claims] 船尾のスクリュープロペラの前方に、プロペラ軸を囲む
ボスから放射状に突出し、上記プロペラへ流入する流れ
の向きを、上記プロペラの回転方向と逆向きに変換する
ように形成した複数個のフィンを備えたリアクションフ
ィンにおいて、船舶を前進させる方向に回転する上記プ
ロペラの翼が下方へ移動する側にあっては上記フィンの
上記プロペラ軸中心線に対する取付角を後縁上りに上記
ボスの取付部から上記フィンの先端にむかつて大きくな
るように捩り、上記翼が上方へ移動する側にあっては上
記フィンの上記プロペラ軸中心線に対する取付角を後縁
下りに上記ボスの取付部から上記フィンの先端まで一一
としたことを特徴とする船舶推進性能向上装置。
In front of the screw propeller at the stern, a plurality of fins are provided that protrude radially from a boss surrounding the propeller shaft and are formed so as to convert the direction of the flow flowing into the propeller into a direction opposite to the rotating direction of the propeller. In the reaction fin, on the side where the blades of the propeller rotating in the direction of forward movement of the ship move downward, the mounting angle of the fin with respect to the center line of the propeller axis is adjusted upward from the attachment part of the boss to the fin. Twist so that it becomes larger towards the tip of the fin, and on the side where the blade moves upward, adjust the mounting angle of the fin with respect to the center line of the propeller shaft downward from the mounting part of the boss to the tip of the fin. A ship propulsion performance improvement device characterized by:
JP9808581A 1981-06-24 1981-06-24 Device for improving propulsion efficiency of ship Pending JPS58492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9808581A JPS58492A (en) 1981-06-24 1981-06-24 Device for improving propulsion efficiency of ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9808581A JPS58492A (en) 1981-06-24 1981-06-24 Device for improving propulsion efficiency of ship

Publications (1)

Publication Number Publication Date
JPS58492A true JPS58492A (en) 1983-01-05

Family

ID=14210499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9808581A Pending JPS58492A (en) 1981-06-24 1981-06-24 Device for improving propulsion efficiency of ship

Country Status (1)

Country Link
JP (1) JPS58492A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202009002642U1 (en) 2008-03-10 2009-06-25 Becker Marine Systems Gmbh & Co. Kg Device for reducing the power requirement of a ship
EP2100808A1 (en) 2008-03-10 2009-09-16 Becker Marine Systems GmbH & Co. KG Device for lowering the drive output requirements of a ship
JP2013103717A (en) * 2011-11-11 2013-05-30 Becker Marine Systems Gmbh & Co Kg Device for reducing drive power requirement of watercraft
KR101334217B1 (en) * 2011-05-03 2013-11-29 에스피피조선 주식회사 Fuel-efficiecy Improving crown duct for ship
KR101381526B1 (en) * 2012-07-27 2014-04-10 현대중공업 주식회사 A propulsion apparatus for ship
KR101381497B1 (en) * 2012-07-27 2014-04-10 현대중공업 주식회사 A propulsion apparatus for ship
WO2015012490A1 (en) * 2013-07-26 2015-01-29 부산대학교 산학협력단 Thrust force improvement apparatus for ship

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2100808A1 (en) 2008-03-10 2009-09-16 Becker Marine Systems GmbH & Co. KG Device for lowering the drive output requirements of a ship
EP2100809A2 (en) 2008-03-10 2009-09-16 Becker Marine Systems GmbH & Co. KG Device for lowering the drive output requirements of a ship
EP2100809A3 (en) * 2008-03-10 2009-12-02 Becker Marine Systems GmbH & Co. KG Device for lowering the drive output requirements of a ship
US8123578B2 (en) 2008-03-10 2012-02-28 Becker Marine Systems Gmbh & Co. Device for reducing the power demand for the propulsion of a ship
US8430703B2 (en) * 2008-03-10 2013-04-30 Becker Marine Systems Gmbh & Co. Kg Device for reducing the drive power requirement of a ship
DE202009002642U1 (en) 2008-03-10 2009-06-25 Becker Marine Systems Gmbh & Co. Kg Device for reducing the power requirement of a ship
KR101334217B1 (en) * 2011-05-03 2013-11-29 에스피피조선 주식회사 Fuel-efficiecy Improving crown duct for ship
JP2013103717A (en) * 2011-11-11 2013-05-30 Becker Marine Systems Gmbh & Co Kg Device for reducing drive power requirement of watercraft
US8814496B2 (en) 2011-11-11 2014-08-26 Becker Marine Systems Gmbh & Co. Kg Device for reducing the drive power requirements of a watercraft
KR101521772B1 (en) * 2011-11-11 2015-05-20 베커 마린 시스템즈 게엠베하 운트 콤파니 카게 Device for reducing the drive power requirements of a watercraft
KR101381526B1 (en) * 2012-07-27 2014-04-10 현대중공업 주식회사 A propulsion apparatus for ship
KR101381497B1 (en) * 2012-07-27 2014-04-10 현대중공업 주식회사 A propulsion apparatus for ship
WO2015012490A1 (en) * 2013-07-26 2015-01-29 부산대학교 산학협력단 Thrust force improvement apparatus for ship

Similar Documents

Publication Publication Date Title
JP4939269B2 (en) Stern horizontal duct and ship
JPH06508319A (en) Propulsion thrust ring system
JP6951291B2 (en) Stern fins and ships with them
JPH0539090A (en) Rudder
JPS5830896A (en) Reaction rudder without discontinuous part
JPS58492A (en) Device for improving propulsion efficiency of ship
JPS5950889A (en) Stern fin to control stern eddy
JPS58194691A (en) Water-current inducing surface of stern of screw propeller ship
JP4382120B2 (en) Turbine fin with duct
WO2021014919A1 (en) Stern fin
JPH06305487A (en) Rudder
KR20110101002A (en) Rudder for vessel
JPS58493A (en) Device for improving propulsion efficiency of ship
JPS6216878B2 (en)
JP2005246996A (en) Ship rudder, and ship
JP4363795B2 (en) High lift twin rudder system for ships
JPS6225997Y2 (en)
JP7219664B2 (en) ship rudder fin device
JP2554773B2 (en) Rudder
JPH09193892A (en) Stern fin
JPS595678Y2 (en) Marine reaction fin
JPS6216877B2 (en)
JP3093097U (en) Ship vibration reduction device
JPS6036556Y2 (en) Vessel with stern vortex canceling fins
JPH0911990A (en) Rudder